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SUMMARY

A thorough understanding of time dependent noise in Global Navigation Satellite System
(GNSS) position time series is necessary for computing uncertainties in any signals found
in the data. However, estimation of time-dependent noise is a challenging task and is com-
plicated by the difficulty in separating noise from signal, the features of greatest interest in
the time series. In this paper we investigate how linear trends affect the estimation of noise
in daily GNSS position time series. We use synthetic time series to study the relationship be-
tween linear trends and estimates of time-dependent noise for the six most commonly cited
noise models. We find that the effects of added linear trends, or conversely de-trending, vary
depending on the noise model. The commonly adopted model of random walk (RW), flicker
noise (FN), and white noise (WN) is the most severely affected by de-trending, with low am-
plitude random walk most severely biased. Flicker noise plus white noise is least affected by
adding or removing trends. Non-integer power-law noise estimates are also less affected by
de-trending, but are very sensitive to the addition of trend when the spectral index is less than
one. We derive an analytical relationship between linear trends and the estimated random walk
variance for the special case of pure random walk noise. Overall, we find that to ascertain the
correct noise model for GNSS position time series and to estimate the correct noise parameters,

it is important to have good constraints on the actual trends in the data.
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1 INTRODUCTION

We are currently in the third decade of continuous GNSS recordings of crustal motion. Daily po-
sition time series provide highly precise estimates of GNSS velocities (Prawirodirdjo and Bock
2004; Li et al. 2012; Kierulf et al. 2014; Mantovani et al. 2016). However, the presence of time-
dependent (or colored) noise in the time series complicates these estimates. First, the estimates of
signals, such as linear trends, in the data can trade off with estimates of time-dependent noise. Sec-
ond, the presence of time-dependent noise drastically increases the velocity uncertainty (Williams
2003), yet these noise parameters can be difficult to estimate robustly (Langbein 2012; Dmitrieva
et al. 2015).

The task of estimating noise becomes easier when the signal is known. Previously we devel-
oped a network method of analyzing noise in GNSS time series from intraplate regions, where we
can assume small or well characterized signals (Dmitrieva et al. 2015). Rigid plate rotations are
generally well known a priori. In our previous analysis of data from the North American mid-
continent we also corrected for trends due to glacial isostatic adjustment (GIA). We found that the
noise estimate for a network of stations was unchanged after the removal of modeled linear trends
due to GIA. This prompted a further investigation into the effects of linear trends on the estimates
of time-dependent noise that we report on here.

From a scientific standpoint, the main interest is usually in estimating signals in the GNSS
data, such as site velocities or transient signals on a variety of time scales (Miyazaki et al. 2003;
Melbourne and Webb 2002). We need to quantify the time-dependent noise in the data only to
calculate the uncertainty of the signal. However, estimation of a linear trend (for example) is more
accurate if the noise model and amplitudes of the various noise components are accurately known.
Additionally, there is considerable debate about the type and amount of noise present in GNSS data
(Amiri-Simkooei 2016; Hackl et al. 2011; Santamaria-Gémez 2011; Klos et al. 2015), making it
difficult to determine the true signal uncertainty. In order to correctly model noise in the data, we
would ideally like to have strong a priori constraints on any signals present. In this paper we focus
on understanding the relationship between estimated time-dependent noise and linear trends in the

GNSS time series.
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Time-dependent noise is usually represented by power law forms (Agnew 1992), where noise
in the spectral domain is proportional to the inverse of the frequency to a power of n—the spectral
index: p ~ f~", where n usually ranges from -1 to 3 (Agnew 1992). Some well-known cases of
the power-law representation are: white noise (WN, n = 0), flicker noise (FN, n = 1) and random
walk (RW, n = 2). However, n could be non-integer, in which case it is referred to as generic
power law (PL).

There is no agreement on which noise model is the most representative of GNSS time series.
Some argue for a sum of FN and WN (Williams et al. 2004; Ray et al. 2008), while others suggest
that the sum of RW, FN and WN should be used (Calais et al 2006; King and Williams 2009;
Amiri-Simkooei 2013; Dmitrieva et al. 2015). Finally, some suggest a sum of PL and WN (San-
tamaria-Gomez 2011; Klos et al. 2015; Devoti et al. 2015). Moreover, Langbein (2008) suggests
that the optimal model is different for different stations. In this paper we explore the above models
with synthetic time series, since knowledge of the true noise and trend allows us to precisely eval-
uate the effects of linear trends on estimation of the noise parameters. For every noise model and
added trend we perform 100 realizations and then calculate the mean and the standard deviation
of the estimated noise parameters.

There are various methods to estimate noise in GNSS time series, such as spectral estimation
(Langbein and Johnson 1997; Zhang et al. 1997; Santamaria-Goémez 2011), maximum likelihood
estimation (MLE) (Langbein 2004; Williams et al. 2004), least squares variance component esti-
mation (Amiri-Simkooei 2007), applying the Allan variance of the rate to the time series (Hackl
et al. 2011) and Kalman-filter-based MLE network noise estimation (Dmitrieva et al. 2015). We
previously showed that when estimating time-dependent noise independently for individual sta-
tions, the time-dependent noise, especially RW, can be systematically underestimated (Dmitrieva
et al. 2015). Estimating noise parameters for a network of stations simultaneously provides more
robust estimates of the average RW variance (Dmitrieva et al. 2015). Since in this paper all data
is synthetic, there are no disadvantages to estimating noise parameters for a network rather than
for individual time series, as long as all time series within a network have the same noise param-

eters. This way we gain more precision in the estimation of lowest frequency noise (such as RW
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or high-exponent PL). In order to estimate average noise parameters for a network, we modify
the MLE method (Langbein 2004), calculating the likelihood of each time series having the given

noise covariance, and then maximizing the sum of these likelihoods, rather than maximizing each

individual likelihood:
M M
=23 L(z,C) =) [ln(det(C’)) +riC 7 + Nln(27r)} : (1)

i=1 =1

where M is the number of time series in the network, C is the data covariance matrix, /N is the
number of observations and r; are the residuals of the model fit for the ¢-th time series. To speed
up the likelihood calculation we use Cholesky factorization of the covariance matrix (Bos et al.
2008).

In this paper we explore the relationship between time-dependent noise estimates and linear
trends in the data. First, we present a theoretical derivation of how trends affect the estimate of
RW amplitude in a case of a simple pure RW noise model. Then we look at how adding linear
trends to various noise models affects the estimates of those noise parameters. Finally, we explore
how noise could be perceived as trend and how removing an apparent linear trend affects the noise
estimates. The main goal of this paper is to develop an understanding of how noise estimates are

affected by linear trends.

2 THEORETICAL RELATIONSHIPS BETWEEN TREND AND RANDOM WALK
VARIANCE

In this section we develop a theoretical relationship between trend and the estimated random walk
variance. We focus on the case of pure RW and derive how the estimate of RW scale changes with
the addition of a linear trend.

Let z; be a RW, where i« = 0,...,n is the epoch. If the period between two epochs At is
constant, then t;, = iAt and t, = T = nAt. A discrete RW process with variance 72t is a
cumulative sum of WN: z; = 7v/At Zé:l rj, where 7 is the RW scale parameter with units of
mm/yr®® and 7 is a random vector with zero mean and unit variance. The difference of the series

z is white noise: z; — z;_1 = TV At r;. Let Diff(-) denote the vector of first differences and
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Sum(-) denote the sum of a vector. The expectation of the mean of the differences is 0 because the

difference vector Diff (z) is proportional to r. Thus, the variance of the differences is
1

var[Diff(z)] = E | —Sum(Diff (2)?)| = 72At, (2)
n

where E denotes expected value. We obtain the simple estimator

~92 _ 1 . 2\ l : 2
7(2) = @Sum(Dlﬂ(z) )= TSum(lef(z) ), 3)

whose expectation for RW z is E[72(z)] = 72.

We now apply this estimator to the time series y; = y(t;) = st; + z;, which is a sum of RW
z and linear trend st with slope s. The time series first difference is Diff(y) = 7V At r + sAt;

therefore, the expectation of the estimator with this input is

E[#*(y)] = A1t[7'2At + 2 At = 7 + s*At. 4)

Equation 4 gives the relationship between the scale parameter for RW and the trend in the data.
Surprisingly, the estimate depends on the sampling interval. This can be understood as follows.
In the limit of very sparse sampling, it is hard to distinguish between RW and a trend. With finer
sampling, RW and trend become more distinct.

Figure 1 shows how the addition of a linear trend affects the RW estimate for a true RW of 1
mm/yr® and the typical At = 1 day. The addition of a linear trend increases the estimated RW
amplitude by 2% (1.02 relative to 1 mm/yr®®) when the trend is 3.8 mm/yr. A 10% increase occurs
when the added linear trend is 8.8 mm/yr. We also plot a numerical simulation of the estimated
RW scale parameter for various trends, which agrees with the derivation above. Note that in Figure
1 the only noise in the time series is RW. Although the bias for pure RW (and daily sampling) is
small, we show in the following section that this effect is larger when FN and RW are present.

In the preceding analysis, the linear trend is independent of the RW, and the expectation of the
estimator 7 increases. De-trending has the opposite effect. De-trending adds a linear trend that is
correlated with the RW. The expectation of 7 decreases. This can be understood by a derivation
similar to that in Equation 4 for simple de-trending procedures. For example, suppose a linear
trend is removed such that a time series y; starts and ends at 0. Then the slope s = —z, /T (the

maximum likelihood estimate for pure RW errors), and thus y; = z; — z,t;/T. Proceeding as
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before, we construct the first difference Diff (y):

Yi —Yie1  =TVAL |1 — ;?At} (5)
— T\/A_t r; — 7‘7;_,1 i At‘| (6)

= VAL (1—?)7}—?‘2“: rj]. (7

Then the expectation of the estimator is

B[] = ;E [Sum(Diff (y)?)] )
2
T2At At N
B 7_2 n At 2 ) At 2 n )

In the second line, we used 7" = nAt. In the third line, we used E[r;r;] = 0 when ¢ # j to remove

all terms in 7,7, i # j. Now we use E[r?] = 1 to finish:

B[ =ii[(l—§t)2+ (ATt)?n—w] an

0=+ (3 0]
- (1- At) X (13)

Equation 13 should be compared with Equation 4. In Equation 4, there is a term s2At in addition
to 72; in Equation 13, there is instead a term —72At /T, from which we can identify s = —7/ VT.
Again, while the bias is small for pure RW, we show that it can be considerably larger when FN
and WN are present.

While it is possible to derive an analytical expression for pure RW, when any other noise com-
ponent is added to the noise model it appears not to be possible to derive closed-form expressions
for the expected value of the noise parameter. Instead, we explore the effects of linear trends on

the estimates in the next section using synthetic data.
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3 EMPIRICAL RELATIONSHIP BETWEEN TRENDS AND NOISE ESTIMATES

In this section we perform tests of a more realistic noise scenarios for GNSS position time series.
We use synthetically generated time series consisting of a sum of time-dependent and white noise.
Since there is no general agreement on which noise model is the most appropriate for GNSS
time series, we consider three commonly used noise models, as discussed in the introduction.
The inferred noise parameters depend on the topocentric components analyzed, with horizontal
components of GNSS positions being more precise than the vertical. We explore a range of noise
amplitudes based on estimates reported in the literature. The first model we consider is a sum
of RW, FN (4 mm/yr’2%) and WN (1 mm), with three RW amplitudes: 1, 0.5 and 0.1 mm/yr%5.
Secondly, we consider a sum of PL (amplitude of 3 mm/yr®?°" and two different spectral indices
n = 1.4, which lies between RW and FN, and n = 0.3, which lies between FN and WN) and WN
(1 mm). Lastly, we consider a sum of FN of 4 mm/yr’?> and WN of 1 mm.

First, we investigate how adding various linear trends affects the estimated time-dependent
noise. For each scenario we generate a network of 4 time series each with 10 years of daily data,
fixed noise, and different linear trends varying from O to I mm/yr with an increment of 0.1 mm/yr.
Then we estimate noise parameters assuming no trend, and compare the means and standard de-
viations of the estimates (Figure 2). The top panel shows the mean and standard deviation of the
estimates of the RW scale parameter for the RW+FN+WN model. As expected smaller amplitudes
of RW are most affected by the addition of a linear trend. When RW is high (1 mm/yr®-?), the mean
estimate of RW amplitude exceeds the true value by one standard deviation when linear trend is
0.52 mm/yr (dashed line) and exceeds the true value by 10% (1.1 mm/yr’°) when the linear trend
is equal to 0.63 mm/yr. For RW of 0.5 mm/yr%5, the mean estimate exceeds the true value by one
standard deviation when the trend exceeds 0.27 mm/yr (dashed line) and is over the true value by
10% (0.55 mm/yr®°) once the linear trend is 0.34 mm/yr. In the case of low RW of 0.1 mm/yr’®,
adding even 0.13 mm/yr of trend causes the mean to exceed the true value by one standard devi-
ation. In summary, when the RW variance is large moderate trends do not significantly affect the
RW amplitude estimate, while low level RW can be strongly influenced by the presence of a trend

in the data. Note also that the mean of the RW estimates in all three cases approaches a common
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value when the trends exceed ~ 1 mm/yr, suggesting that for sufficiently large trend the site ve-
locity dominates the estimated RW. We do not show the corresponding FN or WN estimates, as
they are not greatly affected by the addition of linear trends for the range of parameters tested.

The second panel of Figure 2 shows the means and standard deviations of the spectral index n
for the PL+WN noise model. We consider two cases, first, the PL+WN model with high spectral
index n = 1.4 and then with very low index n = 0.3. We estimate both the spectral index and the
amplitude of the PL component, but only show the estimates of n, since it is significantly more
affected by the added trend. Figure 2 shows that adding a linear trend affects noise with n = 0.3
much more than noise with n = 1.4. For n = 1.4 the mean of the estimate exceeds the true value
by one standard deviation once the linear trend is 0.37 mm/yr (dashed line) and it exceeds the true
n by over 10% only for trends exceeding 1 mm/yr. For n = 0.3 adding even 0.1 mm/yr of trend
causes the mean estimated n to exceed the true value by over 50%. As with the RW+FN+WN
model, the estimates of the spectral index converge when a sufficiently large trend is added.

The bottom panel of Figure 2 shows how the presence of a linear trend affects the estimates of
FN amplitude in a FN+WN model. We find that even with a 1 mm/yr trend, the mean estimate still
does not exceed 10% of the true FN amplitude. The mean of the FN amplitude estimate exceeds
the true value by one standard deviation when the linear trend is 0.4 mm/yr (dashed line), but
in this case this results mainly from the small standard deviation in the estimate (there are fewer
parameters estimated compared to previous models).

We next consider how de-trending affects the estimates of noise parameters. This is important
because long period noise could be interpreted as a trend. Using synthetic data we calculate a mean
of the absolute values of the estimated apparent trend for all six noise scenarios explored in this
paper. We emphasize that for these estimates the time series consisted only of noise and no trend.
The results for 10 years of daily positions time series are shown in Table 1. The calculations show
that a significant trend could be estimated when there is in fact no underlying linear signal. The
apparent linear trend is greater for models with noise with higher spectral indices, such as RW
and high n PL, but is still present for FN+WN. This emphasizes how time-dependent noise affects

both the velocity estimate as well as the uncertainty in that estimate.
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We again use synthetic tests to explore the impact of de-trending on estimates of time-dependent
noise parameters. For each scenario we generate a network of 4 time series with 10 years of daily
data, fixed noise parameters, but with no linear trend. We use linear least squares with the ap-
propriate data covariance to estimate and remove apparent trends, then estimate noise parameters
from the residuals.

For the RW+FN+WN model (Figure 3), in the case of high RW (I mm/yr’®) removing a
linear fit significantly biases the RW estimate. One third of the tests have zero estimated RW
amplitude, while the remaining two thirds have non-zero estimates but are still biased to low
values. For moderate RW (0.5 mm/yr’®) 90% of the estimated scale parameters are zero following
trend removal. The mean estimate of RW amplitude is only 0.06 mm/yr’®. Initially, we estimate
and remove both the slope and the intercept of the linear trend, since this is more conventional.
However, we found that removing just the slope produces a different result (Figure 3, bottom
panel). Subtracting the small intercept brings the estimate of RW down. Even when we remove
just the apparent trend (without the intercept), the RW amplitude is underestimated, the mean
estimate of RW is now 0.2 mm/yr® and almost half the estimates are now at 0 mm/yr®>. Thus, for
the RW+FN+WN model, removing an apparent linear trend leads to a significant underestimation
of the RW amplitude. This bias leads to an underestimation of velocity uncertainty (Table 2). We
do not show estimates of FN and WN amplitudes as they are not strongly affected by de-trending
for this noise model.

For the case of PL+WN model (Figure 4), for both low and high spectral index, n is just slightly
underestimated after removal of a fitted trend. For n = 1.4 the mean estimate before de-trending is
1.40, while it is 1.38 after de-trending. For n = 0.3 prior to de-trending the mean estimate is 0.30
and n = (.28 after the trend is removed. There is no change in the estimate of the amplitude of the
PL or WN amplitudes for the PL+WN model. For FN+WN model (Figure 5) there is almost no
change in the FN estimate. Before de-trending the mean estimate is 4.00 mm/yr’?> and it is 3.98

0.25

mm/yr - after de-trending.
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4 DISCUSSION

Our findings show that the degree to which signals, such as linear trends, affect the estimates of
time-dependent noise parameters varies depending on the underlying noise model. We provide a
derivation that shows that linear trends with small to moderate slopes do not significantly affect
the estimate of noise parameters for the case of pure RW. Of course, it is unrealistic to assume pure
RW as a noise model for actual GNSS time series. We also tested six different noise models that
are more appropriate for GNSS noise. When considering these noise models we find that adding
linear trends may significantly impact the estimated noise parameters.

To better understand the dependence of the noise estimate on the linear trend consider the
power spectra plotted in Figure 6, which shows theoretical noise components: RW, FN, WN, their
sum and a linear trend. At high frequencies the noise is mainly affected by WN, in the mid-
frequencies FN is dominant, while RW only dominates for a limited band-width at the lowest
frequencies. Figure 6 also shows that a linear trend has a slope of —2, as does RW. (Although both
trend and RW have the same slope in the amplitude domain the phasing is very different, which is
clear in the time domain). With realistic amounts of FN and WN, RW only dominates at the lowest
frequencies, making it harder to estimate and more likely to trade-off with trend.

To test this we compared the affects of adding a linear trend to the RW+FN+WN model for
typical and very low amplitude FN. Based on the spectral plots, we expect that with very low FN
the added trend would lead to a smaller bias in the RW estimate. Indeed, Figure 7 shows that with
the very low FN adding 1 mm/yr linear trend increases the RW estimate by only ~ 50%, whereas
with typical FN amplitude the RW estimate is biased by ~ 260% of the true value.

A perhaps counterintuitive result is that for pure RW noise, the sampling frequency determines
how much a trend biases the noise estimate (equation 4). Perhaps some insight can be gained by
considering the limiting case of two data points at the beginning and end of the time series. In
this limit the RW time series is indistinguishable from a linear trend. As the sampling interval
decreases the difference time series for RW approaches a fixed distribution (in this case Gaussian
white noise), whereas the difference series for the trend is a constant, sAt. Thus a ML estimator

can better differentiate trend from RW even though their amplitude spectra are similar.
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Our simulations show that time-dependent noise can be incorrectly perceived as a linear trend.
Removing this apparent, but non-existent, trend may bias the noise estimate to low values; RW
noise is especially sensitive to de-trending. For the RW+FN+WN model de-trending can signifi-
cantly decrease estimates of RW amplitude. Removing a linear trend also decreases the estimate
of the spectral index for PL+ WN model, but to a lesser extent. Removal of an apparent trend does
not affect the estimate of FN for the FN+WN model, in part because of the difference in spectral
slope between the trend (—2) and FN (—1). In contrast to the PL. model, the spectral index is fixed
when estimating noise parameters for the FN+WN model.

For the RW+FN+WN model de-trending can result in very low and even null estimates of
RW, even when the true RW amplitude is significant. Figure 8 shows a power spectral plot of
one of the cases from Figure 3B—that is, an individual time series for the RW+FN+WN model—
with moderate RW (0.5 mm/yr®?). Prior to de-trending, the RW was estimated correctly at 0.48
mm/yr’®, however after de-trending the estimate of RW scale parameter is zero. Figure 8 illustrates
that at the lowest frequencies, where RW dominates, the spectrum is similar to that of a linear
trend. If the best fitting trend is removed, the FN+WN model becomes a good fit to the residual
time series. This helps explain how de-trending can bias the RW estimate. We also note that in
this paper we maximize the sum of the likelihoods from multiple time series. We have previously
shown that network approaches are more precise at estimating low levels of RW (Dmitrieva et
al. 2015). When maximizing the likelihood for each time series, as typically done, de-trending is
even more likely to result in null estimates of RW. We conclude that de-trending the data can lead
to biased or even vanishing RW estimates. At the same time, accurately estimating weak RW is
difficult in the presence of trends. The estimated RW amplitudes can be significantly larger than
the true values, when unaccounted for trends are present. Hence, one has to be very careful about
de-trending the time series, since this could lead to either completely neglecting or significantly
overestimating the RW variance.

The FN+WN model is insensitive to both moderate linear trends as well as to de-trending. With
strong a priori knowledge that FN+WN is the correct noise model, one could be somewhat liberal

with removing trends. The same holds for the PL+WN model, as we observe that de-trending



12 Dmitrieva et al.

only weakly biases estimates of the spectral index. For PL indices that lie between RW and FN,
such as n = 1.4, adding even moderate trends does not have a significant effect on the estimate
of the spectral index. However, for PL noise with lower spectral index, such as n = 0.3, even a
very small (e.g. 0.05 mm/yr) trend has a significant effect on the estimate of the spectral index.
Removing a linear trend for low index PL noise does not affect the estimate of the index. Hence,
if one is confident in the PL+WN model and maximum likelihood estimates of spectral index are
low, it is fair to assume that those estimates are accurate. However, higher spectral index estimates
could be due to 1) the index actually being high, 2) a residual linear trend or 3) PL+WN not being
the correct model to use.

It is important to note that there is independent evidence that GNSS monument motion con-
tributes RW to geodetic time series (Wyatt 1989; Johnson and Agnew 1995). We have shown that
de-trending can lead to null estimates of RW, potentially leading to the erroneous conclusion that
a simpler FN+WN model, that requires only 2 parameters to estimate, is more appropriate. The
best solution to this problem may be to analyze data from areas where it is known a priori that
there are no linear-in-time signals in the time series, or where the trends are well-known. Such
areas could be the interiors of plates far from plate-boundary deformation, and also far from large
GIA signals, or where such effects are well modeled. As noted in the Introduction, preliminary
work in the North American mid-continent found that removing GIA velocities barely influenced
estimates of noise parameters (Dmitrieva et al. 2015). In that case, the average GIA signals for the
horizontal time series were low, with a mean of 0.28 mm/yr, and the estimated RW was relatively

high, 1 mm/yr%°.

5 CONCLUSIONS

When a small to moderate linear trend is added to a pure RW time series with daily sampling, the
effects of the trend on the estimates of RW variance are minor. However for more realistic noise
models, the results vary significantly depending on the noise model. In the presence of WN and
FN, RW is both very sensitive to de-trending as well as un-modeled residual trends. It is difficult

to either confirm or reject the presence of RW in the data without knowing a priori the true signal
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trend. Both FN+WN and PL+WN (with the PL spectral index 1 < n < 2) models are relatively
insensitive to de-trending. However, for the PL+WN model with lower spectral indices 0 < n < 1,
an added trend drastically increases the estimate of the spectral index.

Estimates of time-dependent noise depend on knowledge of any linear trends present in the
data. In order to know the uncertainties of the estimated linear trends we need to know the time-
dependent noise model and variances. At the same time to accurately estimate the noise we need to
know any trends in the data. To break out of this loop we need additional information. To determine
the best noise model and typical variances in the actual GNSS position time series we recommend

focusing on areas where trends are either small or well-known a priori.
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Table 1. Average (over 1000 estimations for each value) of absolute value of estimated linear trend in the

synthetic time series (10 years of daily data) that consist only of noise.

Noise model Mean trend (mm/yr)

RW(1 mm/yr®)+FN(4 mm/yr?-2°)+WN(1 mm) 0.30
RW(0.5 mm/yr%2%)+FN(4 mm/yr’2%)+WN(1 mm) 0.18
RW(0.1 mm/yr®25)+FN(4 mm/yr’2>)+WN(1 mm) 0.12

PL(n=1.4, 3 mm/yr%%7%)+WN(1 mm) 0.21
PL(n=0.3, 3 mm/yr"3%)+WN(Il mm) 0.02
FN(4 mm/yr%25)+WN(1 mm) 0.11

Table 2. Velocity uncertainty with the RW+FN+WN model, where FN is 4 mm/yr%2>, WN is 1 mm and
RW amplitude as shown in the table.

Random walk, mm/yr®- 14 10 05 01 O
Velocity uncertainty, mm/yr 0.5 035 021 0.13 0.13
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Figure 1. The effect of a linear trend on the RW estimate. Solid lines represent the theoretical RW estimate
(Equation 4) for pure RW (blue) and RW + linear trend (green). Dots show simulations (each dot is a mean
of 100 runs): red dots are estimates of RW amplitude for time series of pure RW and black dots are RW
amplitude estimates for time series of a sum of RW and linear trend. Blue dashed lines show where the error

in the RW estimate exceeds 2%, which for RW of 1 mm/yt’-® and daily sampling rate equals 3.8 mm/yr.
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Figure 2. Changes in estimated noise parameters due to the presence of a linear trend in the data. For each
experiment, we create 4 time series containing the same amount of noise sampled daily for 10 years. A linear
trend is added, with values ranging from O to 1 mm/yr, with an increment of 0.1 mm/yr. The estimated noise
parameters are shown assuming that the data contain noise only. Each combination of noise model, noise
amplitude and trend, is repeated 100 times. The mean (thick lines) and standard deviation (thin lines) of the
estimates are shown. Top: the noise model is RW+FN+WN, the true RW is 1 mm/yr’-> for the purple curves,
0.5 mm/yr® for the green curves and 0.1 mm/yr-° for the pink curves. Middle: PL (3 mm/yr®-2>" amplitude
and spectral index n = 1.4 (blue) and n = 0.3 (green))+WN model. Bottom: FN (4 mm/yr-2%)+WN. The

dashed lines show where the mean of the estimates exceeds the true value by one standard deviation.
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Figure 3. Effects of de-trending on noise estimates (RW+FN+WN model). Synthetic time series contain
RW + FN + WN (all panels have the same FN 4 mm/yr®25 and WN 1 mm), RW from top: 1 mm/yr%>,
mid and bottom: 0.5 mm/yr®-®. The apparent trend is subtracted and then noise parameters are estimated.
Histograms show the distribution of estimated RW amplitude for 100 trials. Blue - original, Green - de-

trended (intercept and slope removed), Red - de-trended (just the slope removed).
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Figure 4. Effects of de-trending on noise estimates (PL+WN model). Synthetic time series contain PL 3
mm/yr%®" with n = 1.4 (top) and n = 0.3 (bottom) and WN 1 mm. The apparent trend is subtracted
and then noise parameters are estimated. Here we show histograms of the distribution of PL spectral index

estimates for 100 trials. Red - original, Blue - de-trended.
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Figure 5. Effects of de-trending on noise estimates (FN+WN model). Synthetic time series contain FN 4
mm/yr%25 and WN Imm. The apparent trend is subtracted and then noise parameters are estimated. Here

we show histograms of the distribution of FN amplitude estimates for 100 trials. Red - original, Blue -

de-trended.
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Figure 6. Power spectra showing the relationship between various noise components and a linear trend.
Theoretical slope for 1 mm/yr’® RW (black), 4 mm/yr®2> FN (green) and 1 mm WN (grey). The blue
dashed line is a sum of RW, FN and WN. The red line is a power spectrum of 10 years of daily data with
slope of 3.8 mm/yr.
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Figure 7. Comparison of the effects of added linear trend on RW estimates, for RW+FN+WN with typical
(4 mm/yr®?, in blue) and very low (0.1 mm/yr®2>, in red) FN. For both cases RW is 0.5 mm/yr®5 and WN
is 1 mm. Thick lines indicate the mean of 100 estimates and thinner lines are one standard deviation. Black

line shows true RW.
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Figure 8. Illustration of how de-trending effects RW estimates in the spectral domain. Pink line is a power
spectrum of a synthetically generated time series that is a sum of RW, FN and WN. Red dashed line is the
model used to generate the time series (RW of 1 mm/yr®®, FN of 4 mm/yr%2> and WN of 1 mm). Light blue
line is the power spectrum of the same time series de-trended. Dark blue dashed line is the model prediction
based on the noise estimates of the de-trended time series (estimated RW of 0 mm/yr’-%). Green curve is the

power spectrum of the fitted trend.



