
submitted to Geophys. J. Int.

Effects of linear trends on estimation of noise in GNSS position

time series

K. Dmitrieva1, P. Segall1 and A.M. Bradley1

1 Department of Geophysics, Stanford University, Stanford, USA

Received 2016

SUMMARY

A thorough understanding of time dependent noise in Global Navigation Satellite System

(GNSS) position time series is necessary for computing uncertainties in any signals found

in the data. However, estimation of time-dependent noise is a challenging task and is com-

plicated by the difficulty in separating noise from signal, the features of greatest interest in

the time series. In this paper we investigate how linear trends affect the estimation of noise

in daily GNSS position time series. We use synthetic time series to study the relationship be-

tween linear trends and estimates of time-dependent noise for the six most commonly cited

noise models. We find that the effects of added linear trends, or conversely de-trending, vary

depending on the noise model. The commonly adopted model of random walk (RW), flicker

noise (FN), and white noise (WN) is the most severely affected by de-trending, with low am-

plitude random walk most severely biased. Flicker noise plus white noise is least affected by

adding or removing trends. Non-integer power-law noise estimates are also less affected by

de-trending, but are very sensitive to the addition of trend when the spectral index is less than

one. We derive an analytical relationship between linear trends and the estimated random walk

variance for the special case of pure random walk noise. Overall, we find that to ascertain the

correct noise model for GNSS position time series and to estimate the correct noise parameters,

it is important to have good constraints on the actual trends in the data.
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1 INTRODUCTION

We are currently in the third decade of continuous GNSS recordings of crustal motion. Daily po-

sition time series provide highly precise estimates of GNSS velocities (Prawirodirdjo and Bock

2004; Li et al. 2012; Kierulf et al. 2014; Mantovani et al. 2016). However, the presence of time-

dependent (or colored) noise in the time series complicates these estimates. First, the estimates of

signals, such as linear trends, in the data can trade off with estimates of time-dependent noise. Sec-

ond, the presence of time-dependent noise drastically increases the velocity uncertainty (Williams

2003), yet these noise parameters can be difficult to estimate robustly (Langbein 2012; Dmitrieva

et al. 2015).

The task of estimating noise becomes easier when the signal is known. Previously we devel-

oped a network method of analyzing noise in GNSS time series from intraplate regions, where we

can assume small or well characterized signals (Dmitrieva et al. 2015). Rigid plate rotations are

generally well known a priori. In our previous analysis of data from the North American mid-

continent we also corrected for trends due to glacial isostatic adjustment (GIA). We found that the

noise estimate for a network of stations was unchanged after the removal of modeled linear trends

due to GIA. This prompted a further investigation into the effects of linear trends on the estimates

of time-dependent noise that we report on here.

From a scientific standpoint, the main interest is usually in estimating signals in the GNSS

data, such as site velocities or transient signals on a variety of time scales (Miyazaki et al. 2003;

Melbourne and Webb 2002). We need to quantify the time-dependent noise in the data only to

calculate the uncertainty of the signal. However, estimation of a linear trend (for example) is more

accurate if the noise model and amplitudes of the various noise components are accurately known.

Additionally, there is considerable debate about the type and amount of noise present in GNSS data

(Amiri-Simkooei 2016; Hackl et al. 2011; Santamarı́a-Gómez 2011; Klos et al. 2015), making it

difficult to determine the true signal uncertainty. In order to correctly model noise in the data, we

would ideally like to have strong a priori constraints on any signals present. In this paper we focus

on understanding the relationship between estimated time-dependent noise and linear trends in the

GNSS time series.
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Time-dependent noise is usually represented by power law forms (Agnew 1992), where noise

in the spectral domain is proportional to the inverse of the frequency to a power of n—the spectral

index: p ∼ f−n, where n usually ranges from -1 to 3 (Agnew 1992). Some well-known cases of

the power-law representation are: white noise (WN, n = 0), flicker noise (FN, n = 1) and random

walk (RW, n = 2). However, n could be non-integer, in which case it is referred to as generic

power law (PL).

There is no agreement on which noise model is the most representative of GNSS time series.

Some argue for a sum of FN and WN (Williams et al. 2004; Ray et al. 2008), while others suggest

that the sum of RW, FN and WN should be used (Calais et al 2006; King and Williams 2009;

Amiri-Simkooei 2013; Dmitrieva et al. 2015). Finally, some suggest a sum of PL and WN (San-

tamarı́a-Gómez 2011; Klos et al. 2015; Devoti et al. 2015). Moreover, Langbein (2008) suggests

that the optimal model is different for different stations. In this paper we explore the above models

with synthetic time series, since knowledge of the true noise and trend allows us to precisely eval-

uate the effects of linear trends on estimation of the noise parameters. For every noise model and

added trend we perform 100 realizations and then calculate the mean and the standard deviation

of the estimated noise parameters.

There are various methods to estimate noise in GNSS time series, such as spectral estimation

(Langbein and Johnson 1997; Zhang et al. 1997; Santamarı́a-Gómez 2011), maximum likelihood

estimation (MLE) (Langbein 2004; Williams et al. 2004), least squares variance component esti-

mation (Amiri-Simkooei 2007), applying the Allan variance of the rate to the time series (Hackl

et al. 2011) and Kalman-filter-based MLE network noise estimation (Dmitrieva et al. 2015). We

previously showed that when estimating time-dependent noise independently for individual sta-

tions, the time-dependent noise, especially RW, can be systematically underestimated (Dmitrieva

et al. 2015). Estimating noise parameters for a network of stations simultaneously provides more

robust estimates of the average RW variance (Dmitrieva et al. 2015). Since in this paper all data

is synthetic, there are no disadvantages to estimating noise parameters for a network rather than

for individual time series, as long as all time series within a network have the same noise param-

eters. This way we gain more precision in the estimation of lowest frequency noise (such as RW



4 Dmitrieva et al.

or high-exponent PL). In order to estimate average noise parameters for a network, we modify

the MLE method (Langbein 2004), calculating the likelihood of each time series having the given

noise covariance, and then maximizing the sum of these likelihoods, rather than maximizing each

individual likelihood:

−2
M∑
i=1

L(x,C) =
M∑
i=1

[
ln(det(C)) + rt

iC
−1ri +N ln(2π)

]
, (1)

where M is the number of time series in the network, C is the data covariance matrix, N is the

number of observations and ri are the residuals of the model fit for the i-th time series. To speed

up the likelihood calculation we use Cholesky factorization of the covariance matrix (Bos et al.

2008).

In this paper we explore the relationship between time-dependent noise estimates and linear

trends in the data. First, we present a theoretical derivation of how trends affect the estimate of

RW amplitude in a case of a simple pure RW noise model. Then we look at how adding linear

trends to various noise models affects the estimates of those noise parameters. Finally, we explore

how noise could be perceived as trend and how removing an apparent linear trend affects the noise

estimates. The main goal of this paper is to develop an understanding of how noise estimates are

affected by linear trends.

2 THEORETICAL RELATIONSHIPS BETWEEN TREND AND RANDOM WALK

VARIANCE

In this section we develop a theoretical relationship between trend and the estimated random walk

variance. We focus on the case of pure RW and derive how the estimate of RW scale changes with

the addition of a linear trend.

Let zi be a RW, where i = 0, . . . , n is the epoch. If the period between two epochs ∆t is

constant, then ti = i∆t and tn ≡ T = n∆t. A discrete RW process with variance τ 2t is a

cumulative sum of WN: zi = τ
√

∆t
∑i

j=1 rj , where τ is the RW scale parameter with units of

mm/yr0.5 and r is a random vector with zero mean and unit variance. The difference of the series

z is white noise: zi − zi−1 = τ
√

∆t ri. Let Diff(·) denote the vector of first differences and
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Sum(·) denote the sum of a vector. The expectation of the mean of the differences is 0 because the

difference vector Diff(z) is proportional to r. Thus, the variance of the differences is

var[Diff(z)] = E
[

1

n
Sum(Diff(z)2)

]
= τ 2∆t, (2)

where E denotes expected value. We obtain the simple estimator

τ̂ 2(z) ≡ 1

n∆t
Sum(Diff(z)2) =

1

T
Sum(Diff(z)2), (3)

whose expectation for RW z is E[τ̂ 2(z)] = τ 2.

We now apply this estimator to the time series yi ≡ y(ti) = sti + zi, which is a sum of RW

z and linear trend st with slope s. The time series first difference is Diff(y) = τ
√

∆t r + s∆t;

therefore, the expectation of the estimator with this input is

E[τ̂ 2(y)] =
1

∆t
[τ 2∆t+ s2∆t2] = τ 2 + s2∆t. (4)

Equation 4 gives the relationship between the scale parameter for RW and the trend in the data.

Surprisingly, the estimate depends on the sampling interval. This can be understood as follows.

In the limit of very sparse sampling, it is hard to distinguish between RW and a trend. With finer

sampling, RW and trend become more distinct.

Figure 1 shows how the addition of a linear trend affects the RW estimate for a true RW of 1

mm/yr0.5 and the typical ∆t = 1 day. The addition of a linear trend increases the estimated RW

amplitude by 2% (1.02 relative to 1 mm/yr0.5) when the trend is 3.8 mm/yr. A 10% increase occurs

when the added linear trend is 8.8 mm/yr. We also plot a numerical simulation of the estimated

RW scale parameter for various trends, which agrees with the derivation above. Note that in Figure

1 the only noise in the time series is RW. Although the bias for pure RW (and daily sampling) is

small, we show in the following section that this effect is larger when FN and RW are present.

In the preceding analysis, the linear trend is independent of the RW, and the expectation of the

estimator τ̂ increases. De-trending has the opposite effect. De-trending adds a linear trend that is

correlated with the RW. The expectation of τ̂ decreases. This can be understood by a derivation

similar to that in Equation 4 for simple de-trending procedures. For example, suppose a linear

trend is removed such that a time series yi starts and ends at 0. Then the slope s = −zn/T (the

maximum likelihood estimate for pure RW errors), and thus yi = zi − znti/T . Proceeding as
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before, we construct the first difference Diff(y):

yi − yi−1 = τ
√

∆t
[
ri −

zn

T
∆t
]

(5)

= τ
√

∆t

[
ri −

∑n
j=1 rj

T
∆t

]
(6)

= τ
√

∆t

(1− ∆t

T

)
ri −

∆t

T

n∑
j=1,j 6=i

rj

 . (7)

Then the expectation of the estimator is

E[τ̂ 2] =
1

T
E
[
Sum(Diff(y)2)

]
(8)

=
τ 2∆t

n∆t

n∑
i=1

E

(1− ∆t

T

)
ri −

∆t

T

n∑
j=1,j 6=i

rj

2

(9)

=
τ 2

n

n∑
i=1

(1− ∆t

T

)2

E[r2
i ] +

(
∆t

T

)2 n∑
j=1,j 6=i

E[r2
j ]

 . (10)

In the second line, we used T = n∆t. In the third line, we used E[rirj] = 0 when i 6= j to remove

all terms in rirj , i 6= j. Now we use E[r2
i ] = 1 to finish:

E[τ̂ 2] =
τ 2

n

n∑
i=1

[(
1− ∆t

T

)2

+
(

∆t

T

)2

(n− 1)

]
(11)

= τ 2

[(
1− ∆t

T

)2

+
(

∆t

T

)2

(n− 1)

]
(12)

=
(

1− ∆t

T

)
τ 2. (13)

Equation 13 should be compared with Equation 4. In Equation 4, there is a term s2∆t in addition

to τ 2; in Equation 13, there is instead a term −τ 2∆t/T , from which we can identify s = −τ/
√
T .

Again, while the bias is small for pure RW, we show that it can be considerably larger when FN

and WN are present.

While it is possible to derive an analytical expression for pure RW, when any other noise com-

ponent is added to the noise model it appears not to be possible to derive closed-form expressions

for the expected value of the noise parameter. Instead, we explore the effects of linear trends on

the estimates in the next section using synthetic data.



Geophys. J. Int.: Effects of linear trends on estimation of noise 7

3 EMPIRICAL RELATIONSHIP BETWEEN TRENDS AND NOISE ESTIMATES

In this section we perform tests of a more realistic noise scenarios for GNSS position time series.

We use synthetically generated time series consisting of a sum of time-dependent and white noise.

Since there is no general agreement on which noise model is the most appropriate for GNSS

time series, we consider three commonly used noise models, as discussed in the introduction.

The inferred noise parameters depend on the topocentric components analyzed, with horizontal

components of GNSS positions being more precise than the vertical. We explore a range of noise

amplitudes based on estimates reported in the literature. The first model we consider is a sum

of RW, FN (4 mm/yr0.25) and WN (1 mm), with three RW amplitudes: 1, 0.5 and 0.1 mm/yr0.5.

Secondly, we consider a sum of PL (amplitude of 3 mm/yr0.25n and two different spectral indices

n = 1.4, which lies between RW and FN, and n = 0.3, which lies between FN and WN) and WN

(1 mm). Lastly, we consider a sum of FN of 4 mm/yr0.25 and WN of 1 mm.

First, we investigate how adding various linear trends affects the estimated time-dependent

noise. For each scenario we generate a network of 4 time series each with 10 years of daily data,

fixed noise, and different linear trends varying from 0 to 1 mm/yr with an increment of 0.1 mm/yr.

Then we estimate noise parameters assuming no trend, and compare the means and standard de-

viations of the estimates (Figure 2). The top panel shows the mean and standard deviation of the

estimates of the RW scale parameter for the RW+FN+WN model. As expected smaller amplitudes

of RW are most affected by the addition of a linear trend. When RW is high (1 mm/yr0.5), the mean

estimate of RW amplitude exceeds the true value by one standard deviation when linear trend is

0.52 mm/yr (dashed line) and exceeds the true value by 10% (1.1 mm/yr0.5) when the linear trend

is equal to 0.63 mm/yr. For RW of 0.5 mm/yr0.5, the mean estimate exceeds the true value by one

standard deviation when the trend exceeds 0.27 mm/yr (dashed line) and is over the true value by

10% (0.55 mm/yr0.5) once the linear trend is 0.34 mm/yr. In the case of low RW of 0.1 mm/yr0.5,

adding even 0.13 mm/yr of trend causes the mean to exceed the true value by one standard devi-

ation. In summary, when the RW variance is large moderate trends do not significantly affect the

RW amplitude estimate, while low level RW can be strongly influenced by the presence of a trend

in the data. Note also that the mean of the RW estimates in all three cases approaches a common
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value when the trends exceed ∼ 1 mm/yr, suggesting that for sufficiently large trend the site ve-

locity dominates the estimated RW. We do not show the corresponding FN or WN estimates, as

they are not greatly affected by the addition of linear trends for the range of parameters tested.

The second panel of Figure 2 shows the means and standard deviations of the spectral index n

for the PL+WN noise model. We consider two cases, first, the PL+WN model with high spectral

index n = 1.4 and then with very low index n = 0.3. We estimate both the spectral index and the

amplitude of the PL component, but only show the estimates of n, since it is significantly more

affected by the added trend. Figure 2 shows that adding a linear trend affects noise with n = 0.3

much more than noise with n = 1.4. For n = 1.4 the mean of the estimate exceeds the true value

by one standard deviation once the linear trend is 0.37 mm/yr (dashed line) and it exceeds the true

n by over 10% only for trends exceeding 1 mm/yr. For n = 0.3 adding even 0.1 mm/yr of trend

causes the mean estimated n to exceed the true value by over 50%. As with the RW+FN+WN

model, the estimates of the spectral index converge when a sufficiently large trend is added.

The bottom panel of Figure 2 shows how the presence of a linear trend affects the estimates of

FN amplitude in a FN+WN model. We find that even with a 1 mm/yr trend, the mean estimate still

does not exceed 10% of the true FN amplitude. The mean of the FN amplitude estimate exceeds

the true value by one standard deviation when the linear trend is 0.4 mm/yr (dashed line), but

in this case this results mainly from the small standard deviation in the estimate (there are fewer

parameters estimated compared to previous models).

We next consider how de-trending affects the estimates of noise parameters. This is important

because long period noise could be interpreted as a trend. Using synthetic data we calculate a mean

of the absolute values of the estimated apparent trend for all six noise scenarios explored in this

paper. We emphasize that for these estimates the time series consisted only of noise and no trend.

The results for 10 years of daily positions time series are shown in Table 1. The calculations show

that a significant trend could be estimated when there is in fact no underlying linear signal. The

apparent linear trend is greater for models with noise with higher spectral indices, such as RW

and high n PL, but is still present for FN+WN. This emphasizes how time-dependent noise affects

both the velocity estimate as well as the uncertainty in that estimate.
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We again use synthetic tests to explore the impact of de-trending on estimates of time-dependent

noise parameters. For each scenario we generate a network of 4 time series with 10 years of daily

data, fixed noise parameters, but with no linear trend. We use linear least squares with the ap-

propriate data covariance to estimate and remove apparent trends, then estimate noise parameters

from the residuals.

For the RW+FN+WN model (Figure 3), in the case of high RW (1 mm/yr0.5) removing a

linear fit significantly biases the RW estimate. One third of the tests have zero estimated RW

amplitude, while the remaining two thirds have non-zero estimates but are still biased to low

values. For moderate RW (0.5 mm/yr0.5) 90% of the estimated scale parameters are zero following

trend removal. The mean estimate of RW amplitude is only 0.06 mm/yr0.5. Initially, we estimate

and remove both the slope and the intercept of the linear trend, since this is more conventional.

However, we found that removing just the slope produces a different result (Figure 3, bottom

panel). Subtracting the small intercept brings the estimate of RW down. Even when we remove

just the apparent trend (without the intercept), the RW amplitude is underestimated, the mean

estimate of RW is now 0.2 mm/yr0.5 and almost half the estimates are now at 0 mm/yr0.5. Thus, for

the RW+FN+WN model, removing an apparent linear trend leads to a significant underestimation

of the RW amplitude. This bias leads to an underestimation of velocity uncertainty (Table 2). We

do not show estimates of FN and WN amplitudes as they are not strongly affected by de-trending

for this noise model.

For the case of PL+WN model (Figure 4), for both low and high spectral index, n is just slightly

underestimated after removal of a fitted trend. For n = 1.4 the mean estimate before de-trending is

1.40, while it is 1.38 after de-trending. For n = 0.3 prior to de-trending the mean estimate is 0.30

and n = 0.28 after the trend is removed. There is no change in the estimate of the amplitude of the

PL or WN amplitudes for the PL+WN model. For FN+WN model (Figure 5) there is almost no

change in the FN estimate. Before de-trending the mean estimate is 4.00 mm/yr0.25 and it is 3.98

mm/yr0.25 after de-trending.
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4 DISCUSSION

Our findings show that the degree to which signals, such as linear trends, affect the estimates of

time-dependent noise parameters varies depending on the underlying noise model. We provide a

derivation that shows that linear trends with small to moderate slopes do not significantly affect

the estimate of noise parameters for the case of pure RW. Of course, it is unrealistic to assume pure

RW as a noise model for actual GNSS time series. We also tested six different noise models that

are more appropriate for GNSS noise. When considering these noise models we find that adding

linear trends may significantly impact the estimated noise parameters.

To better understand the dependence of the noise estimate on the linear trend consider the

power spectra plotted in Figure 6, which shows theoretical noise components: RW, FN, WN, their

sum and a linear trend. At high frequencies the noise is mainly affected by WN, in the mid-

frequencies FN is dominant, while RW only dominates for a limited band-width at the lowest

frequencies. Figure 6 also shows that a linear trend has a slope of−2, as does RW. (Although both

trend and RW have the same slope in the amplitude domain the phasing is very different, which is

clear in the time domain). With realistic amounts of FN and WN, RW only dominates at the lowest

frequencies, making it harder to estimate and more likely to trade-off with trend.

To test this we compared the affects of adding a linear trend to the RW+FN+WN model for

typical and very low amplitude FN. Based on the spectral plots, we expect that with very low FN

the added trend would lead to a smaller bias in the RW estimate. Indeed, Figure 7 shows that with

the very low FN adding 1 mm/yr linear trend increases the RW estimate by only ∼ 50%, whereas

with typical FN amplitude the RW estimate is biased by ∼ 260% of the true value.

A perhaps counterintuitive result is that for pure RW noise, the sampling frequency determines

how much a trend biases the noise estimate (equation 4). Perhaps some insight can be gained by

considering the limiting case of two data points at the beginning and end of the time series. In

this limit the RW time series is indistinguishable from a linear trend. As the sampling interval

decreases the difference time series for RW approaches a fixed distribution (in this case Gaussian

white noise), whereas the difference series for the trend is a constant, s∆t. Thus a ML estimator

can better differentiate trend from RW even though their amplitude spectra are similar.
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Our simulations show that time-dependent noise can be incorrectly perceived as a linear trend.

Removing this apparent, but non-existent, trend may bias the noise estimate to low values; RW

noise is especially sensitive to de-trending. For the RW+FN+WN model de-trending can signifi-

cantly decrease estimates of RW amplitude. Removing a linear trend also decreases the estimate

of the spectral index for PL+WN model, but to a lesser extent. Removal of an apparent trend does

not affect the estimate of FN for the FN+WN model, in part because of the difference in spectral

slope between the trend (−2) and FN (−1). In contrast to the PL model, the spectral index is fixed

when estimating noise parameters for the FN+WN model.

For the RW+FN+WN model de-trending can result in very low and even null estimates of

RW, even when the true RW amplitude is significant. Figure 8 shows a power spectral plot of

one of the cases from Figure 3B—that is, an individual time series for the RW+FN+WN model—

with moderate RW (0.5 mm/yr0.5). Prior to de-trending, the RW was estimated correctly at 0.48

mm/yr0.5, however after de-trending the estimate of RW scale parameter is zero. Figure 8 illustrates

that at the lowest frequencies, where RW dominates, the spectrum is similar to that of a linear

trend. If the best fitting trend is removed, the FN+WN model becomes a good fit to the residual

time series. This helps explain how de-trending can bias the RW estimate. We also note that in

this paper we maximize the sum of the likelihoods from multiple time series. We have previously

shown that network approaches are more precise at estimating low levels of RW (Dmitrieva et

al. 2015). When maximizing the likelihood for each time series, as typically done, de-trending is

even more likely to result in null estimates of RW. We conclude that de-trending the data can lead

to biased or even vanishing RW estimates. At the same time, accurately estimating weak RW is

difficult in the presence of trends. The estimated RW amplitudes can be significantly larger than

the true values, when unaccounted for trends are present. Hence, one has to be very careful about

de-trending the time series, since this could lead to either completely neglecting or significantly

overestimating the RW variance.

The FN+WN model is insensitive to both moderate linear trends as well as to de-trending. With

strong a priori knowledge that FN+WN is the correct noise model, one could be somewhat liberal

with removing trends. The same holds for the PL+WN model, as we observe that de-trending
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only weakly biases estimates of the spectral index. For PL indices that lie between RW and FN,

such as n = 1.4, adding even moderate trends does not have a significant effect on the estimate

of the spectral index. However, for PL noise with lower spectral index, such as n = 0.3, even a

very small (e.g. 0.05 mm/yr) trend has a significant effect on the estimate of the spectral index.

Removing a linear trend for low index PL noise does not affect the estimate of the index. Hence,

if one is confident in the PL+WN model and maximum likelihood estimates of spectral index are

low, it is fair to assume that those estimates are accurate. However, higher spectral index estimates

could be due to 1) the index actually being high, 2) a residual linear trend or 3) PL+WN not being

the correct model to use.

It is important to note that there is independent evidence that GNSS monument motion con-

tributes RW to geodetic time series (Wyatt 1989; Johnson and Agnew 1995). We have shown that

de-trending can lead to null estimates of RW, potentially leading to the erroneous conclusion that

a simpler FN+WN model, that requires only 2 parameters to estimate, is more appropriate. The

best solution to this problem may be to analyze data from areas where it is known a priori that

there are no linear-in-time signals in the time series, or where the trends are well-known. Such

areas could be the interiors of plates far from plate-boundary deformation, and also far from large

GIA signals, or where such effects are well modeled. As noted in the Introduction, preliminary

work in the North American mid-continent found that removing GIA velocities barely influenced

estimates of noise parameters (Dmitrieva et al. 2015). In that case, the average GIA signals for the

horizontal time series were low, with a mean of 0.28 mm/yr, and the estimated RW was relatively

high, 1 mm/yr0.5.

5 CONCLUSIONS

When a small to moderate linear trend is added to a pure RW time series with daily sampling, the

effects of the trend on the estimates of RW variance are minor. However for more realistic noise

models, the results vary significantly depending on the noise model. In the presence of WN and

FN, RW is both very sensitive to de-trending as well as un-modeled residual trends. It is difficult

to either confirm or reject the presence of RW in the data without knowing a priori the true signal
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trend. Both FN+WN and PL+WN (with the PL spectral index 1 < n < 2) models are relatively

insensitive to de-trending. However, for the PL+WN model with lower spectral indices 0 < n < 1,

an added trend drastically increases the estimate of the spectral index.

Estimates of time-dependent noise depend on knowledge of any linear trends present in the

data. In order to know the uncertainties of the estimated linear trends we need to know the time-

dependent noise model and variances. At the same time to accurately estimate the noise we need to

know any trends in the data. To break out of this loop we need additional information. To determine

the best noise model and typical variances in the actual GNSS position time series we recommend

focusing on areas where trends are either small or well-known a priori.
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Table 1. Average (over 1000 estimations for each value) of absolute value of estimated linear trend in the

synthetic time series (10 years of daily data) that consist only of noise.

Noise model Mean trend (mm/yr)

RW(1 mm/yr0.5)+FN(4 mm/yr0.25)+WN(1 mm) 0.30

RW(0.5 mm/yr0.25)+FN(4 mm/yr0.25)+WN(1 mm) 0.18

RW(0.1 mm/yr0.25)+FN(4 mm/yr0.25)+WN(1 mm) 0.12

PL(n=1.4, 3 mm/yr0.075)+WN(1 mm) 0.21

PL(n=0.3, 3 mm/yr0.35)+WN(1 mm) 0.02

FN(4 mm/yr0.25)+WN(1 mm) 0.11

Table 2. Velocity uncertainty with the RW+FN+WN model, where FN is 4 mm/yr0.25, WN is 1 mm and

RW amplitude as shown in the table.

Random walk, mm/yr0.5 1.4 1.0 0.5 0.1 0

Velocity uncertainty, mm/yr 0.5 0.35 0.21 0.13 0.13
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Figure 1. The effect of a linear trend on the RW estimate. Solid lines represent the theoretical RW estimate

(Equation 4) for pure RW (blue) and RW + linear trend (green). Dots show simulations (each dot is a mean

of 100 runs): red dots are estimates of RW amplitude for time series of pure RW and black dots are RW

amplitude estimates for time series of a sum of RW and linear trend. Blue dashed lines show where the error

in the RW estimate exceeds 2%, which for RW of 1 mm/yr0.5 and daily sampling rate equals 3.8 mm/yr.
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Figure 2. Changes in estimated noise parameters due to the presence of a linear trend in the data. For each

experiment, we create 4 time series containing the same amount of noise sampled daily for 10 years. A linear

trend is added, with values ranging from 0 to 1 mm/yr, with an increment of 0.1 mm/yr. The estimated noise

parameters are shown assuming that the data contain noise only. Each combination of noise model, noise

amplitude and trend, is repeated 100 times. The mean (thick lines) and standard deviation (thin lines) of the

estimates are shown. Top: the noise model is RW+FN+WN, the true RW is 1 mm/yr0.5 for the purple curves,

0.5 mm/yr0.5 for the green curves and 0.1 mm/yr0.5 for the pink curves. Middle: PL (3 mm/yr0.25n amplitude

and spectral index n = 1.4 (blue) and n = 0.3 (green))+WN model. Bottom: FN (4 mm/yr0.25)+WN. The

dashed lines show where the mean of the estimates exceeds the true value by one standard deviation.
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Figure 3. Effects of de-trending on noise estimates (RW+FN+WN model). Synthetic time series contain

RW + FN + WN (all panels have the same FN 4 mm/yr0.25 and WN 1 mm), RW from top: 1 mm/yr0.5,

mid and bottom: 0.5 mm/yr0.5. The apparent trend is subtracted and then noise parameters are estimated.

Histograms show the distribution of estimated RW amplitude for 100 trials. Blue - original, Green - de-

trended (intercept and slope removed), Red - de-trended (just the slope removed).
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Figure 4. Effects of de-trending on noise estimates (PL+WN model). Synthetic time series contain PL 3

mm/yr0.5n with n = 1.4 (top) and n = 0.3 (bottom) and WN 1 mm. The apparent trend is subtracted

and then noise parameters are estimated. Here we show histograms of the distribution of PL spectral index

estimates for 100 trials. Red - original, Blue - de-trended.
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Figure 5. Effects of de-trending on noise estimates (FN+WN model). Synthetic time series contain FN 4

mm/yr0.25 and WN 1mm. The apparent trend is subtracted and then noise parameters are estimated. Here

we show histograms of the distribution of FN amplitude estimates for 100 trials. Red - original, Blue -

de-trended.
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Figure 6. Power spectra showing the relationship between various noise components and a linear trend.

Theoretical slope for 1 mm/yr0.5 RW (black), 4 mm/yr0.25 FN (green) and 1 mm WN (grey). The blue

dashed line is a sum of RW, FN and WN. The red line is a power spectrum of 10 years of daily data with

slope of 3.8 mm/yr.
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Figure 7. Comparison of the effects of added linear trend on RW estimates, for RW+FN+WN with typical

(4 mm/yr0.25, in blue) and very low (0.1 mm/yr0.25, in red) FN. For both cases RW is 0.5 mm/yr0.5 and WN

is 1 mm. Thick lines indicate the mean of 100 estimates and thinner lines are one standard deviation. Black

line shows true RW.
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Figure 8. Illustration of how de-trending effects RW estimates in the spectral domain. Pink line is a power

spectrum of a synthetically generated time series that is a sum of RW, FN and WN. Red dashed line is the

model used to generate the time series (RW of 1 mm/yr0.5, FN of 4 mm/yr0.25 and WN of 1 mm). Light blue

line is the power spectrum of the same time series de-trended. Dark blue dashed line is the model prediction

based on the noise estimates of the de-trended time series (estimated RW of 0 mm/yr0.5). Green curve is the

power spectrum of the fitted trend.


