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Abstract

From the seminal work of Yarbus [1967] on the relationship of eye
movements to vision, scanpath analysis has been recognized as a
window into the mind. Computationally, characterizing the scan-
path, the sequential and spatial dependencies between eye posi-
tions, has been demanding. We sought a method that could ex-
tract scanpath trajectory information from raw eye movement data
without assumptions defining fixations and regions of interest. We
adapted a set of libraries that perform multidimensional clustering
on geometric features derived from large volumes of spatiotemporal
data to eye movement data in an approach we call GazeAppraise.
To validate the capabilities of GazeAppraise for scanpath analy-
sis, we collected eye tracking data from 41 participants while they
completed four smooth pursuit tracking tasks. Unsupervised cluster
analysis on the features revealed that 162 of 164 recorded scanpaths
were categorized into one of four clusters and the remaining two
scanpaths were not categorized (recall/sensitivity=98.8%). All of
the categorized scanpaths were grouped only with other scanpaths
elicited by the same task (precision=100%). GazeAppraise offers a
unique approach to the categorization of scanpaths that may be par-
ticularly useful in dynamic environments and in visual search tasks
requiring systematic search strategies.

Keywords: eye tracking, pattern analysis, scanpath, trajectory
analysis method, GazeAppraise

Concepts: •Applied computing → Psychology; •Theory of
computation→ Computational geometry;

1 Introduction

Moment-to-moment changes in mind and brain processing are re-
flected in how a person moves their eyes through a scene. Most
commonly, eye tracking data are partitioned into discrete observa-
tions of periods of eye stability (fixations) and eye movements (sac-
cades). These parameters have proved useful for revealing mind
processes, such as the operation of spatial attention [Butler and Za-
cks 2006], and for relating mind and brain [Henderson et al. 2015].
Analysis of the sequential dependencies between eye positions, i.e.,
scanpath analysis, has been more difficult though, in part, because
of the computational complexity. Visual representations of fixations
and saccades spatially mapped onto the visual stimulus suggest that
capturing and characterizing the combination of spatial and tem-
poral features may provide important insights into the mind. For
example, Yarbus’s [1967] images of the fixations and saccades as-
sociated with answering different questions about a painting (give
the ages of the people, estimate the material circumstances of the
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family, etc.) suggested that the goals of the viewer could be dis-
cerned from the trajectory of eye movements.

Recently several groups have used various methods to analyze the
combined spatial and temporal features of eye movement behavior
(represented as a vector of features) in order to distinguish task per-
formance [Borji and Itti 2014; Haji-Abolhassani and Clark 2014;
Henderson et al. 2013], however Greene et al. [2012] using similar
methods were unable to distinguish between tasks. A limitation of
these methods is that they do not capture the sequential dependen-
cies between eye movements.

Several methods have been developed to quantify scanpath simi-
larity but these methods require preprocessing of the visual stimuli
or the eye movement data. Many of them rely on specifying areas
of interest within the visual stimulus [Cristino et al. 2010]. In re-
currence quantification analysis (RQA), the scanpaths of individual
viewers from individual stimuli are extracted by initially dividing
the stimulus into an array of spatial locations and mapping the se-
quence of fixation positions onto the array [Anderson et al. 2013].
Dewhurst et al. [2012] presented a method for comparing scan-
paths that capture the sequential dependencies of eye positions us-
ing geometric vectors with a method called MultiMatch. However,
this approach requires that the eye movement samples be processed
in several ways before comparisons can be made [Jarodzka et al.
2010].

We sought a method of extracting eye movement trajectory infor-
mation that could be applied to minimally-processed eye movement
data, and that could be applied without specifying areas of inter-
est a priori. The research we present here represents a proof-of-
concept that this new approach can be used with unprocessed eye
tracking data. Tracktable [Rintoul et al. 2015] is a set of libraries
(soon to be open source) that performs multidimensional clustering
on geometric features derived from large volumes of spatiotempo-
ral data. The Tracktable libraries were originally designed for ap-
plication to geospatial trajectories and have been tested using air
traffic data from the US Federal Aviation Administration Aircraft
Situation Display to Industry (ASDI). Tracktable is able to rapidly
identify flight trajectory patterns such as holding patterns, weather
avoidance, and mapping activities where the aircraft raster-scans
over a land area. Like air traffic data, eye tracking data are made
up of time-ordered sequences of spatial position coordinates. Rec-
ognizing the need for similar pattern identification capabilities for
both domains, we have investigated the application of the Track-
table methodology to smooth pursuit eye movement data. In this
paper, we report GazeAppraise, our adaptation of Tracktable for ap-
plication to eye tracking data. GazeAppraise calculates geometric
features over temporal intervals at multiple scales for each scanpath
in an input set of eye tracking data (for example from multiple sub-
jects viewing multiple stimuli). GazeAppraise then performs clus-
tering in feature space to categorize scanpaths by similarity. This
approach is novel because it segments eye tracking data into tempo-
ral intervals that determine the boundaries for calculating the spa-
tial features (as opposed to defining fixations and saccades). The
sequential dependencies between the eye samples are reflected in
the mapping of these features onto multidimensional space.
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2 Method

2.1 Participants

Forty-one employees (Males = 22, Females = 16, 3 participants did
not self-identify; Age: M = 27.0, SD = 11.5, Range = 17 to 65
years) were recruited from Sandia National Laboratories via email
messages distributed to members of the workforce. Participants
were paid their typical wage for their time spent participating in
this study.

2.2 Apparatus

Eye movements were tracked using Seeing Machines FOVIO run-
ning at 60 Hz. The FOVIO was interfaced with EyeWorks Record
3.12 software running on a DELL Precision T3600 and using the
Windows 7 operating systems on an Intel Xeon CPU E5-1603 0
@ 2.80 GHz with 8 GB of RAM. Movie files of a moving dot were
presented using a script created in EyeWorks Design 3.12. All stim-
uli were presented on a DELL 19” LCD monitor set at a resolution
of 1280× 1024.

2.3 Materials

The stimuli consisted of four movie files in .avi format in which a
white dot (22 × 20 pixels) moved across a black background. The
four stimuli were created such that the white dot entered each quad-
rant of the visual display and so that some of the stimuli had similar
curving geometric forms. The shapes traced by the white dot in-
cluded a star, an S, an O, and a swirl starting from the center of the
screen spiraling out. The video dimensions were 1024 × 640 and
the movie files were 23, 18, 14, and 14 seconds in length, respec-
tively. At an average viewing distance of 78 cm the dot moved at
6.0 degree of visual angle/sec, a speed that would allow participants
to use smooth pursuit eye movements to track the dot. During stim-
ulus presentation each video was preceded by a white fixation cross
of 87× 93 pixels on a black background presented for 2 seconds.

Figure 1: Four shapes traced by white dot in the smooth pursuit
task.

2.4 Procedure

This study was approved by the Sandia National Laboratories Hu-
man Subject Review board. Informed consent was obtained from
all participants. Participants were seated in a quiet and darkened

room at a distance of 54 to 92 cm from the monitor. Before be-
ginning the eye tracking tasks, the FOVIO was calibrated using a
five-point calibration screen. Stimulus presentation was self-paced.
Participants were instructed to look at the fixation cross when it
appeared and then to follow the white dot as it moved across the
screen. The 41 participants generated 164 scanpaths.

Figure 2: Sample scanpaths from two randomly chosen subjects for
each of four shapes used in smooth pursuit task.

3 GazeAppraise for Scanpath Analysis

The 164 scanpaths consisting of the x and y position of each sam-
ple recorded at 60 Hz were processed using GazeAppraise. In our
analysis, we chose 4 temporal scales, resulting in 10 temporal in-
tervals: (1) the entire scanpath, (2 - 3) the first and second halves of
the scanpath, (4 - 6) thirds of the scanpath and (7 - 10) quarters of
the scanpath. Note that the total number of temporal intervals, T ,
for the number of temporal scales, n, follows the triangle number
series,

Tn =
n(n+ 1)

2
.

We began with 4 temporal scales that had been shown in previous
work to minimize computational complexity while providing suffi-
cient resolution to differentiate aircraft trajectories. We found this
choice of temporal scales to also be effective in this application to
eye movement patterns. Following the Tracktable method of Rin-
toul et al. [2015] let SP (t)(t ∈ [0 1]) represent the entire scanpath,
then the set of scanpath temporal intervals is:
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One or more features can be calculated over each temporal interval.
For the smooth pursuit task, we calculated a two dimensional fea-
ture at each temporal interval: the median x and y position of the
gaze. This metric was chosen because it is a robust statistic; it is
less sensitive to noise in the eye tracking samples introduced by the
specific eye tracking system or study environment conditions (such
as subjects free to move in the eye tracker’s head box volume). Let
md(SP [t0 t1]) be the median x and y location of the scanpath
samples contained in the temporal interval [t0 t1], then the set of
10, two dimensional, features describing the scanpath is:
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The median calculation is implemented using the BOOST C++ li-
brary (www.boost.org) using a P2 quantile estimation algorithm.

To illustrate the feature calculation process, Figure 3 shows the ver-
tical position (y axis) of the gaze of an ideal viewer versus elapsed
time for the star smooth pursuit pattern. For this example, an ideal
viewer would produce gaze coordinates that exactly match those of
the stimulus dot as it moves over the screen. The horizontal lines at
the top of the figure show three of the temporal scales used to cal-
culate the median gaze y location at each of six temporal intervals.
The triangles indicate the median gaze location feature value calcu-
lated at each of the corresponding temporal intervals. The 10, two-

Figure 3: Vertical position of the gaze of an ideal viewer versus
elapsed time for the star stimulus. Three upper, horizontal lines
show temporal intervals used to calculate features. Triangles show
feature values at each temporal interval.

Figure 4: Three dimensional view of feature data used in unsuper-
vised clustering. Color indicates cluster membership identified by
GazeAppraise.

dimensional features calculated for the smooth pursuit tasks were
represented in 20-dimensional space. Unsupervised cluster analy-
sis was performed using a scale-insensitive approach based on the
well-known density based spatial clustering algorithm, DBSCAN
[Ester et al. 1996]. For density based clustering, the total number
of clusters does not need to be specified a priori. Instead, two in-
tuitive parameters, the minimum number of members required to
form a cluster (minPts) and the neighborhood radius (Eps), influ-
ence cluster identification. We set minPts equal to 10 (˜1/4th of the

total number of subjects) and Eps equal to 200 pixels (˜1/6th of the
full horizontal screen width). To illustrate the multidimensionality
of these metrics, Figure 4 displays a subset of data. It depicts the
x dimension data from 3 features calculated for the four different
stimuli and each participant. Color indicates cluster membership
identified by GazeAppraise. This figure also illustrates the need for
a density based clustering algorithm rather than other approaches
such as k-nearest-neighbors. Clusters are clearly present in the fea-
ture set, but the complexity of the cluster boundaries increases with
increasing dimensionality of the feature space.

4 Results

Table 1 presents the results of applying the GazeAppraise algorithm
to the 164 scanpaths. Unsupervised cluster analysis revealed that
162 of the scanpaths were categorized into one of four clusters and
the remaining two scanpaths were considered outliers and not cat-
egorized, resulting in a recall/sensitivity score of 98.8%. All of
the categorized scanpaths were grouped only with other scanpaths
elicited by the same task for a precision = 100%.

Table 1: Number of scanpaths assigned to each cluster in unsuper-
vised clustering of 164 scanpaths.

Stimuli
Cluster O S Star Swirl

1 40
2 0 41
3 0 0 40
4 0 0 0 41

Outlier 1 0 1 0

5 Discussion

When GazeAppraise was applied to unprocessed eye tracking data
to extract spatiotemporal features, the resulting multidimensional
data were clustered into categories that reflected the differences
between the original stimuli. This study represents a proof-of-
concept; GazeAppraise successfully categorized raw eye tracking
samples into distinct scanpaths that reflected the stimulus con-
straints, but in the absence of stimulus information to constrain the
categorization.

One advantage of GazeAppraise is that, unlike previous scanpath
analysis techniques (e.g., Multimatch; Dewhurst et al., [2012]),
GazeAppraise does not require preprocessing of the eye movement
data into fixations and saccades. Calculating these parameters from
eye movement data requires assumptions that define which samples
are part of fixations and which samples are from saccades. Parsing
the eye movement record into discrete units (fixations and saccades)
becomes more complex in dynamic environments where fixating
a visual stimulus may require smooth pursuit eye movements, or
when saccades may not be required to ”fixate” a new object be-
cause the visual scene has changed.

Another advantage of GazeAppraise is that the approach does not
require defining areas of interest or arrays of spatial locations a
priori. Rather it classifies similar scanpath shapes together in the
absence of stimulus information or knowledge. This ability is im-
portant because as visual stimuli become more cluttered and dy-
namic the requirement of characterizing the spatial location of im-
portant information, or a relevant spatial array, becomes more oner-
ous. Indeed, GazeAppraise can categorize the spatial dependencies
between eye movement samples in the absence of a visual stimu-
lus, thus providing a means of characterizing eye movements that



are related to visual imagery and mindwandering.

In their guide to eyetracking, Holmqvist and colleagues identified
several scanpath comparisons that could be useful [Holmqvist et al.
2011]. Of the seven listed, GazeAppraise has the potential to ad-
dress four of them: (1) overall shape comparison, (2) similar shape
that differs in scale, (3) similarity in position but reversal of order,
and (4) differences in the speed of execution of a scanpath.

In this paper, we demonstrated that GazeAppraise can categorize
scanpaths from raw eye tracking data, even when those data include
samples collected with variations in calibration precision, tracking
consistency, and viewer performance. Future work will need to ex-
plore how much and in what ways shapes can differ but still be
categorized together. Similarly, scaling algorithms applied to the
calculation of x and y features could allow similarly-shaped scan
paths that differ in scale to be clustered together, while representa-
tion of the reversed order of a set of positions at different temporal
scales would also be relatively straightforward to implement.

Although not tested here, it can be mathematically shown that,
GazeAppraise will cluster together similar scanpaths that vary in
temporal duration when the differences in time are distributed
evenly across the eye movement samples relative to the duration
of the scanpath. It remains to be demonstrated how robust GazeAp-
praise is to uneven distribution of these temporal differences across
a viewing event. For example, it is expected that there would
be more temporal variation across individuals in eye movement
samples collected during cognitively guided viewing than during
saliency guided viewing.

Although this application of GazeAppraise used the median x and
y position as features, the metrics used for each feature are flexi-
ble. In fact, each feature can have a different units scale, i.e. one
feature measured in degrees of visual angle, another measured in
milliseconds and another measured in pixels. Thus, features can
be any quantity calculable from the eye tracking samples in each
temporal interval. Other features that may be useful for scanpath
categorization include, but are not limited to, mean and variance of
point-to-point distances, mean nearest neighbor distance (random-
ness of points), total length of scanpath, area and centroid of the
convex hull encompassing scanpath points, etc. For example, met-
rics based on point-to-point distances would implicitly encode the
proportion of fixation to saccade activity over the temporal inter-
val. Total scanpath length could measure the amount of the visual
display that was viewed which may be important for assessing sys-
tematic search processes like visual inspection. Convex hull met-
rics could measure the amount of the peripheral visual display that
is viewed.

The application of GazeAppraise to eye movement analysis is
nascent; the eye tracking samples were collected under highly con-
strained viewing conditions (smooth pursuit eye movements con-
strained by the stimulus characteristics) not typical of everyday eye
movement patterns. It remains to be demonstrated that more typi-
cal eye movement trajectories with fixations and saccades, that are
influenced to a greater extent by top-down processes, can be catego-
rized. The contribution of this research is to demonstrate the appli-
cation of a new set of spatiotemporal trajectory libraries to raw eye
tracking data, an application we refer to as GazeAppraise. Catego-
rization of eye tracking data collected while viewing four different,
but constraining, stimuli was highly successful. Future work will
validate the usefulness of this approach by applying the algorithm
to eye tracking data from systematic search tasks.
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