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What is our goal?
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 Characterize instantaneous frequency and damping 
ratios of nonlinear mechanical structures.

 Use broadband excitation to obtain the measured 
response data.

 Seek nonlinear system metrics that are invariant under 
load type, amplitude, input location, etc… 



Time-Frequency Analysis of Nonlinear Vibrations 
of Mechanical Structures
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 Traditional frequency domain 
analysis based on discrete 
Fourier transforms only 
applicable to linear systems.

 Nonlinear vibration signals 
require new tools to characterize 
frequency content of the non-
stationary signals (i.e. 
frequencies changing over time).

 Various signal processing tools 
exist to perform time-frequency 
analysis [1].

[1] Neild et al. “A review of time-frequency methods for structural vibration analysis”, Engineering Structures 25 (2003) 713-728.



Review of Time-Frequency Analysis Tools
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 Hilbert Transform: 
 Compute the phase & decay envelope from analytic signal of 

“monocomponent”, transient ring-down data.

 Requires band-pass filter or empirical mode decomposition.

 Zero-Crossing Detection:
 Find time at zero-crossing of resonant decay response following 

appropriated mode at steady state.

 Wavelet Transform:
 Applied to MDOF responses and extracts frequency/damping from 

ridges of transformed signals

 Others include: Wigner-Ville, Evolutionary Spectrum, Auto-
regressive Model, etc..



Extracting Instantaneous Frequency and Damping 
Using (modified) Short-Time Fourier Transform
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Transient Ring-Down Expanding/Contracting Short-Time Windows

Amplitude Dependent Estimates of 
Frequency and Damping

Spectra of Windowed Fourier Transforms



Short-time Fourier Transform (STFT)
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 Take Fourier transform of 
windowed section of signal as
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Estimating Decaying Harmonic Functions
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 Damped, free response represented as a summation of 
decaying harmonic functions:



Comparison between Undamped Nonlinear 
Normal Modes and Instantaneous Frequencies
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 Nonlinear Normal Modes (NNMs) are invariant properties of 
the undamped, unforced nonlinear mechanical system.
 “Not-necessarily synchronous periodic response of the undamped 

equations of motion”.

 In the presence of light damping, the undamped NNM closely 
approximates the damped invariant manifold.

 How well does the freely decaying response follow the 
undamped nonlinear normal modes?
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Application to Nonlinear Beam Model
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 Cubic spring attachment

 20 Euler-Bernoulli beam elements

 0.5 % modal damping

Case 1: Free Decay from Initial 
Conditions of NNMs 1 and 2

Case 2: Broadband Excitation via 
Initial Velocity at Beam Tip



Case 1: Free Decay along NNM Backbone
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Case 1: Free Decay along NNM Backbone
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Case 2: Broadband Excitation

12

1 m/s

2 m/s

3 m/s



Case 2: Broadband Excitation
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Discussion of Results/Conclusions

 As expected, free response from initial conditions on NNM 
closely follow the underlying NNM due to their invariance 
property.

 Instantaneous frequency versus amplitude for broadband 
excitation did not agree well for NNM 2.
 At each windowed section, the decaying harmonic functions are 

assumed to satisfy linear superposition.

 Recent work by Ardeh [1] showed that NNMs (xi)  can be used to 
reconstruct (undamped) free response to any initial condition using a 
nonlinear connecting function.
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[1] Ardeh, H.A., “Geometrical Theory of Nonlinear Modal Analysis”, Ph.D Dissertation, 2014.



Any Questions?
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 Contact Information
 Rob Kuether: rjkueth@sandia.gov

 Matt Brake: mrbrake@sandia.gov
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Extra Slides
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Application to Experimental Data
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Two beams assembled with three bolts, creating a 
lap joint interface between the two.



Application to Experimental Data
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