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ABSTRACT
MPI is insufficient when confronting failures. FA-MPI (Fault-
Aware MPI) provides extensions to the MPI standard de-
signed to enable data-parallel applications to achieve re-
silience without sacrificing scalability. FA-MPI introduces
transactions as a novel extension to the MPI message-passing
model. Transactions support failure detection, isolation,
mitigation, and recovery via application-driven policies. To
achieve maximum achievable performance of modern ma-
chines, overlapping communication and I/O with computa-
tion through non-blocking operations is of growing impor-
tance. Therefore, we emphasize fault-tolerant, non-blocking
communication operations plus a set of nestable lightweight
transactional TryBlock API extensions able to exploit sys-
tem and application hierarchy. This strategy enables appli-
cations to run to completion with higher probability than
nominally. We modified two proxy applications—MiniFE
and LULESH—by adding FA-MPI semantics to them. Fi-
nally we present performance and overhead results for 1K
MPI processes.

1. INTRODUCTION
Resilience is one of the most significant challenges facing

large-scale scientific computing. Machines continue to grow
in scale in order to achieve ever higher levels of compute per-
formance but without significant improvements in hardware
reliability. Such platforms will be prone to increasing rates
of failure. It is unclear whether existing strategies for toler-
ating such faults and recovering from failures will continue
to be effective. A study [18] on systems at the Los Alamos
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National Laboratory concluded that failure rates in super-
computers were linearly correlated with the number of sock-
ets in the subject systems. However, in addition to scale,
environmental issues such as cosmic rays played a role in
failure rate. In contrast to the concept of standard message
passing and other portable program constructs used today,
applications need to adapt to different types and rates of
faults on various systems, and even adjust to to different
scales on the same system at the same location.

MPI [15] was designed to achieve high performance porta-
bility without regard to fault-tolerance in the application
or application programmer interface (API) level. The MPI
model posits a reliable communication layer in which pro-
cesses are always able to communicate once they become
known (virtual all-to-all connectivity). Any failure manage-
ment is considered either or both the responsibility of the
application and/or the underlying MPI library implementa-
tion itself. Except for registration of an error handler per-
communicator (vs. per-function or other granularity), re-
source exhaustion, and invalid function argument detection,
the MPI programming interface offers no fault-management
capability or semantics. As a result, process failure typically
causes either a hang or an abort of the parallel application;
practical workarounds formally violate the MPI standard.

Here, we present a new standalone approach for fault-
tolerance in MPI called Fault-Aware MPI (or FA-MPI) [19,
10]. The key goal of FA-MPI is to extend MPI minimally
in order to support a lightweight transactional model for
fault-awareness1. FA-MPI is based on per-transaction fault-
awareness as opposed to per-operation schemes such as User-
Level Failure Mitigation (ULFM) [5]. In distributed environ-
ments, ad-hoc and non-transactional approaches for reliabil-
ity are known to encounter a complexity barrier in imple-
mentation [4]. However, we hypothesize that transactions
provide a straightforward solution for reliability and consis-
tency in such systems. This approach is similar to the Bulk

1Throughout the paper we use fault-tolerance and fault-
awareness interchangeably. Notionally, the concept of fault-
awareness is the first step toward resilience and, ultimately,
fault-tolerance.
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Synchronous Parallel (BSP) [22] model for data parallelism,
in which synchronicity is reached in “epochs” and barrier
synchronization allows an application to enter a known con-
sistent state. Parallel and distributed environments are dif-
ferent in the degree (granularity) of coupling between com-
ponents, but tight coupling of parallel systems does not
prevent the use of transactional concepts. In fact, coordi-
nated checkpoint-restart, the most prevalent fault-tolerant
approach, is akin to a giant transaction. Data is saved in
reliable storage at successive intervals and reloaded upon
failure. However, transactions at a finer granularity at the
application level and in parallel message passing systems
have not been explored thoroughly.

Fault-awareness makes the application literally “aware” of
failures, and, consequently, fault-tolerance can be achieved
through the implementation of available approaches for re-
covery on a given platform, including hierarchical, multi-
level, and hybrid checkpoint/restart, message logging, and
Algorithm-Based Fault Tolerance (ABFT); some of these
may come with portable APIs, others may be system-specific.
Flexibility of this approach to fault-awareness allows an ap-
plication to tolerate different types and rates of faults in
the memory and application hierarchy. FA-MPI allows the
granularity of fault-awareness to be configured by enlarg-
ing/reducing transaction duration and length (size of exe-
cution unit within a transaction) and hierarchically nesting
transactions2.

To achieve resiliency, reduction in instantaneous perfor-
mance is unavoidable because any fault-tolerant method has
to have some minimal fault-free overhead. FA-MPI imposes
such an overhead on applications; they will run slightly
slower in a zero-fault equivalent operational mode than the
comparable program running without benefit of the fault tol-
erance features in place. However, with fault-free overhead
imposed, applications will be able to reach completion (Or
run indefinitely for periodic programs that do not terminate
per se.), whereas fault-free performance ceases at the first
fault/failure. This performance trade-off is especially impor-
tant given future extreme scale machines with higher pro-
jected failure rates. The FA-MPI framework contemplates a
programming approach in which the application decides the
level of effort it expends in detection vs. the potential for
missed detections, as well as the approach that trade-off are
managed systematically through tuning the fault-free over-
head. Controlling overhead will be accomplished by setting
the granularity and hierarchy of synchronization. Applica-
tions will be able to decide whether to expend additional
fault-free overhead in return for faster recovery or vice versa.
In FA-MPI, most of the fault-free overhead resides in trans-
actional operations for starting and ending a transaction,
specifically transaction commit, which is a synchronizing col-
lective call. The transaction commit performs similarly to
an MPI_ALLREDUCE function computing on one integer per
rank in the fault-free case. However, nominal MPI oper-
ations need to have minimal or no overhead in a practical
implementation. One of the main features of FA-MPI is that
failure is not detected/mitigated/isolated/recovered per op-
eration (in contrast to ULFM).

2Implicitly, we accept that a fault-aware MPI program may
use different, non-portable solutions to do detection and re-
covery, but those will best be isolated sections of an appli-
cation. FA-MPI constructs will provide the portable frame-
work and help with separation of concerns.

The main contribution of this paper is the design and
evaluation of FA-MPI in the development of fault tolerant
applications. We have modified MiniFE and LULESH to
use FA-MPI and evaluated the performance of these appli-
cations along with the overhead imposed by FA-MPI. We
also updated query for failure and failure recovery API and
their semantics from the previous work [10].

The remainder of this paper is organized as follows. In the
next section, background information on resilience in MPI
is discussed. Section 3 describes basic design of FA-MPI,
along with our design rationale. In section 4 we present
the design of two mini-applications equipped with FA-MPI.
Section 5 consists of performance results that illustrate the
fault-free and faulty cost of FA-MPI on HPC applications.
Our conclusions and a summary of future work are covered
in section 6.

2. BACKGROUND AND RELATED WORK
Many studies have revealed the impact of fault-tolerance

in MPI based on various methodologies such as checkpoint-
restart [17], message logging [2] and replication [7, 8]. Cer-
tain approaches require intervention of the application while
others are application-transparent. However, a successful,
scalable fault-tolerant environment requires the engagement
of hardware and many layers of the software stack for failure
management, and the message passing middleware plays an
important role in this process. Adding fault-tolerance sup-
port to the MPI Standard has been an important topic in
the past few years. The MPI Forum’s Fault-Tolerant Work-
ing Group (FTWG) has been developing and considering
proposals that extend the MPI interface and provide fault-
tolerant semantics. Two recent proposals offered are Run-
Through Stabilization (RTS) [13], which was rejected by the
MPI forum, and the more recently, User-Level Failure Mit-
igation (ULFM) [5], which is the being considered for stan-
dardization in MPI 4.0. Notably, several studies have found
insufficiency in ULFM [1, 20] for data-parallel applications.

The goal of ULFM is to add fault-tolerant support only for
“process failure” (transient failures are masked as (mapped
to) process failures) and allows implementation of a wide
range of fault-tolerant techniques on top of ULFM. It adds
a “minimal” set of API extensions to MPI and is suitable
for libraries providing fault-tolerance rather than user ap-
plications. However, our hypothesis is that a “more general”
approach (as opposed to “minimal”) is in fact more suitable
for handling diverse fault models. ULFM strives to provide
fault-tolerant functionality for the entire MPI specification;
that goal is evidently overwhelming because MPI was not
designed with fault-tolerance in mind.

It is important to consider that the HPC community needs
to research and evaluate multiple approaches and reach best
practices with fault-tolerant MPI candidates before finaliza-
tion of fault-tolerant approaches in a future MPI standard.
In this paper, we present a new approach that is significantly
different from either of the abovementioned proposals. We
have separately presented the need for changes in ULFM to
us to adopt it for use with FA-MPI in [11] (as one particular
example). A common, lower-level set of primitives that en-
able multiple fault-tolerant approaches would be a potential
direction for a future MPI standard to embrace.

Containment Domains [6] are a resilience scheme for paral-
lel environments with transactional application-level seman-
tics. A program is divided into hierarchical structures called



Containment Domains (CDs). Each CD has four compo-
nents: preserve, body, detect, and recover, which conforms
to a simple transactional concept for error detection and
recovery. CDs achieve fault-tolerance through eventual con-
sistency [6], which means that if failure should be detected,
the CD will be retried (recovered) locally without global co-
ordination preventing the use of any communication inside
a CD and restricting the types of addressable fault models.
Relaxed CDs allow communication inside CDs, which forces
logging of incoming messages. The relaxed approach can be
effective in conjunction with FA-MPI for local/global coor-
dination of recovery. However, CD is not a fault-tolerant
Design for MPI and it assumes a fault-tolerant MPI.

Multi-level and hierarchical coordinated checkpointing
schemes [3, 16] have been studied recently. These meth-
ods take advantage of system hierarchy for data recovery.
These methods are suitable to be used with hierarchical and
coordinated semantics of FA-MPI.

For several decades, transactions have been used to con-
trol concurrency and consistency in systems with shared-
resources [4]. They can also be used to control reliability.
Distributed consistency is achieved in a mutual agreement
protocol between all participants to either commit (accept)
or rollback (reject) a series of changes. From the viewpoint
of a message passing system, a transactional commit opera-
tion ensures consistency of several “communication” and/or
“computation” operations. Basic transactions (flat transac-
tions) consist of two calls: BEGIN_WORK and COMMIT_WORK.
Flat transactions are enough to achieve ACID (Atomicity,
Consistency, Isolation, and Durability) reliability, but to
control performance and scalability at finer levels other mod-
els of transactions like nested transactions, multi-level trans-
actions, chained transactions, save points, and sagas [4] have
been used. For example, nested transactions can be used to
localize the effects of failures and subsequent recovery to
smaller regions. Nested transactions can take advantage of
system hierarchy in two ways: Memory hierarchy for saving
correct data for future recovery and fault model hierarchy
from soft errors to multiple cascading hard failures.

2.1 Non-Blocking Communication
The path to Exascale and the need for scalable and de-

pendable applications and libraries motivate the use of (re-
striction to) non-blocking communication operations in mes-
sage passing systems (at least for the purposes of reveal-
ing and focusing an effective fault tolerant message passing
model, rather than coping with the added/accidental com-
plexities of blocking legacy semantics under failures). These
also have proven to be the best semantics to achieve overlap-
ping computation, communication, and I/O. Non-blocking
semantics are also important aspects for fault-tolerance in
MPI. Parallel system components are coupled horizontally
through the synchronization operations. In addition, this
problem intensifies when fault couples different layers in a
component. As an example, an MPI communication oper-
ation might hang because of a process failure in a remote
process. In this situation, forward progress will be impossi-
ble because of the coupling between user thread and com-
munication thread. However, in non-blocking semantics, a
remote failure, will not halt the user thread (unless MPI_WAIT
or a related function is called for completion of operation).

Non-blocking MPI operations are amenable to a fault-
tolerant solution because they provide a request handle for

tracking the status of the pending or progressing operation.
In a blocking model, by way of contrast, any resource or
reference to an operations is freed after returning from the
call. This means that there is no available mechanism to
track the status of blocking operations except via an er-
ror code on return, synchronous/local with the user thread.
However, returning from a blocking operation like MPI_SEND

only guarantees that the data buffer can be used and there
is no guarantee of data transfer to remote node, nor any as-
sured local failure notification. This motivates FA-MPI to
bypass blocking APIs completely and to support only non-
blocking API in our current design. Non-communicating
blocking operations like MPI_COMM_RANK are, however, sup-
ported. The majority of current communicator creation
functions are blocking and pose a problem during initial-
ization and recovery. But, future versions of MPI will likely
incorporate non-blocking versions of communicator creation
functions.

3. FA-MPI DESIGN
In this section, we describe the design of FA-MPI at the

API level and we provide rationale for our design decisions.

3.1 TryBlocks
As mentioned above, FA-MPI first restricts MPI to the

non-blocking model of communication, then extends MPI
with a transactional model designed to allow a series of op-
erations to be “tried” and then “committed” when all opera-
tions succeed, or else be“rolled backward”or“rolled forward”
when some operations fail. The TryBlock is the fundamental
building block of the FA-MPI model. TryBlock operations
model a transaction block within which several non-blocking
communication, computation, and/or I/O operations are ex-
ecuted.

A TryBlock starts with MPI_TRYBLOCK_STARTFA-MPI
3 com-

pletes with MPI_TRYBLOCK_FINISHFA-MPI. MPI_TRYBLOCK_-

STARTFA-MPI is a locally collective operation4 that binds a
communicator to the TryBlock’s request handle. Any com-
municators (including the communicators associated with
MPI window and file objects) used inside a TryBlock should
be an improper subset of TryBlock’s communicator’s group.
Violation of this requirement may not result in any error,
but such a choice will not guarantee a successful fault-aware
mechanism since the transaction commit will ignore pro-
cesses that are not in the TryBlock’s communicator’s group.
It is not erroneous to use TryBlock with a failed communi-
cator (e.g., that has failed MPI ranks) because TryBlocks
may be needed for recovery procedures.

FA-MPI provides three different types of transaction lev-
els: Local, group-wise, and an in-between mode. A local
transaction is defined by the flag MPI_TRYBLOCK_LOCALFA-MPI
given as an argument to MPI_TRYBLOCK_STARTFA-MPI. In this
mode, failures are not synchronized among the ranks in the
TryBlock’s communicator at the end of the TryBlock. This
option can be used by approaches such as containment do-
mains as mentioned earlier. In this case, TryBlocks can be

3An updated list of introduced API is presented in the ap-
pendix A
4A locally collective operation is an operation that is called
on all (healthy) ranks of a communicator, but there might
not be any synchronization or communication between
ranks.



retried locally and failures are detected and corrected lo-
cally without any group-wise synchronization. However, a
majority of data parallel applications need synchronization
of some sort and any fault-tolerant API needs certain levels
of synchronization. A second mode defined by flag MPI_-

TRYBLOCK_GLOBALFA-MPI allows a TryBlock to synchronize the
failures detected at the end of the TryBlock. This is the most
important case because it allows the application to synchro-
nize and ensure a healthy state of MPI before continuing.
A third mode is one “between” the first two modes and is
defined by the flag MPI_TRYBLOCK_WITH_COLLECTIVEFA-MPI.
This flag notifies a TryBlock that one of the operations given
to the TryBlock will be a synchronizing collective operation
such as MPI_ALLREDUCE. Collectives such as MPI_ALLREDUCE,
will fail (or hang) at all ranks if a process has failed before
the operations have started. Hence with a certain probabil-
ity, if all operations inside a TryBlock succeed, a TryBlock
can presume that everything was fine. Otherwise, if one
of these collectives should return a failure that denotes a
group-wise failure, failure information can be synchronized.

A TryBlock transaction is completed (committed) by
MPI_TRYBLOCK_FINISHFA-MPI, which is a non-blocking func-
tion. This function’s semantics are complex because of its
responsibilities. Its synchronization behavior is defined by
the flag in MPI_TRYBLOCK_STARTFA-MPI. The TryBlock finish
function is given an array of request handles that were called
after the corresponding TryBlock start. It uses the request
handles given to it to detect and propagate failure informa-
tion. The idea that both application and MPI need to com-
municate regarding faults leads to the design of TryBlocks
based on exchanging MPI operations’ request handles. The
TryBlock finish acts like an MPI_WAITALL at first and waits
for its given requests either to complete successfully, fail, or
time out. Then, it builds a list of locally detected faults. If
the synchronization flag is set, the operation will synchro-
nize this list with other ranks in the TryBlock’s group using
a consensus algorithm. Once this synchronization is done,
every participating rank will have the same failure informa-
tion and can make a unified failure recovery decision. At the
end of the transaction, ranks decide consistently to accept
(completely or partially) or reject the transaction by exam-
ining group-wise returned failures. TryBlock completion de-
termines faulty and failed objects, requests, processes, and
failures associated with each. This group-wise knowledge al-
lows applications to achieve a consistent recovery procedure.

The motivation behind choosing request handles for MPI_-
TRYBLOCK_FINISHFA-MPI and not their MPI_STATUS is the need
to check the status of operations in progress and not just op-
erations that already have completed. FA-MPI thereby sup-
ports per-operation granularity for faults (without requiring
per-operation testing as the operations are issued).

The non-blocking nature of MPI_TRYBLOCK_FINISHFA-MPI
allows multiple TryBlocks to be executed simultaneously.
An outer TryBlock sifts out failed and successful TryBlocks.
Its request handle can be used to be waited or tested on.
The nested property of TryBlocks is required to achieve scal-
ability through application of data and task parallelism for
smaller communicator groups, various memory hierarchies,
and different fault models. The most important part of a
transaction is the commit and this has the most complex
implementation. Any implementation should strive to con-
tain fault-free overhead. However, conceptually, this over-
head cannot be less than a normal MPI_ALLREDUCE comput-

ing over one integer. Since synchronizing failure information
is important, higher overhead can be tolerated when failure
hits the system.

3.2 Failure Notification
Failures can be revealed to the user after the TryBlock’s

finish call. “Query for failure” is a mechanism for the user to
retrieve information about local and group-wise failures. In
this model, FA-MPI provides three basic APIs to query for
error information. However, in the future, more APIs may
be added to cope with different schemes. Although this API
is not finalized, our current conceptual model offers a good
starting point for further investigation and illustrates what
we are working to achieve in the complete specification.

In order to retrieve failed requests in a scalable manner,
MPI_GET_FAILED_REQUESTSFA-MPI is introduced. This func-
tion returns an array of indices to failed requests given to
MPI_TRYBLOCK_FINISHFA-MPI. This is a scalable approach if an
application has a vast number of requests and is only looking
for failed ones. However, since (per long-standing conven-
tion) the MPI implementation should not allocate memory
internally and return it to the application, an allocated array
of integers along with the size of array (max) will be given
to the function. The count parameter is an output value
indicating the number of failed requests. This function is
designed to capture a wide variety of query functions for
different types of error codes. Multiple error codes can be
queried to help with different recovery procedures. MPI_ER-

RCODES_ANYFA-MPI is defined to act as a wildcard for all error
codes discovered in the TryBlock.

To retrieve the list of failed communicators, we can use
the MPI_GET_FAILED_COMMUNICATORSFA-MPI function to ac-
quire such a list. We should note that in nominal MPI ap-
plications, different layers of an application might not have
handles to specific communicators, but they can have the
requests associated with them (such as a TryBlock request).
This function can return communicators, which have ranks
with specific error codes raised on them. The most com-
mon use of this function can be used to retrieve communica-
tors that are failed through process failure (error code MPI_-

ERR_PROC_FAILEDULFM). Libraries can be provided to handle
communicator recovery through these functions. FA-MPI
provides more informative error codes than just MPI_ERR_-

PROC_FAILEDULFM. For example, if soft-faults can be distin-
guished from hard-faults, this knowledge can help with re-
covery procedures, as discussed below in section 5.

To obtain the list of failed ranks (based on error codes) in a
communicator, MPI_GET_FAILED_GROUPFA-MPI can be used to
get these failed ranks as a group. Different error codes can be
combined, to retrieve a broader list of ranks with problems.
This information might be useful for certain failure predic-
tors that can explore certain behaviors of specific ranks in a
communicator. Or, it might be used to tune timeout values
for different collective or point-to-point operations.

Unlike the revoking approach used in ULFM, our approach
is such that failure notification behavior should not be ex-
posed to the user. It should be MPI’s responsibility to han-
dle resource management, memory de-allocation and request
completion problems that occur in the presence of failures
such as a process crash. In FA-MPI, these problems are
addressed by semantics that are defined for underlying im-
plementations of TryBlocks and its behavior in the presence
of faults.
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Figure 1: Different types of communicator recovery using MPI_COMM_SPAWN. (a) After a hard failure, the communicator has
been shrunk, a new process is spawned on a new node and most of the processes alter their rank. (b) After a soft failure,
communicator has been shrunk and a process is spawned on the node of failed rank. Most of processes again lose their rank.
(c). After a soft fault, a new process is spawned by the root on the node of failed rank and their original, pre-fault ranks are
preserved in all processes.

3.3 Recovery
Applications can decide to resolve problems in MPI ob-

jects (communicators, windows, and files) after notification
of local and group-wise failures. For instance, a failed com-
municator is unable to perform certain collective operations
like MPI_ALLREDUCE. Certain models of failure such as pro-
cess crash will cause the communicator to become unusable.
To replace this communicator with a healthy one, we suggest
a new non-blocking operation MPI_COMM_ISHRINKFA-MPI that
creates a new communicator with only the healthy ranks
(excluding failed ranks). This function is the non-blocking
version of MPI_COMM_SHRINKULFM that is introduced in ULFM
with one specific difference. In order to use MPI_COMM_-

ISHRINKFA-MPI on a communicator, a synchronizing TryBlock
should have been called on this communicator or one of its
parent’s communicators (containing an improper superset
of the group). So before shrinking the communicator, the
state of failed ranks have been synchronized and there will
be no need for calling an agreement operation inside the
MPI_COMM_ISHRINKFA-MPI. However, users might need to call
shrink inside a TryBlock to ensure that no new failure has
appeared, otherwise the shrink operation itself will need to
be retried. FA-MPI (unlike ULFM) does not require the
strict semantics for shrink (that is, FA-MPI does not require
a consensus inside the shrink).

FA-MPI maintains the original, single-assignment proper-
ties of MPI objects and so repairing a communicator is not
compatible with our design. This operation is suitable for
applications that can tolerate loss of processes and contin-
uing recovery based on the smaller communicator. Master-
Worker style applications are suitable for this purpose. How-
ever, the majority of data-parallel applications cannot con-
tinue execution with their failed ranks and failed ranks needs
to be replaced by healthy ones. In order to grow the shrunken
communicator to the original size, new processes can be

spawned to form an intercommunicator. Then, this inter-
communicator can be merged into an intracommunicator of
the original size. Figure 1a and 1b shows the result of this
operation when new process is spawned on a different node
as failed rank’s node or on the same node as failed rank re-
spectively. But, the problem with this method of recovery
is that an MPI process’ rank in the new communicator will
differ in general from its rank in the failed communicator.
This can cause significant drawbacks in post-recovery. For
example, if checkpoint-restart is done locally on the local
disks of each node, any change in rank of a process is unde-
sirable because the rank’s data will be on a different node.
Also this will cause the communicator to lose its optimized
topology and can cause performance degradation in future
collective and point-to-point operations.

To address this obstacle, we designed a set of new func-
tions that rebuilds a communicator without processes losing
their pre-fault ranks. This function gets a group of newly
spawned or already extant processes to fill up the failed
ranks in the failed communicator. MPI_COMM_IREBUILDFA-MPI
is designed for this purpose. The processes in the new group
needs to call MPI_COMM_IREBUILD_JOINFA-MPI to join the new
communicator that is being created. This allows the new
processes to involve themselves into multiple communicators
if needed. An example is when MPI_COMM_WORLD is decom-
posed into a 2D dimensional array of communicators and a
newly created rank needs to participate in multiple commu-
nicators. The current implementation of rebuild semantics
scales linearly. Figure 1c represents the result of such oper-
ation for rebuilding a communicator.

FA-MPI considers recovery as a block of computation and
communication that can be handled inside a TryBlock even
in the presence of faults. It provides an environment for a
successful multi-level recovery. Partial soft retry, complete
soft retry, roll-back, roll-forward, and checkpoint/restart can



be utilized based on an application’s state, recovery decisions
and policies.

4. APPLICATIONS OF FA-MPI
There are two aspects of recovery for an application that

uses a resilient MPI. First, there is the recovery of the MPI
layer after a failure. In order to have a resilient application
without the need for restarting the MPI layer, we must be
able to restore the state of MPI after a failure. Once this
step completes successfully, the application’s data also needs
to be restored. Checkpoint-restart schemes are needed for
most HPC applications to recover their data from the last
stable point. Recovery models in this category have been
well studied in the past. The purpose of this paper is not to
emphasize any particular data recovery model or evaluation
of such models and the recovery of the MPI layer itself from
failed state is a main objective. In this paper, we demon-
strate how two mini applications can be augmented with
FA-MPI semantics. In next section we present the perfor-
mance results for both of these mini applications.

We have designed a simple fault-tolerant library for com-
municator recovery using FA-MPI semantics. Algorithm 1
shows both initialization and recovery semantics for both
shrink and rebuild recovery. Most HPC applications can-
not tolerate loss of processes and after processes have been
lost they have to replaced by healthy processes. In other
to achieve this goal, there are two options: Either new pro-
cesses can be spawned on demand after failure or some pro-
cesses can be reserved at the initialization point of MPI in
a separate communicator for future replacement of failed
ranks. For our fault-tolerant library we designed the former.
One of the advantages of spawning processes on demand is
the ability to spawn a process in the same machine as the
failed process. Of course, this only applies if it is a soft
failure such as segmentation fault and it can be detected as
soft failure. MPI Implementations that utilize dæmons for
process management (like Open MPI) have the capability to
detect when a process has failed because of a segmentation
fault.

If keeping healthy ranks intact in the new communica-
tor is not desired, then after shrinking the communicator,
new processes are spawned to form a new intercommunica-
tor. This intercommunicator is merged into a bigger com-
municator that is is used as the new world communicator.
Based on semantics of MPI_INTERCOMM_MERGE, processes in
the remote group (newly spawned processes) will have ei-
ther the highest (or lowest) ranks. Figure 1a shows this
behavior. For keeping the ranks in new communicator the
same as the failed communicator, MPI_COMM_IREBUILDFA-MPI
is called in all alive ranks in the original communicator and
MPI_COMM_IREBUILD_JOINFA-MPI is called in newly spawned
processes. This causes newly spawned processes to replace
failed ranks in the original communicator.

In order to spawn processes in the current implementa-
tion there is a need for a healthy communicator (a commu-
nicator that has been “shrunken”). However, in future im-
provements to the implementation, there will be no need for
a healthy communicator (achieved through shrink) because
only the root can spawn processes using MPI_COMM_SELF as
the communicator and MPI_COMM_IREBUILD(_JOIN)FA-MPI can
synchronize the new processes information to other alive
processes.

The first mini application we used is MiniFE (also known

Algorithm 1 Fault-Tolerant Library

1: procedure initialize mpi
2: if I am spawned then
3: parent← mpi comm get parent()
4: if rebuildrecovery then
5: world← mpi comm irebuild join(parent)
6: else if shrink recovery then
7: world← mpi intercomm merge(parent)
8: end if
9: else

10: world← mpi comm idup(mpi comm world)
11: end if
12: end procedure
13: procedure recover mpi(tbreq)
14: fcomm ←mpi get failed communicators(tbreq)

. fcomm should be equal to world
15: fgroup←mpi get failed group(tbreq,fcomm)
16: spawn size← mpi group size(fgroup)
17: shcomm← mpi comm ishrink(fcomm) . shrink is

not necessary when doing rebuild recovery.
18: spcomm← mpi comm spawn(shcomm,spawn size)
19: if rebuildrecovery then
20: world← mpi comm irebuild(spcomm)
21: else if shrink recovery then
22: world← mpi intercomm merge(spcomm)
23: end if
24: end procedure

as HPCCG) from the Mantevo mini-application suite [12].
MiniFE performs a finite element generation through a stan-
dard conjugate gradient algorithm that mimics a large pro-
duction size application of such a capability. It uses 3D box
domains and general sparse matrix data formats. It is writ-
ten in C++ and has the ability to use OpenMP, CUDA,
Qthreads, . . . programming models. However, in this study
we focused on its MPI aspects without regard to any types of
thread level parallelization or computational offload engine
that might be employed.

Algorithm 2 shows a high level description of a resilient
MiniFE based on FA-MPI’s semantics of failure detection
and recovery. The algorithm starts by duplicating MPI_-

COMM_WORLD because5 this global communicator cannot be
freed and substituted later (once a fault occurs). In the ini-
tialization phases of MiniFE, a matrix is created and there
are a few group-wise and point-to-point MPI communica-
tion operations involved, but for simplicity we did not add
fault-awareness for these initialization procedures (mainly
because they are short and are not part of the the main
body of the algorithm). Upon a process failure in the main
loop of the algorithm, using the fault-tolerant library the
“world” communicator is replaced with a healthy one using
either shrink/merge or rebuild/join mechanism.

LULESH (Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics) [14] is a simplified proxy applica-
tion for studying co-design in large scale systems. Its code
is in C++ and also has OpenMP capabilities. We have
added fault-awareness capability to LULESH’s code using

5An important part of improving MPI’s readiness for fault
tolerance in the near future will be to remove such legacy
data structures by default in favor of smarter choices for
application initialization and communication rendezvous.



Algorithm 2 Resilient MiniFE

1: procedure main(argc,argv)
2: initialize mpi()
3: my box, global box← create box()
4: mesh←create mesh(my box,global box)
5: A←create matrix(mesh)
6: x0 ←initial guess(mesh)
7: for i← 0;norm > tol and i < max i; i← i + 1 do
8: bi ←create b(xi−1)
9: tbreq ←mpi tryblock start(world,global flag)

10: xi ←solve(A, bi) . fault injection
11: mpi tryblock finish(tbreq, A.requests)
12: rc←mpi waitall local(tbreq, timeout)
13: if rc = timeout then
14: goto 11
15: else if rc = found errors then
16: rc2← recover mpi()
17: if rc2 = success then
18: recover data()
19: else
20: mpi abort()
21: end if
22: end if
23: end for
24: end procedure
25: procedure solve(A,b)
26: for all neighbor n in A.neighbors do
27: A.requests+ = mpi isend(A.ext bufs[n],n)
28: A.requests+ = mpi irecv(A.ext bufr[n],n)
29: matrix vector computations()
30: mpi waitall local(A.requests)
31: end for
32: end procedure

TryBlocks. LULESH’s communication model is bulk syn-
chronous. Each iteration of the main algorithm starts with
an MPI_ALLREDUCE followed by several communication and
computation functions. Inside each iteration four sequences
of send and receive are initiated. LULESH’s code was not
entirely non-blocking, so the first step was to convert all
communication functions to their non-blocking counterparts.
For each blocks of send and receive we added a local Try-
Block to detect failures. Since the TryBlock is local, it has
no synchronization, but it is necessary in order to prevent
deadlocks. So, totally tow levels of TryBlocks are used in
LULESH, one global TryBlock for each iteration to enforce
a consensus for each iteration and four local TryBlocks for
each block of send and receive. There is no recovery proce-
dure at the second level and a process failure will be handled
only at the first level. This choice is for simplicity only. Al-
gorithm 3 shows a simple overview of the FA-MPI added
capability to LULESH’s code base.

5. EXPERIMENTS
We prototyped FA-MPI using a development trunk of

Open MPI [9] (version 1.8.4rc5). The current prototype of
FA-MPI uses MPI dæmons for failure detection. Once a pro-
cess failure is detected by a dæmon, it will be propagated
to all other dæmons through the head node. In the future,
such a choice might be considered only as a backup/sec-
ondary approach since FA-MPI will propagate errors using

Algorithm 3 Resilient LULESH

1: procedure main(argc,argv)
2: initialize mpi()
3: tbreq ←mpi tryblock start(world,global flag)
4: D ←initialize lulesh data()
5: for i← 0;norm > tol and i < max i; i← i + 1 do
6: D.requests←mpi iallreduce()
7: mpi tryblock finish(tbreq, D.requests)
8: rc←mpi waitall local(tbreq, timeout)
9: if rc = timeout then

10: goto 7
11: else if rc = found errors then
12: rc2← recover mpi()
13: if rc2 = success then
14: recover data()
15: else
16: mpi abort()
17: end if
18: end if
19: tbreq ←mpi tryblock start(world,global flag)
20: solve(D) . fault injection
21: end for
22: end procedure
23: procedure solve(D)
24: for all i in 1 : 4 do
25: tbreq ←mpi tryblock start(world,local flag)
26: s reqs← post recvs(D)
27: r reqs← post sends(D)
28: mpi tryblock finish(tbreq, s reqs + r reqs)
29: rc←mpi waitall local(tbreq, timeout)
30: compute(D)
31: end for
32: end procedure

semantics implemented in TryBlocks. These experiments
were performed on the Stampede cluster from the Extreme
Science and Engineering Discovery Environment (XSEDE)
resources [21]. Each node of Stampede incorporates one In-
tel Xeon E5-2680 at 2.7GHz with 16 cores. There are 2GB
memory per core and the interconnect is FDR InfiniBand.

We performed experiments with different fault-models for
MiniFE. We did experiments for 1,024 MPI processes. In
these experiments, based on the size of the matrix, each
rank has about 1GB of local data. The first experiment
(No FA-MPI) is on MiniFE without any added resilience
support. This version uses blocking point-to-point opera-
tions for data exchange (MiniFE does not uses any collec-
tive operation when computing the conjugate gradient and
all communications are done through point-to-point oper-
ations). Then for Fault-Free experiment, we converted all
blocking operations to their non-blocking counterparts. We
then added TryBlock semantics to the main loop. We used
the synchronizing version of TryBlock with MPI_TRYBLOCK_-

GLOBALFA-MPI for each iteration of the loop in order to show
the maximum overhead that is introduced by FA-MPI. In
the last four experiments, along with addition of resilience
to MiniFE, we injected one or two process faults at differ-
ent times during execution. Process faults were injected
by artificially creating a segmentation fault in the execu-
tion path of application. We injected one process failure for
the beginning, end, and middle iterations of the main loop.
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(a) Resilient MiniFE on 1,024 MPI processes with global matrix size nx = 2, 000, ny = 1, 000, nz = 1, 000 double floating point and 64-bit
integer for local and global ordinals and 200 iterations.
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(b) Resilient LULESH on 1,000 MPI processes and global domain size 503, 200 iterations.

Figure 2: a) Resilient MiniFE and b) Resilient LULESH. No FA-MPI: There are no FA-MPI APIs added to MiniFE. Fault-
Free: FA-MPI API was added, but no fault was injected. First-Fault: One process failure was injected at the first iteration.
First-2-Fault: Two parallel process failures were injected at the first iteration. Mid-Fault: One process failure was injected at
the 100th iteration. Last-Fault: One process failure was injected at the 198th iteration First-Fault-R: One process failure was
injected at the first iteration and MPI_COMM_IREBUILD(_JOIN)FA-MPI for recovery.

We injected failure for two processes at the same time for
experiment First-2-Fault. In order to be able to compare
the timings we ran the application for exactly 200 iterations
even for faulty situations that needed to recover from a past
checkpoint. One extra node was reserved when submitting
a job to the cluster’s queue in order to spawn a new pro-
cess (efficiently and without overpopulating some nodes).
Results in First-Fault-R shows performance of rebuild/join
communicator instead of shrink/merge. We performed sim-
ilar experiments for Resilient LULESH.

There are a few points to highlight regarding the results of
these experiments. As the Fault-Free case shows, the fault-
free overhead introduced by FA-MPI semantics is insignifi-
cant. Our view is that applications can accept such small
overheads in order to avoid failing globally in the presence
of faults (such as a process crash) rather than restarting the
whole application from a checkpoint. There is a small in-
crease in the total overhead of TryBlocks for faulty cases in
comparison to fault-free cases for three reasons. The first
reason is the fact that detecting a failure takes a long time.
Also, because we propagate the failure internally using Open
MPI’s dæmons (which uses TCP/IP communication), time
is added to the failure detection. In large systems, it might

take a few seconds for a failure to be detected and prop-
agated. The second reason, can be a change in topology
of ranks in the communicator. Since for some of these ex-
periments we used shrinking and spawning of new processes
on a different node, the changes in ranks may result in a
changes in topology (where the processes reside) and this
can have affect on the performance of collective operations
if they are optimized based on the physical positioning of
MPI processes. The third reason is the lingering commu-
nication requests that may remain in the InfiniBand HCA
after a failure. For example, if a point-to-point communica-
tion is instantiated in rank P for rank Q, and Q fails and its
failure is detected by P later, then FA-MPI cancels the op-
eration if it has not yet finished. Canceling an operation is
expensive and in some implementations (such as Open-MPI)
canceling for a send operation is not implemented. We ex-
pect these problems to be alleviated in future versions of
Open MPI. Canceling operations are needed for cleaning up
the MPI state after communication failure.

We noticed that the execution time of the spawn opera-
tion is extremely high (it takes several seconds to complete).
This high execution time may be because of an unoptimized
implementation or because of the need for some global syn-



chronization among all the processes in the MPI instance
through its dæmons using TCP/IP connections. As can be
seen, the time required for shrinking or rebuilding a com-
municator is insignificant.

6. CONCLUSIONS AND FUTURE WORK
FA-MPI comprises a set of extension APIs and semantics

to the MPI standard that together enable fault-awareness
via a transactional model when restricted to non-blocking
MPI communication operations. FA-MPI detects, dissemi-
nates, and notifies applications of failures and assists with
isolation, mitigation, and recovery procedures. Applications
using FA-MPI will run to completion with higher probability
than with non-fault-aware MPI. To achieve acceptable per-
formance, scalability, and resiliency, we employ configurable,
lightweight transactions combined with non-blocking opera-
tions. FA-MPI introduces TryBlocks as the main fault-aware
components for MPI.

This work is motivated by the fact that there is a decided
need for resilience research in MPI that is practical. Re-
vealing different approaches for a fault-tolerant MPI in the
HPC community will be valuable and help achieve consen-
sus; the community should not rush to standardize an at-
tractive concept or hypothetical approach without compar-
ing, contrasting, testing, and determining practical benefits.
Several viable approaches need to be investigated and best
practices need to be created and optimized and only then
added to future MPI standards, of which we offer FA-MPI as
one potential candidate. The HPC community still does not
know to what degree and of what type future failures in mas-
sively parallel supercomputers will prove to be and the door
must be left open for future unexpected revelations in such
large scale systems. Studying viable alternatives to support
resilience will help the HPC community best to cope with
such future uncertainty.

FA-MPI adds little overhead to MPI applications such as
a MiniFE or LULESH. Although our prototype of FA-MPI
is in the research phase and is not fully optimized, future
implementations will improved the performance of FA-MPI
semantics. FA-MPI’s approach offers controllable overhead
in order to tune the application on a given platform, config-
uration, scalability, and fault environment.

Finally, there is a need for experimenting with FA-MPI on
different applications other than MiniFE and LULESH and
broadening use cases of FA-MPI and discovering its short-
coming. FA-MPI semantics allow libraries to be build to
help with resilience of applications. Incorporating different
checkpoint-restart approaches to an application enhanced
with FA-MPI can be a future research direction of this re-
search as well.
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APPENDIX
A. FA-MPI API
int MPI_TryBlock_start(MPI_Comm comm , int flag ,

MPI_Request* tb_request);

int MPI_TryBlock_finish(MPI_Request tb_request ,
int count , MPI_Request array_of_requests [],
MPI_Timeout timeout);

int MPI_Timeout_set_seconds(MPI_Timeout* timeout ,
double seconds);

int MPI_Timeout_get_seconds(MPI_Timeout timeout ,
double* seconds);

int MPI_Request_raise_error(MPI_Request request ,
int error_code);

int MPI_Wait_local(MPI_Request* request ,
MPI_Status *status , MPI_Timeout timeout);

int MPI_Waitall_local(int count ,
MPI_Request *request , MPI_Status *status ,
MPI_Timeout timeout);

int MPI_Waitany_local(int count ,
MPI_Request *request , int* index ,
MPI_Status *status , MPI_Timeout timeout);

int MPI_Waitsome_local(int incount ,
MPI_Request requests[], int *outcount ,
int indices[], MPI_Status statuses[],
MPI_Timeout timeout);

int MPI_Get_failed_requests(MPI_Request tb_request ,
int error_codes_count ,
int array_of_error_codes [],
int max_requests_count , int array_of_indices [],
int* count);

int MPI_Get_failed_communicators(
MPI_Request tb_request , int error_codes_count ,
int array_of_error_codes [],
int max_comunicators_count ,
MPI_Comm array_of_communicators [], int* count);

int MPI_Get_failed_group(MPI_Request tb_request ,
int error_codes_count ,
int array_of_error_codes [], MPI_Comm comm ,
MPI_Group* fgroup);

int MPI_Comm_ishrink(MPI_Comm comm ,
MPI_Comm* newcomm , MPI_Request* request);

int MPI_Comm_irebuild(MPI_Comm comm , int root ,
MPI_Comm aux_intercomm , int N_ranks , int ranks[],
int is_local , MPI_Comm* newcomm ,
MPI_Request* request);

int MPI_Comm_irebuild_join(MPI_Comm aux_intercomm ,
MPI_Comm* newcomm , MPI_Request* request);
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