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ABSTRACT

Two of the most popular deterministic radiation transport
methods for treating the angular dependence of the radiative
intensity for heat transfer: the discrete ordinates and simplified
spherical harmonics approximations are compared. A problem
with discontinuous boundary conditions is included to evaluate
ray effects for discrete ordinates solutions. Mesh resolution
studies are included to ensure adequate convergence and
evaluate the effects of the contribution of false scattering. All
solutions are generated using finite element spatial
discretization. Where applicable, any stabilization used is
included in the description of the approximation method or the
statement of the governing equations. A previous paper by the
author presented results for a set of 2D benchmark problems for
the discrete ordinates method using the PN-TN quadrature of
orders 4, 6, and 8 as well as the P1, M1, and SP3
approximations. This paper expands that work to include the
Lathrop-Carlson level symmetric quadrature of order up to 20
as well as the Lebedev quadrature of order up to 76 and
simplified spherical harmonics of odd orders from 1 to 15. Two
3D benchmark problems are considered here. The first is a
canonical problem of a cube with a single hot wall. This case is
used primarily to demonstrate the potentially unintuitive
interaction between mesh resolution, quadrature order, and
solution error. The second case is meant to be representative of
a pool fire. The temperature and absorption coefficient
distributions are defined analytically. In both cases, the relative
error in the radiative flux or the radiative flux divergence within
a volume is considered as the quantity of interest as these are
the terms that enter into the energy equation. The spectral
dependence of the optical properties and the intensity is
neglected.

NOMENCLATURE
U, is the nth quadrature point in a (N+1)-point Gauss set

on[-1, 1]

I, is the angular intensity at quadrature point n

or is the macroscopic total cross section or extinction
coefficient

® s the angle-integrated intensity ¢ = 47 X0 2w, 1,

w, isthe nth quadrature weight

o, Isthe macroscopic scattering cross section or scattering
coefficient

o, IS the macroscopic absorption cross section or
absorption coefficient

o is the Stefan-Boltzmann constant

T is the material temperature

Iy is the black-body intensity I, = UTTAL

Q, is a unit vector pointing in the ordinate direction
corresponding to quadrature point i

is the surface emissivity

is the surface normal unit vector

SL ™

INTRODUCTION

Radiation transport is an important phenomenon occurring
in many physical systems. In heat transfer applications, this
typically consists of the transport of relatively low energy
photons through a translucent material. Photons may be
emitted, absorbed, and scattered within the medium and at the
boundary surfaces. The material properties corresponding to
these processes are the surface emissivity and the absorption
and scattering cross-sections of the medium. The radiative
transport equation (Equation 1) governs the exchange or
thermal radiation through a participating medium.

Q-V1(0) + (o4 + 0)I(@) = ol + 2 [ 1 () dll (1)
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In its most general form, the radiative transport equation
has seven independent variables in space (3), direction (2),
energy (1), and time (1). Equation 1 is written in steady-state
because the time scales involved in the propagation of thermal
radiation is much smaller than the other time scales of interest
in a typical coupled heat transfer problem. In heat transfer
applications, quantities of interest such as the radiative heat
flux and the divergence of the radiative flux involve
integrations over direction and energy and consequently vary
only spatially and temporally. Setting aside the considerable
complexity of the spectral dependence, this paper focuses on
the techniques commonly used to approximate the angular
dependence of the intensity.

Several of the most popular deterministic radiation
transport methods for heat transfer including discrete ordinates,
spherical harmonics, and simplified spherical harmonics are
compared. A previous paper by the author [1] presented results
for a set of 2D benchmark problems for the discrete ordinates
method using the PN-TN quadrature of orders 4, 6, and 8 as
well as the P1, M1, and SP3 approximations. This paper
expands that work to include the Lathrop-Carlson level
symmetric quadrature of order up to 20 as well as the Lebedev
quadrature of order up to 76 and simplified spherical harmonics
of odd order from 1 to 15. Unlike the previous work, in this
paper fully 3D benchmark problems which more accurately
mimic practical use cases are considered and used to evaluate
the accuracy of the various angular approximations. Special
attention is paid to the unintuitive interaction between order and
mesh resolution for discrete ordinates solutions in the presence
of ray effects.

DISCRETE ORDINATES

The discrete ordinates method is the most popular
deterministic method for approximating radiative transport in
participating media. In the discrete ordinates method, the
radiative intensity is evaluated in a finite number of “ordinate
directions.”  These directions are chosen so that they
correspond to the integration points in a given quadrature rule
over the unit sphere. This quadrature is then used to evaluate
integral quantities such as the angle-integrated intensity and the
radiative heat flux. The discrete ordinates method enjoys wide
adoption because the derivation [2, 3, 4, 5, 6, 1] is intuitive and
the solution is guaranteed to converge to the correct solution as
the number of ordinate directions considered approaches
infinity.

The discrete ordinates method reduces Equation 1 into a
set of N first order linear differential equations (one for each of
the N ordinate directions in the chosen quadrature rule).

EI.)VIL+(O-A+O-S)IL=O-AII) +:_TSIZW}I] (2)

The corresponding boundary conditions for gray-diffuse
walls is

1- -
I, = ely, + Tszﬁﬂ?o wil |7 Q) (3)

The boundary condition (Equation 3) is only applied to the
intensity leaving a given surface, i.e. if 7- ﬁ; > 0. The set of
first-order discrete ordinates equations may be manipulated into
various second-order forms if desired. A great deal of research
over the last several decades has gone into finding stable and
computationally efficient ways to solve the discrete ordinates
equations.

SIMPLIFIED SPHERICAL HARMONICS

The simplified spherical harmonics or SPn angular
approximation technique was first proposed by Gelbard in the
early 1960s [7, 8, 9] as an ad hoc extension of the one-
dimensional spherical harmonics approximation into three
dimensions. The SPn equations have since been more
rigorously derived from an asymptotic expansion of the P1 or
diffusion approximation and from the use of particular trial
functions in the self-adjoint variational characterization of the
even-parity form of the radiative transfer equation [10, 11].
The SP1 approximation is equivalent to the P1 approximation.

Use of the SPn approximation within the nuclear
engineering community has grown steadily over the past 20
years [12, 13, 14]. More recently, the method has begun
growing in popularity for heat transfer applications [15, 16, 17].
Because the SPn equations may be derived in so many different
ways, there are a large number of equivalent forms in common
use. The “canonical” form [18, 1] derived from the 1D even-
parity discrete ordinates equations is a set of coupled diffusion
equations given by

= 2
V- (GESV) + (Gat ol = ouly + 22 (4)

The preponderance of published results in the heat transfer
community use the Marshak boundary condition for the SPn
equations. The Marshak condition is considered more accurate
for low order approximations but involves additional coupling
of the SPn equations at the boundaries. However, in this work
we employ the Mark boundary condition which has the
advantage of not coupling the SPn diffusion equations at the
boundary in the case of black walls. The Mark boundary
condition approaches the Marshak boundary condition as the
approximation order increases.

B P === L) +
o, + og 2—¢
_ Z(Ik— i EIk'ﬁ)uk\'l’k S
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= s i+ 5Tl R|(5)

The discrete ordinates solutions presented in this paper are
generated using the SCEPTRE suite of codes for solving the
linear steady-state Boltzmann transport equation [19]. The
simplified spherical harmonics solutions are computed using
Sierra Aria, a thermal analysis code that is highly scalable [20].
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CASE 1

In previous work the infinitely long square duct with a
single wall was considered [1]. The analytical solution of
Crosbie and Schrenker [21] was used as a benchmark. This
technique was later expanded to inhomogeneous media with
isotropic scattering by Altac and Tekkalmaz [22]. Here we
consider the three-dimensional analog to this problem: A cube
with one side (z=1) heated. Our quantities of interest are the
angle-integrated intensity and the heat flux perpendicular to the
heated wall as a function of the distance from the heated wall
along the centerline. The geometry for Case 1 is illustrated in
Figure 1.

Figure 1: Geometry for Case 1. Cold Cube with black walls,
one wall heated uniformly.

Uniform grids of 20x20x20, 40x40x40, and 80x80x80 are
used to assess mesh convergence. As a benchmark solution, a
very high order discrete ordinates solution on the finest grid is
used. Ray effect errors dominate all other sources of error for
this scenario. Ray effects are errors resulting from the angular
discretization used in the discrete ordinates method. They are
propagations of discontinuities along the finite set or ordinate
directions and manifest themselves as spurious oscillations in
the quantities of interest. Scattering mitigates ray effects by
smoothing out discontinuities as the rays traverse the domain.
Gray (rather than black) walls also mitigate ray effects by
added internal reflections. For this reason, a purely absorbing
media (no scattering) with black walls is expected to produce
the largest errors. For the results shown here, the optical side-
length is set to unity. Relative errors are expected to be larger
for larger optical thicknesses.
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Figure 2: Angle-integrated intensity distribution along the
centerline using the 18" order level-symmetric quadrature (360
ordinate directions) on several meshes.

Ray effects are still apparent in the S18 solution on the
finest mesh (Figures 2 and 3). These oscillations are less
apparent on the coarser meshes due to false scattering. False
scattering is a numerical smearing of the solution due to
insufficient mesh resolution. This is a characteristic common to
problems of this type. Because false scattering effects
compensate for ray effects, mesh refinement without a
corresponding increase in angular resolution can actually
decrease accuracy. Mesh resolution and angular resolution are
not independent and must be varied together in order to
increase solution accuracy.
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Figure 3: Heat flux away from hot wall along centerline using
the 18" order level-symmetric quadrature (360 ordinate
directions) on several meshes.

In the angle-integrated intensity distribution, the ray effects
are most noticeable near the hot surface (z=1). This is true for
quadratures with large numbers of ordinates but not necessarily
for lower order quadratures. As seen in Figure 3, the
oscillations in the heat flux are less pronounced and more
evenly distributed throughout the volume. The level-symmetric
quadrature only allows orders up to 20 (440 ordinate
directions). In order to effectively eliminate ray effects from
the solution on the fine mesh higher orders are required. The
Lebedev quadrature allows for the inclusion of significantly
more ordinate directions. The Lebedev quadrature of order 58
contains 1202 ordinate directions. On the finest meshes, this
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still results in a solution with visibly noticeable ray effects.
However, ray effects are not noticeable on the 40x40x40 mesh
for this quadrature. As can be seen in Figures 4 and 5 the
solution is significantly less dependent on mesh resolution for
quadratures of this high of an order.
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Figure 4: Angle-integrated intensity distribution along the
centerline using the 58" order Lebedev quadrature on several
meshes
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Figure 5: Heat flux away from hot wall along centerline the 58"
order Lebedev quadrature on several meshes

Looking at the convergence with mesh refinement shows
increased accuracy in solving the discrete ordinates equation set
of a given order. However, since this equation set is an
approximation of the real system and its solution is polluted by
ray effects (angular discretization errors), increasing mesh
resolution does not result in increased accuracy relative to the
true solution. Instead, mesh refinement (beyond a certain
point) only serves to better resolve the nonphysical oscillations
known as ra%/ effects.

The 76" order Lebedev quadrature contains 2030 ordinate
directions and does not exhibit ray effects on the 80x80x80
mesh. It is therefore chosen to be sufficiently close to the true
solution for this problem to be used to assess the error in the
lower-order approximations. Looking at the L2 error in the
quantities of interest (angle-integrated intensity and heat flux
along the centerline) it is apparent that the number of ordinate
directions used is the dominant term in the error. Figure 6
shows the L2 error in the angle-integrated intensity as a

function of the number of ordinate directions for the Lathrop-
Carlson and Lebedev quadratures.
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Figure 6: L2 error in the angle-integrated intensity relative to
the 76™ order Lebedev quadrature solution on the finest mesh
as a function of mesh size and number of ordinate directions.

The error in the heat flux demonstrates similar behavior to
that observed in the error in the angle-integrated intensity. For
low numbers of ordinate directions, mesh refinement enhances
the ray effects and actually reduces the accuracy of the solution.
Only for very large numbers or ordinate directions does mesh
refinement improve solution accuracy, and even there it is
expected that eventually further refinement would have
deleterious effect. As seen in Figures 2, 3 and 6, the level
symmetric Lathrop-Carlson quadrature is insufficient to fully
resolve the ray effects in this problem. However, it is noted
that the Lathrop-Carlson quadrature often outperforms the
Lebedev quadrature of comparable size for smaller numbers of
ordinate directions. For more realistic problems with less
pronounced ray effects or for applications where a very large
quadrature set is impractical the Lathrop-Carlson quadrature
appears to be a reasonable choice.

The relative error in the simplified spherical harmonics
(SPn) approximation is summarized in Figure 7. The SPn
approximation always yields a smooth solution but unlike the
discrete ordinates method it is not guaranteed to converge to the
correct answer as the order approaches infinity in
multidimensional geometries.  In fact, for this particular
geometry where the solution is both highly directional and fully
3D, the error in the SPn solution increases with increasing
order.
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Figure 7: Relative L? error in the angle-integrated intensity
distribution along the centerline using the SPn approximation
as a function of approximation order.

In this case, the SPn approximation converges to a solution
that is in excess of 30% error. At all orders, the SPn
approximation under predicts the angle-integrated intensity
along the centerline for this case. The SPn approximation is
expected to perform better for applications that are more
approximately 1D as well as problems with significant
scattering where the intensity is expected to be closer to
isotropic. The second test case attempts to test this hypothesis.

CASE 2

The second test case involves a cylindrical geometry with
temperature and optical property distributions intended to be
representative of those encountered in a pool fire. The problem
is radially symmetric. The temperature distribution is given by

T(r,z) =300 +
2
[1— (r — 0.8)2]e-10(B0-1*~2) r<0.8
700 [1 - (—“‘"8)2] e~10B0-0*-2)"  gg<r<1 (6)

0.2
0 r=1
The absorption coefficient is defined as
o, = 10e73" (7)

This temperature distribution is radially symmetric and is
pictured in Figure 8.
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Figure 8: Temperature distribution for Case 2

The walls are black with temperature given by equation 6.
The bounding surface is a cylinder of radius 2 and height 6.
The quantity of interest for Case 2 is the angle-integrated
intensity along the axis of this cylinder. This particular quantity
is chosen because it does not demonstrate the radical ray effect
behavior investigated by case 1. Figure 9 shows the value for
the angle-integrated intensity as a function of z.
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Figure 9: Angle-integrated intensity distribution for Case 2
using the simplified spherical harmonics approximation and
discrete ordinates method of various orders.

Ray effects are drastically reduced in this case as can be
seen by the lack of spurious oscillations in the S4 and S20
solutions plotted above. Consequently, the discrete ordinates
method converges rapidly. The S4 (24 ordinate directions) is
almost indistinguishable from the S20 (440 ordinate directions)
solution. Note that this is true because the quantity of interest
for this case is the angle-integrated intensity along the
centerline. Ray effects remain noticeable in other solution
regions away from the flame. In regions far from the flame, the
solution behaves similarly to that in case 1. Figure 10 shows
the convergence of the L2 norm of our quantity of interest as
the angular resolution is increased.
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Figure 10: Relative L? error in the angle-integrated intensity
distribution along the centerline using the discrete ordinates
method with the Lathrop-Carlson level-symmetric quadrature
as a function of the number of ordinate directions included

The discrete ordinates method performs very well for
predicting the quantity of interest for this case. The Lebedev
quadrature performs similarly for this case and is not pictured
above. The extremely large quadratures used in Case 1 are seen
to be of limited value for Case 2. Because of the lack of ray
effects, this is not expected to change significantly with further
mesh refinement.
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Figure 11: Relative L? error in the angle-integrated intensity
distribution along the centerline using the SPn approximation
as a function of approximation order.
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Figure 11 shows the behavior of the L2 norm of our
quantity of interest for the simplified spherical harmonics
approximation as the approximation order is increased. The
simplified spherical harmonics approximation is seen to
visually converge by order 9 but once again, increases in the
approximation order result in decreases in solution accuracy.
However, in this case the change in error is smaller and the
overall error is about half of what it was case 1.

The simplified spherical harmonics approximation is
thought to perform better in this case because although the
solution is still not remotely 1D, the intensity is more isotropic
than in Case 1 due to the volumetrically distributed source. The
method would be expected to perform even better in the
presence of scattering. The 15% relative error in the angle-
integrated intensity is likely acceptable for many applications

when considered along with other simplifying assumptions
such as neglecting spectral effects.

CONCLUSIONS

Ray effects dominate the discrete ordinates solution in the
first case. These effects are partially mitigated by false
scattering on coarser meshes. In order to observe a benefit
from mesh refinement a very large quadrature set is required.
Quadrature sets of this size are seldom used in practical heat
transfer applications due to computational constraints. A
general guideline appears to be that if ray effects are visually
apparent in the solution further mesh refinement will likely
reduce solution accuracy rather than improve it and should be
avoided. The simplified spherical harmonics approximation
yields an error of about 30% for the first case. This is a large
error relative to what may be achieved with the discrete
ordinates method. However, the simplified spherical harmonics
approximation is much more computationally efficient and may
be acceptable for a number of applications. No benefit is
observed by increasing the order of the simplified spherical
harmonics approximation for this case.

The second case is more realistic and is meant to resemble
the distributions within an axially symmetric flame. The angle-
integrated intensity along the centerline which corresponds to
the radiative source term in the energy equation is chosen as the
quantity of interest for Case 2. This quantity is not as
susceptible to ray effects as other potential choices (radiative
heat flux some distance away from the flame). The discrete
ordinates method performs very well in calculating this
quantity even for low numbers of ordinate directions. The
simplified spherical harmonics approximation yields about a
15% error in this quantity of interest which is likely acceptable
for many applications. Once again, no benefit is observed by
increasing the order of the simplified spherical harmonics
approximation. For the two cases considered, the error is
minimized by choosing the lowest order approximation which
is equivalent to the lowest order spherical harmonics
approximation and assumes an isotropic radiative intensity.

A general guideline appears to be that mesh refinement is
only worthwhile if the solution on the current mesh does not
exhibit any visible ray effects (unphysical oscillations). If the
solution is polluted by ray effects, computational resources are
likely best used in mitigating these effects. In cases where
further angular refinement is impractical mesh coarsening may
even be appropriate. This paper did not consider the influence
of optical thickness or scattering albedo in detail. Both of these
parameters are known to influence the conclusions reached. No
value was found in increases the SPn approximation order for
either of the cases considered here. However, this is not
thought to be true generally. Effective use of the SPn
approximation for heat transfer problems remains an area of
active research.
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