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ABSTRACT 
Two of the most popular deterministic radiation transport 

methods for treating the angular dependence of the radiative 

intensity for heat transfer: the discrete ordinates and simplified 

spherical harmonics approximations are compared.   A problem 

with discontinuous boundary conditions is included to evaluate 

ray effects for discrete ordinates solutions.  Mesh resolution 

studies are included to ensure adequate convergence and 

evaluate the effects of the contribution of false scattering.  All 

solutions are generated using finite element spatial 

discretization.  Where applicable, any stabilization used is 

included in the description of the approximation method or the 

statement of the governing equations.  A previous paper by the 

author presented results for a set of 2D benchmark problems for 

the discrete ordinates method using the PN-TN quadrature of 

orders 4, 6, and 8 as well as the P1, M1, and SP3 

approximations.  This paper expands that work to include the 

Lathrop-Carlson level symmetric quadrature of order up to 20 

as well as the Lebedev quadrature of order up to 76 and 

simplified spherical harmonics of odd orders from 1 to 15.  Two 

3D benchmark problems are considered here.  The first is a 

canonical problem of a cube with a single hot wall.  This case is 

used primarily to demonstrate the potentially unintuitive 

interaction between mesh resolution, quadrature order, and 

solution error.  The second case is meant to be representative of 

a pool fire.  The temperature and absorption coefficient 

distributions are defined analytically.  In both cases, the relative 

error in the radiative flux or the radiative flux divergence within 

a volume is considered as the quantity of interest as these are 

the terms that enter into the energy equation.  The spectral 

dependence of the optical properties and the intensity is 

neglected. 

NOMENCLATURE 

𝜇𝑛 is the nth quadrature point in a (N+1)-point Gauss set 

on [-1, 1] 

𝐼𝑛 is the angular intensity at quadrature point n 

𝜎𝑇 is the macroscopic total cross section or extinction 

coefficient 

𝜙 is the angle-integrated intensity 𝜙 = 4𝜋 ∑ 𝑤𝑚𝐼𝑚
(𝑁+1)/2
𝑚=1  

𝑤𝑛 is the nth quadrature weight 

𝜎𝑠 is the macroscopic scattering cross section or scattering 

coefficient 

𝜎𝑎 is the macroscopic absorption cross section or 

absorption coefficient 

𝜎 is the Stefan-Boltzmann constant 

𝑇 is the material temperature 

𝐼𝑏  is the black-body intensity 𝐼𝑏 =
𝜎𝑇4

𝜋
 

Ω𝑖⃗⃗⃗⃗  is a unit vector pointing in the ordinate direction 

corresponding to quadrature point i 

𝜀 is the surface emissivity 

𝑛⃗  is the surface normal unit vector 

 

INTRODUCTION 
Radiation transport is an important phenomenon occurring 

in many physical systems.  In heat transfer applications, this 

typically consists of the transport of relatively low energy 

photons through a translucent material.  Photons may be 

emitted, absorbed, and scattered within the medium and at the 

boundary surfaces.  The material properties corresponding to 

these processes are the surface emissivity and the absorption 

and scattering cross-sections of the medium.  The radiative 

transport equation (Equation 1) governs the exchange or 

thermal radiation through a participating medium.   

 

Ω⃗⃗ ∙ ∇⃗⃗ 𝐼(Ω⃗⃗ ) + (𝜎𝐴 + 𝜎𝑆)𝐼(Ω⃗⃗ ) = 𝜎𝐴𝐼𝑏 +
𝜎𝑆

4𝜋
∫ 𝐼 (Ω⃗⃗̃ ) 𝑑Ω̃ ( 1 ) 
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In its most general form, the radiative transport equation 

has seven independent variables in space (3), direction (2), 

energy (1), and time (1).  Equation 1 is written in steady-state 

because the time scales involved in the propagation of thermal 

radiation is much smaller than the other time scales of interest 

in a typical coupled heat transfer problem.  In heat transfer 

applications, quantities of interest such as the radiative heat 

flux and the divergence of the radiative flux involve 

integrations over direction and energy and consequently vary 

only spatially and temporally.  Setting aside the considerable 

complexity of the spectral dependence, this paper focuses on 

the techniques commonly used to approximate the angular 

dependence of the intensity.   

Several of the most popular deterministic radiation 

transport methods for heat transfer including discrete ordinates, 

spherical harmonics, and simplified spherical harmonics are 

compared.  A previous paper by the author [1] presented results 

for a set of 2D benchmark problems for the discrete ordinates 

method using the PN-TN quadrature of orders 4, 6, and 8 as 

well as the P1, M1, and SP3 approximations.  This paper 

expands that work to include the Lathrop-Carlson level 

symmetric quadrature of order up to 20 as well as the Lebedev 

quadrature of order up to 76 and simplified spherical harmonics 

of odd order from 1 to 15.  Unlike the previous work, in this 

paper fully 3D benchmark problems which more accurately 

mimic practical use cases are considered and used to evaluate 

the accuracy of the various angular approximations.  Special 

attention is paid to the unintuitive interaction between order and 

mesh resolution for discrete ordinates solutions in the presence 

of ray effects. 

 

DISCRETE ORDINATES 
The discrete ordinates method is the most popular 

deterministic method for approximating radiative transport in 

participating media.  In the discrete ordinates method, the 

radiative intensity is evaluated in a finite number of “ordinate 

directions.”  These directions are chosen so that they 

correspond to the integration points in a given quadrature rule 

over the unit sphere.  This quadrature is then used to evaluate 

integral quantities such as the angle-integrated intensity and the 

radiative heat flux.  The discrete ordinates method enjoys wide 

adoption because the derivation [2, 3, 4, 5, 6, 1] is intuitive and 

the solution is guaranteed to converge to the correct solution as 

the number of ordinate directions considered approaches 

infinity. 

The discrete ordinates method reduces Equation 1 into a 

set of N first order linear differential equations (one for each of 

the N ordinate directions in the chosen quadrature rule). 

 

Ω𝑖⃗⃗⃗⃗ ∙ ∇⃗⃗ 𝐼𝑖 + (𝜎𝐴 + 𝜎𝑆)𝐼𝑖 = 𝜎𝐴𝐼𝑏 +
𝜎𝑆

4𝜋
∑𝑤𝑗𝐼𝑗 ( 2 ) 

 

The corresponding boundary conditions for gray-diffuse 

walls is 

 

𝐼𝑖 = 𝜀𝐼𝑏𝑤 +
1−𝜀

𝜋
∑ 𝑤𝑗𝐼𝑗|𝑛⃗ ∙ Ω𝑗⃗⃗⃗⃗ |𝑛⃗ ∙Ω𝑗⃗⃗⃗⃗  ⃗<0

  ( 3 ) 

 

The boundary condition (Equation 3) is only applied to the 

intensity leaving a given surface, i.e. if  𝑛⃗ ∙ Ω𝑗⃗⃗⃗⃗ > 0.  The set of 

first-order discrete ordinates equations may be manipulated into 

various second-order forms if desired.  A great deal of research 

over the last several decades has gone into finding stable and 

computationally efficient ways to solve the discrete ordinates 

equations. 

 

SIMPLIFIED SPHERICAL HARMONICS 
The simplified spherical harmonics or SPn angular 

approximation technique was first proposed by Gelbard in the 

early 1960s [7, 8, 9] as an ad hoc extension of the one-

dimensional spherical harmonics approximation into three 

dimensions.  The SPn equations have since been more 

rigorously derived from an asymptotic expansion of the P1 or 

diffusion approximation and from the use of particular trial 

functions in the self-adjoint variational characterization of the 

even-parity form of the radiative transfer equation [10, 11].  

The SP1 approximation is equivalent to the P1 approximation. 

Use of the SPn approximation within the nuclear 

engineering community has grown steadily over the past 20 

years [12, 13, 14].  More recently, the method has begun 

growing in popularity for heat transfer applications [15, 16, 17].  

Because the SPn equations may be derived in so many different 

ways, there are a large number of equivalent forms in common 

use.  The “canonical” form [18, 1] derived from the 1D even-

parity discrete ordinates equations is a set of coupled diffusion 

equations given by 

 

∇⃗⃗ ∙ (
𝜇𝑖
2

(𝜎𝐴+𝜎𝑆)
∇⃗⃗ 𝐼𝑖) + (𝜎𝐴 + 𝜎𝑆)𝐼𝑖 = 𝜎𝐴𝐼𝑏 +

𝜎𝑆

4𝜋
𝜙 ( 4 ) 

 

The preponderance of published results in the heat transfer 

community use the Marshak boundary condition for the SPn 

equations.  The Marshak condition is considered more accurate 

for low order approximations but involves additional coupling 

of the SPn equations at the boundaries.  However, in this work 

we employ the Mark boundary condition which has the 

advantage of not coupling the SPn diffusion equations at the 

boundary in the case of black walls.  The Mark boundary 

condition approaches the Marshak boundary condition as the 

approximation order increases. 

 

−
𝜇𝑖

𝜎𝐴 + 𝜎𝑆
𝛻⃗ 𝐼𝑖 ∙ 𝑛⃗ =

𝜀

2 − 𝜀
(𝐼𝑖 − 𝐼𝑏𝑤) + 

1−𝜀

2−𝜀
[
∑(𝐼𝑘−

𝜇𝑘
𝜎𝐴+𝜎𝑆

𝛻⃗⃗ 𝐼𝑘∙𝑛⃗ )𝜇𝑘𝑤𝑘

∑𝜇𝑘𝑤𝑘
− 𝐼𝑖 +

𝜇𝑖

𝜎𝐴+𝜎𝑆
𝛻⃗ 𝐼𝑖 ∙ 𝑛⃗ ] ( 5 ) 

 

The discrete ordinates solutions presented in this paper are 

generated using the SCEPTRE suite of codes for solving the 

linear steady-state Boltzmann transport equation [19].  The 

simplified spherical harmonics solutions are computed using 

Sierra Aria, a thermal analysis code that is highly scalable [20]. 
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CASE 1 
In previous work the infinitely long square duct with a 

single wall was considered [1].  The analytical solution of 

Crosbie and Schrenker [21] was used as a benchmark.  This 

technique was later expanded to inhomogeneous media with 

isotropic scattering by Altac and Tekkalmaz [22].  Here we 

consider the three-dimensional analog to this problem: A cube 

with one side (z=1) heated.  Our quantities of interest are the 

angle-integrated intensity and the heat flux perpendicular to the 

heated wall as a function of the distance from the heated wall 

along the centerline.  The geometry for Case 1 is illustrated in 

Figure 1. 

 

 
Figure 1: Geometry for Case 1.  Cold Cube with black walls, 

one wall heated uniformly. 

Uniform grids of 20x20x20, 40x40x40, and 80x80x80 are 

used to assess mesh convergence.  As a benchmark solution, a 

very high order discrete ordinates solution on the finest grid is 

used.  Ray effect errors dominate all other sources of error for 

this scenario.  Ray effects are errors resulting from the angular 

discretization used in the discrete ordinates method.  They are 

propagations of discontinuities along the finite set or ordinate 

directions and manifest themselves as spurious oscillations in 

the quantities of interest.  Scattering mitigates ray effects by 

smoothing out discontinuities as the rays traverse the domain.  

Gray (rather than black) walls also mitigate ray effects by 

added internal reflections.  For this reason, a purely absorbing 

media (no scattering) with black walls is expected to produce 

the largest errors.  For the results shown here, the optical side-

length is set to unity.  Relative errors are expected to be larger 

for larger optical thicknesses. 

 

 
Figure 2: Angle-integrated intensity distribution along the 

centerline using the 18
th

 order level-symmetric quadrature (360 

ordinate directions) on several meshes. 

Ray effects are still apparent in the S18 solution on the 

finest mesh (Figures 2 and 3).  These oscillations are less 

apparent on the coarser meshes due to false scattering.  False 

scattering is a numerical smearing of the solution due to 

insufficient mesh resolution.  This is a characteristic common to 

problems of this type.  Because false scattering effects 

compensate for ray effects, mesh refinement without a 

corresponding increase in angular resolution can actually 

decrease accuracy.  Mesh resolution and angular resolution are 

not independent and must be varied together in order to 

increase solution accuracy. 

 

 
Figure 3: Heat flux away from hot wall along centerline using 

the 18
th

 order level-symmetric quadrature (360 ordinate 

directions) on several meshes. 

In the angle-integrated intensity distribution, the ray effects 

are most noticeable near the hot surface (z=1).  This is true for 

quadratures with large numbers of ordinates but not necessarily 

for lower order quadratures.  As seen in Figure 3, the 

oscillations in the heat flux are less pronounced and more 

evenly distributed throughout the volume.  The level-symmetric 

quadrature only allows orders up to 20 (440 ordinate 

directions).  In order to effectively eliminate ray effects from 

the solution on the fine mesh higher orders are required.  The 

Lebedev quadrature allows for the inclusion of significantly 

more ordinate directions.  The Lebedev quadrature of order 58 

contains 1202 ordinate directions.  On the finest meshes, this 
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still results in a solution with visibly noticeable ray effects.  

However, ray effects are not noticeable on the 40x40x40 mesh 

for this quadrature.  As can be seen in Figures 4 and 5 the 

solution is significantly less dependent on mesh resolution for 

quadratures of this high of an order. 

 

 
Figure 4: Angle-integrated intensity distribution along the 

centerline using the 58
th

 order Lebedev quadrature on several 

meshes 

 

 
Figure 5: Heat flux away from hot wall along centerline the 58

th
 

order Lebedev quadrature on several meshes 

Looking at the convergence with mesh refinement shows 

increased accuracy in solving the discrete ordinates equation set 

of a given order.  However, since this equation set is an 

approximation of the real system and its solution is polluted by 

ray effects (angular discretization errors), increasing mesh 

resolution does not result in increased accuracy relative to the 

true solution.  Instead, mesh refinement (beyond a certain 

point) only serves to better resolve the nonphysical oscillations 

known as ray effects.  

The 76
th

 order Lebedev quadrature contains 2030 ordinate 

directions and does not exhibit ray effects on the 80x80x80 

mesh.  It is therefore chosen to be sufficiently close to the true 

solution for this problem to be used to assess the error in the 

lower-order approximations.  Looking at the L2 error in the 

quantities of interest (angle-integrated intensity and heat flux 

along the centerline) it is apparent that the number of ordinate 

directions used is the dominant term in the error.  Figure 6 

shows the L2 error in the angle-integrated intensity as a 

function of the number of ordinate directions for the Lathrop-

Carlson and Lebedev quadratures. 

 
Figure 6: L2 error in the angle-integrated intensity relative to 

the 76
th

 order Lebedev quadrature solution on the finest mesh 

as a function of mesh size and number of ordinate directions. 

The error in the heat flux demonstrates similar behavior to 

that observed in the error in the angle-integrated intensity.  For 

low numbers of ordinate directions, mesh refinement enhances 

the ray effects and actually reduces the accuracy of the solution.  

Only for very large numbers or ordinate directions does mesh 

refinement improve solution accuracy, and even there it is 

expected that eventually further refinement would have 

deleterious effect.  As seen in Figures 2, 3 and 6, the level 

symmetric Lathrop-Carlson quadrature is insufficient to fully 

resolve the ray effects in this problem.  However, it is noted 

that the Lathrop-Carlson quadrature often outperforms the 

Lebedev quadrature of comparable size for smaller numbers of 

ordinate directions.  For more realistic problems with less 

pronounced ray effects or for applications where a very large 

quadrature set is impractical the Lathrop-Carlson quadrature 

appears to be a reasonable choice. 

The relative error in the simplified spherical harmonics 

(SPn) approximation is summarized in Figure 7.  The SPn 

approximation always yields a smooth solution but unlike the 

discrete ordinates method it is not guaranteed to converge to the 

correct answer as the order approaches infinity in 

multidimensional geometries.  In fact, for this particular 

geometry where the solution is both highly directional and fully 

3D, the error in the SPn solution increases with increasing 

order. 
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Figure 7: Relative L

2
 error in the angle-integrated intensity 

distribution along the centerline using the SPn approximation 

as a function of approximation order. 

In this case, the SPn approximation converges to a solution 

that is in excess of 30% error.  At all orders, the SPn 

approximation under predicts the angle-integrated intensity 

along the centerline for this case.  The SPn approximation is 

expected to perform better for applications that are more 

approximately 1D as well as problems with significant 

scattering where the intensity is expected to be closer to 

isotropic.  The second test case attempts to test this hypothesis.   

CASE 2 
The second test case involves a cylindrical geometry with 

temperature and optical property distributions intended to be 

representative of those encountered in a pool fire.  The problem 

is radially symmetric.  The temperature distribution is given by 

 

𝑇(𝑟, 𝑧) = 300 + 

  700

{
 

 [1 − (𝑟 − 0.8)
2]𝑒−10(3(𝑟−1)

2−𝑧)
2

𝑟 < 0.8

[1 − (
𝑟−0.8

0.2
)
2

] 𝑒−10(3(𝑟−1)
2−𝑧)

2

0.8 ≤ 𝑟 < 1

0 𝑟 ≥ 1

      ( 6 ) 

 

The absorption coefficient is defined as  

 

𝜎𝑎 = 10𝑒
−3𝑟2             ( 7 ) 

 

This temperature distribution is radially symmetric and is 

pictured in Figure 8. 

 

 
Figure 8: Temperature distribution for Case 2 

The walls are black with temperature given by equation 6.  

The bounding surface is a cylinder of radius 2 and height 6.  

The quantity of interest for Case 2 is the angle-integrated 

intensity along the axis of this cylinder.  This particular quantity 

is chosen because it does not demonstrate the radical ray effect 

behavior investigated by case 1.  Figure 9 shows the value for 

the angle-integrated intensity as a function of z. 

 

 
Figure 9: Angle-integrated intensity distribution for Case 2 

using the simplified spherical harmonics approximation and 

discrete ordinates method of various orders. 

Ray effects are drastically reduced in this case as can be 

seen by the lack of spurious oscillations in the S4 and S20 

solutions plotted above.  Consequently, the discrete ordinates 

method converges rapidly.  The S4 (24 ordinate directions) is 

almost indistinguishable from the S20 (440 ordinate directions) 

solution.  Note that this is true because the quantity of interest 

for this case is the angle-integrated intensity along the 

centerline.  Ray effects remain noticeable in other solution 

regions away from the flame.  In regions far from the flame, the 

solution behaves similarly to that in case 1.  Figure 10 shows 

the convergence of the L2 norm of our quantity of interest as 

the angular resolution is increased. 
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Figure 10: Relative L

2
 error in the angle-integrated intensity 

distribution along the centerline using the discrete ordinates 

method with the Lathrop-Carlson level-symmetric quadrature 

as a function of the number of ordinate directions included 

The discrete ordinates method performs very well for 

predicting the quantity of interest for this case.  The Lebedev 

quadrature performs similarly for this case and is not pictured 

above.  The extremely large quadratures used in Case 1 are seen 

to be of limited value for Case 2.  Because of the lack of ray 

effects, this is not expected to change significantly with further 

mesh refinement. 

 

 
Figure 11: Relative L

2
 error in the angle-integrated intensity 

distribution along the centerline using the SPn approximation 

as a function of approximation order. 

Figure 11 shows the behavior of the L2 norm of our 

quantity of interest for the simplified spherical harmonics 

approximation as the approximation order is increased.  The 

simplified spherical harmonics approximation is seen to 

visually converge by order 9 but once again, increases in the 

approximation order result in decreases in solution accuracy.  

However, in this case the change in error is smaller and the 

overall error is about half of what it was case 1. 

The simplified spherical harmonics approximation is 

thought to perform better in this case because although the 

solution is still not remotely 1D, the intensity is more isotropic 

than in Case 1 due to the volumetrically distributed source.  The 

method would be expected to perform even better in the 

presence of scattering.  The 15% relative error in the angle-

integrated intensity is likely acceptable for many applications 

when considered along with other simplifying assumptions 

such as neglecting spectral effects. 

CONCLUSIONS 
Ray effects dominate the discrete ordinates solution in the 

first case.  These effects are partially mitigated by false 

scattering on coarser meshes.  In order to observe a benefit 

from mesh refinement a very large quadrature set is required.  

Quadrature sets of this size are seldom used in practical heat 

transfer applications due to computational constraints.  A 

general guideline appears to be that if ray effects are visually 

apparent in the solution further mesh refinement will likely 

reduce solution accuracy rather than improve it and should be 

avoided.  The simplified spherical harmonics approximation 

yields an error of about 30% for the first case.  This is a large 

error relative to what may be achieved with the discrete 

ordinates method.  However, the simplified spherical harmonics 

approximation is much more computationally efficient and may 

be acceptable for a number of applications.  No benefit is 

observed by increasing the order of the simplified spherical 

harmonics approximation for this case. 

The second case is more realistic and is meant to resemble 

the distributions within an axially symmetric flame.  The angle-

integrated intensity along the centerline which corresponds to 

the radiative source term in the energy equation is chosen as the 

quantity of interest for Case 2.  This quantity is not as 

susceptible to ray effects as other potential choices (radiative 

heat flux some distance away from the flame).  The discrete 

ordinates method performs very well in calculating this 

quantity even for low numbers of ordinate directions.  The 

simplified spherical harmonics approximation yields about a 

15% error in this quantity of interest which is likely acceptable 

for many applications.  Once again, no benefit is observed by 

increasing the order of the simplified spherical harmonics 

approximation.  For the two cases considered, the error is 

minimized by choosing the lowest order approximation which 

is equivalent to the lowest order spherical harmonics 

approximation and assumes an isotropic radiative intensity. 

A general guideline appears to be that mesh refinement is 

only worthwhile if the solution on the current mesh does not 

exhibit any visible ray effects (unphysical oscillations).  If the 

solution is polluted by ray effects, computational resources are 

likely best used in mitigating these effects.  In cases where 

further angular refinement is impractical mesh coarsening may 

even be appropriate.  This paper did not consider the influence 

of optical thickness or scattering albedo in detail.  Both of these 

parameters are known to influence the conclusions reached.  No 

value was found in increases the SPn approximation order for 

either of the cases considered here.  However, this is not 

thought to be true generally.  Effective use of the SPn 

approximation for heat transfer problems remains an area of 

active research. 
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