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Abstract Average and Peak HO2 Signals

In the coming years, our fuel supply will diversify as biofuels grow more economical.
The molecular structure of biofuels vary widely. To utilize these fuels efficiently and
design biofuel-compatible advanced engines, we must understand how biofuels
behave under low temperature combustion (500-1000K). During low temperature
combustion (LTC), thousands of intermediate reactions take place. These reactions
heavily influence autoignition at higher temperatures.
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This study investigates how the position of a double bond in a biodiesel-like

compounds affect the intermediate reactions under LTC. Using pulsed laser
photolysis, we measured the concentration of HO2, a key intermediate product.
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We found that when the double bond is closer to the ester group, the HO2
produced decreases. Notably, the HO2 production of the compounds tested did not
display significant temperature dependence.
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LTC occurs via pathways of chain initiation,
propagation, branching, and termination. The balance
between these pathways controls heat release and
sets the stage for autoignition.

RH
+ OH l -H,0

Structure-Activity Relationships

R —» alkene+ R’

o

ROO 4+ conjugate alkene + HO, ° RH: fuel m0|eCUIe

e Structure-activity relationships use rate

ﬂ * HOz: unreactive, chain terminating | constants and bonding characteristics methyihexanoate 1)
QOOH cyelic ether + OH * OH: hlghly. reactive, sgpports chain branching to estimate the distributions of which —— —— R
+0, ﬂ . QOQH. hlgh.ly reactive and unstable, supports radical sites occur at specific sites /
00QOOH pscission products + OH chain branching o]l T Pt O
l o _ * SAR data indicates that radicals form
HOOQOOH Blocfll.esel chain length, nur.nber of double bonds, zfnd rapidly at sites near double bonds
l position of double bonds influences fuel combustion
properties and pollutant formation. O methyl-3-hexenoate o)
HOOQ'=0 + OH methyl-5-hexenoate
l o o 0 47.2 - 60.5% 1.9-2.5% 254 -29.8% "’ii;zl%
0Q=0-+20H (chain-branching) 0/ Z 0/ Z 0 / - - O/ 25.3 - 34.9% 38.1-44.6% O
methyl hexanoate methyl-3-hexenoate methyl-5-hexenoate 365 750.5% 26 33%

This experiment focuses on how the position of a double bond in the three

compounds above affects HO2 formation between 600 and 750 K. We selected these CO“CIUSiOn

compounds because they mimic the methyl ester portion of a biodiesel molecule.

 Methyl-hexanoate produced the highest peak HO2, while methyl-3-hexenoate
produced the lowest peak HO2

e We note a correlation between close proximity of the C=C bond to the ester
group and lowered HO2 formation
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