
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Pyomo 4.1

William Hart

Center for Computing Research

Sandia National Laboratories

wehart@sandia.gov

SAND2015-5766C

mailto:wehart@sandia.gov

Pyomo Overview

Idea: a Pythonic framework for formulating optimization models

 Provide a natural syntax to describe mathematical models

 Formulate large models with a concise syntax

 Separate modeling and data declarations

 Enable data import and export in commonly used formats

Highlights:

 Python provides a
clean, intuitive syntax

 Python scripts provide
a flexible context for
exploring the structure
of Pyomo models

7/14/2015 2Pyomo 4.1

simple.py
from pyomo.environ import *

M = ConcreteModel()
M.x1 = Var()
M.x2 = Var(bounds=(-1,1))
M.x3 = Var(bounds=(1,2))
M.o = Objective(

expr=M.x1**2 + (M.x2*M.x3)**4 + \
M.x1*M.x3 + \
M.x2*sin(M.x1+M.x3) + M.x2)

model = M

Pyomo at a Glance

7/14/2015 3Pyomo 4.1

Solver Interfaces

GLPK

Gurobi

CPLEX

Xpress

CBC

BARON

OpenOpt

Ipopt

KNITRO

Bonmin

AMPL Solver Library

Core Modeling
Objects

NEOS

Couenne

Meta-Solvers
• Progressive Hedging
• MPEC NLP
• MPEC MINLP
• Linear bilevel

Modeling Extensions
• Stochastic

programming
• Equilibrium constraints
• Disjunctive programming
• Bilevel programming
• Differential equations

Core Optimization
Objects

Model
Transformations

Who Uses Pyomo?

• Students

 Rose-Hulman, UC Davis, U Texas, Iowa State, NPS

• Researchers

 Sandia National Labs, Lawrence Livermore National Lab, Argonne
National Lab, Los Alamos National Lab, UC Davis, TAMU, Rose-Hulman,
UT, USC, GMU, Iowa State, NCSU, Purdue U, U Washington, NPS, U de
Santiago de Chile, U Pisa, Federal Energy Regulatory Agency, …

• Software Projects

 Minpower – Power systems toolkit

 OptiType - an HLA genotyping algorithm

 SolverStudio – Excel plugin for optimization modeling

 TEMOA – Energy economy optimization models

 Water Security Toolkit – Planning/Response for water contamination

7/14/2015 4Pyomo 4.1

What’s New in Pyomo 4.1

• Changes to model construction and results management

 Includes a performance improvement

• Pyomo configuration files

• New expression trees

• Resolved issues with MPEC solver interfaces

• Various API Changes

 Model transformation logic

 Block, SOSConstraint, Suffix components

7/14/2015 5Pyomo 4.1

Model Construction (1)

Pyomo 4.0

model = AbstractModel() # Create model

… # Add model components

instance = model.create() # Create instance

results = solver.solve(instance) # Apply optimizer

Pyomo 4.1

model = AbstractModel() # Create model

… # Add model components

instance = model.create_instance() # Create instance

results = solver.solve(instance) # Apply optimizer

7/14/2015 6Pyomo 4.1

Model Construction (2)

Pyomo 4.0

instance = ConcreteModel() # Create model

… # Add model components

instance = instance.create() # Preprocess instance

results = solver.solve(instance) # Apply optimizer

Pyomo 4.1

instance = ConcreteModel() # Create model

… # Add model components

results = solver.solve(instance) # Apply optimizer

7/14/2015 7Pyomo 4.1

Results Management (1)

Pyomo 4.0

results = solver.solve(model) # Results object stores

solutions

model.load(results) # Load solutions into

the model

Pyomo 4.1

results = solver.solve(model) # Solutions are stored in

the model object. One

solution is loaded.

Results object contains

meta-data.

7/14/2015 8Pyomo 4.1

Results Management (2)

Pyomo 4.0

results = solver.solve(model) # Results object stores

solutions

model.update_results(results) # Re-load results with

model labels

Pyomo 4.1

results = solver.solve(model) # Solutions are stored in

the model object. One

solution is loaded.

model.solutions.store_to(results) # Store solution to model

with model labels

7/14/2015 9Pyomo 4.1

Performance Impact

Note: avoiding presolve for NL files significantly improved model generation

7/14/2015 10Pyomo 4.1

Pyomo Configuration Files

Idea: express complex optimization solves with a configuration file

 pyomo solve config.json

 pyomo solve config.yaml

 This will simplify the user experience

 This reflects current user practice (e.g. caching complex pyomo
scripts in system shells)

Note: the configuration logic may depend on the solver

 Solver-specific options

 Solver-specific data blocks

 E.g. integer program vs stochastic program

7/14/2015 11Pyomo 4.1

With command-line options:

pyomo solve –solver=glpk pmedian.py pmedian.dat

With YAML configuration file:

pyomo solve config.yaml

With the file config.yaml:

Configuration File Example (1a)

7/14/2015 12Pyomo 4.1

data:
files: pmedian.dat

model:
filename: pmedian.py

solvers:
- solver name: glpk

With JSON configuration file:

pyomo solve config.json

With the file config.json:

Configuration File Example (1b)

7/14/2015 13Pyomo 4.1

{
"data": {

"files": "pmedian.dat"
},

"model": {
"filename": "pmedian.py"
},

"solvers": [
{ "solver name": "glpk" }
]

}

With command-line options:

pyomo solve --solver=glpk pmedian.py pmedian.dat \

--solver-options="mipgap=0.02 cuts="

Corresponding YAML configuration file:

Configuration File Example (2)

7/14/2015 14Pyomo 4.1

data:
files: pmedian.dat

model:
filename: pmedian.py

solvers:
- solver name: glpk
options:

mipgap: 0.02
cuts:

Pyomo Expression Trees

Expression trees are the data structure used to represent algebraic
expressions in Pyomo

Old Design

 n-ary trees with 2 principal node types:

 Sum: [argument list], [(constant) coefficient list]

 Product: [numerator list], [denominator list]

  Very compact trees

  Only two primary data types (no subtraction, no division)

  Complicated to generate

  “In-place” expression generation leads to expression entangling:

7/14/2015 15Pyomo 4.1

Expression Entanglement

Problem: intermediate variables create an opportunity for expression trees to
change each other

a = model.x[1] + model.x[2] + model.x[3]

b = a + model.x[4]

• Naïve implementation leaves a == b == sum(x[1] … x[4])

Solution: (Coopr 3.4)

 Check for external references to expressions before combining

 Use the Cpython getrefcount()

NOTE:

 Non-Cpython implementations do not implement reference checking

 This design prevents Pyomo from working on other Python
implementations:

 IronPython, Jython and PyPy

7/14/2015 16Pyomo 4.1

Pyomo 4.1 n-ary Trees

•  5 principal node types (Add, Multiply, Divide, Negate, Linear)

  More consistent layout

 Except for Linear expressions: [argument list], {argument coefficient map}

   Direct-to-linear expressions

 Coefficient map supports constant (but mutable) expressions

•   No longer reliant on getrefcount()

•  Expression entanglement still an issue

 Manage through pointers to parent nodes (challenging bookkeeping)

 But, now we can walk up trees as well

•  Reasonably fast to generate

 No more special cases for subtraction, division

 Preserve compact, balanced trees

•  Reasonably fast to traverse

•  More memory efficient

7/14/2015 17Pyomo 4.1

With command-line options:

pyomo solve --solver=glpk \

--generate-config-template=template.yaml

A template configuration file is generated:

Configuration File Example (2)

7/14/2015 18Pyomo 4.1

Configuration for a canonical model construction and optimization sequence
data:
files: [] # Model data files
namespaces: [] # A namespace that is used to select data in

Pyomo data files.
model:
filename: null # The Python module that specifies the model
object name: model # The name of the model object that is

created in the specified Pyomo module
type: null # The problem type
options: # Options used to construct the model
linearize expressions: false # An option intended for use on linear or

mixed-integer models in which expression

Modeling MPECs

Mathematical Programming with Equilibrium Constraints (MPEC)

 Engineering design, economic equilibrium, multilevel games

 Feasible region may be nonconvex and disconnected

Equilibrium Constraints

 Variational inequalities

 Complementarity conditions

 Optimality conditions (for bilevel problems)

Updates to MPEC Solvers in Pyomo 4.1

 Solver names

 NL writer

 PATH interface

7/14/2015 19Pyomo 4.1

MPEC Example

MacMPEC problem ralph1:

7/14/2015 20Pyomo 4.1

ralph1.py
from pyomo.environ import *
from pyomo.mpec import *

model = ConcreteModel()
model.x = Var(within=NonNegativeReals)
model.y = Var(within=NonNegativeReals)

model.o = Objective(expr=2*model.x - model.y)

model.c = Complementarity(
expr=complements(0<=model.y, model.y>=model.x))

MPEC Solvers (1)

Solver mpec_nlp

 Apply nonlinear reformulation

 Iteratively tighten the tolerance value

Example configuration file:

7/14/2015 21Pyomo 4.1

model:
filename: ralph1.py

solvers:
- solver name: mpec_nlp
options:

epsilon_initial: 1e-1
epsilon_final: 1e-7

MPEC Solvers (2)

Solver mpec_minlp

 Apply disjunctive reformulation

 Use a big-M reformulation to create a MIP

Example configuration file:

7/14/2015 22Pyomo 4.1

model:
filename: ralph1.py

solvers:
- solver name: mpec_minlp
options:

solver: glpk

MPEC Solvers (3)

Solver path

 The PATH solver loads problems through AMPL NL files

 Pyomo has been extended to generate NL files with complementarity
conditions

 A simple wrapper for PATH is provided in Pyomo

Example configuration file:

7/14/2015 23Pyomo 4.1

model:
filename: ralph1.py

solvers:
- solver name: path

Core Contributors to Pyomo 4.1

• Gabe Hackebeil

• William Hart

• John Siirola

• Jean-Paul Watson

• David Woodruff

7/14/2015 24Pyomo 4.1

For More Information

Project homepage

 http://www.pyomo.org

 https://software.sandia.gov/pyomo

Mailing lists

 “pyomo-forum” Google Group

 “pyomo-developers” Google Group

“The Book”

 New version this fall for Pyomo 5.0

Mathematical Programming Computation paper:

• Pyomo: Modeling and Solving Mathematical Programs in Python (3(3), 2011)

7/14/2015 25Pyomo 4.1

https://software.sandia.gov/pyomo
https://software.sandia.gov/pyomo
http://www.pyomo.org
http://www.pyomo.org

