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Introduction
Additive manufacturing is heralded by mechanical

engineers as a new path to load-bearing structures that

use material very efficiently. The emerging field also
has promise in chemical engineering, where there is a
ubiquitous reliance on randomly packed powders in
chemical reactors; separator membranes for batteries
and fuel cells; separation columns; and other devices
that manipulate fluid flow and ion transport. Replacing
randomly arranged materials by deterministically
fabricated devices with optimized geometries achieves
major performance and efficiency improvements.

Notable examples can be found in gas chromatography,

microfluidic medical devices, and recently emerging
"3D battery" structures. We are working to model an
additively manufactured exchange chromatography
column to gain a quantitative understanding of the
potential benefits of the geometries made possible by
3D printing.

Additive Manufacturing Technologies

The most widespread 3D printing technologies involve
rastering an extruder or heat source to draw lines in a
plane, followed by drawing of additional planes. Pore
space can be created by adding a soluble support
material, or by bridging short gaps. A “logpile”
structure can be printed easily at near the resolution
limit of the printer, often without support material,
which can be difficult to remove from long, narrow
pores.

The structure shown below was printed using a
Stratasys Fortus 400 printer at SNL/CA using ABS
plastic. The left image is the top view. Both of the
side views look like the right image. Sides are
occluded by the loop of material caused by changing
raster direction.
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Channel pitch =1 mm

We are interested in flow through different orientations

of this structure, notably the “111” orientation, where
all flow paths face a similar pressure drop.
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Exchange Chromatography Column

Exchange chromatography is of scientific interest because the second-order chemical
reaction between phases results in a theoretically infinitely sharp boundary that does
not broaden as it progresses, although broadening mechanisms do occur in practice,
and are easily studied. In our case, we examine the exchange of hydrogen and
deuterium with a hypothetical 3D-printed metal hydride column.

Laminar gas flow and convection-diffusion in gas phase:

OoH
W-I- '(HU—DQV H):O

Diffusion in the solid phase:

oH, B

Flux at the solid-gas interface (second-order chemical reaction):
d=ak(H/C,)(1-H,/C,)-k(H,/C,)(1-H/C,)

Cg and C_are the gas and solid capacities

The velocity field u is obtained by
solving the Navier-Stokes equation

Preliminary Results

Finite-element computations allow the simulation of reactive flow through a 111
logpile column as a function of its geometric parameters such as channel pitch, flow
orientation, pressure drop, etc.

Reaction front, as
PN, indicated by diatomic HD
""; R!/ concentration (red=high,
' blue=low), in a “logpile”
structure with flow along
the “111” orientation
(1 cm long,

channel pitch =1 mm)
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(1 cm long, radius = 50 |um)

Summary and Future Directions

Our preliminary results suggest that a front can be obtained in a hypothetical 3D
structure and that it is comparable to the front predicted in a 1D structure. Future
work will involve comparing columns of 3D flow structures with an array of 1D columns
with a given diameter tolerance. We expect that the array will result in broad fronts in
the total flow due to varying flow rates between the tubes, whereas the 3D structure
will allow mixing between inhomogeneous regions, maintaining a sharp front.
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