SAND2015-5817C

Techniques for the Dynamic
Randomization of Network Attributes

Adrian R. Chavez and William M.S. Stout
Sandia National Laboratories
Albuquerque, New Mexico, USA
{adrchav,wmstout} @sandia.gov

Abstract— Critical infrastructure control systems continue to
foster predictable communication paths and static configurations
that allow easy access to our networked critical infrastructure
around the world. This makes them attractive and easy targets
for cyber-attack. We have developed technologies that address
these attack vectors by automatically reconfiguring network
settings. Applying these protective measures will convert control
systems into “moving targets” that proactively defend themselves
against attack. This “Moving Target Defense” (MTD) revolves
about the movement of network reconfiguration, securely
communicating reconfiguration specifications to other network
nodes as required, and ensuring that connectivity between nodes
is uninterrupted. Software-defined Networking (SDN) is
leveraged to meet many of these goals. Our MTD approach
eliminates adversaries targeting known static attributes of
network devices and systems, and consists of the following three
techniques: (1) Network Randomization for TCP/UDP Ports; (2)
Network Randomization for IP Addresses; (3) Network
Randomization for Network Paths

In this paper, we describe the implementation of the
aforementioned technologies. We also discuss the individual and
collective successes for the techniques, challenges for deployment,
constraints and assumptions, and the performance implications
for each technique.

Keywords—Moving Target Defense, Software Defined Networking,
Computer Security, IP Address Hopping, Dynamic Defense

1. INTRODUCTION

Computer networks, in particular Critical Infrastructure (CI)
systems, continue to foster predictable communication paths
and static configurations [1] that provide a vector for accessing
the critical assets of a network. Among the many
vulnerabilities that CI systems possess, a static configuration
can make CI systems attractive and easy targets for cyber-
attack. In our research, we provide a means to address these
attack vectors by automatically reconfiguring network settings
and randomizing application communications dynamically.
Applying these protective measures will convert CI systems
into “moving targets” that proactively defend themselves
against attack.

Our MTD architecture is comprised of several techniques to
manage network reconfiguration, ensuring that connectivity
between nodes is uninterrupted, while providing randomization
at the application and network levels. The goal of our research
is to significantly reduce the class of adversaries able to rely on
known static Internet Protocol (IP) addresses of CI network

Sean Peisert
Lawrence Berkeley National Laboratory
& University of California, Davis
California, USA
sppeisert@lbl.gov

devices to launch an attack. Our approach introduces
uncertainty and unpredictability for adversaries reconnoitering
a network to determine the function of nodes on computer
networks, and also for adversaries attempting to map the
topology of computer networks. It is comprised of the
following techniques:

e Network Randomization for TCP/UDP Ports: our
TCP/UDP port hopper is implemented at the host level.
The Port Hopper follows a distributed system model that
relies on time synchronization for all nodes
communicating in the network. Communications between
endpoints “hop” between network port numbers at
specified intervals of time that are configurable. Those
intervals include tolerance thresholds to account for
delays incurred during transmission and traversal.

e Network Randomization for IP Addresses: the
implementation of our IP Address-Randomizer consists of
an SDN controller that manages communication among
network devices that pass IP-addressed traffic. As traffic
ingresses the network-layer device, its source-destination
pairs are validated and rules are installed to
encode/decode randomized IP addresses. The duration of
these rules can be made static, random, or be forced to
change from a trusted third-party. Since the IP Address-
randomizer is implemented at the network-layer, it is
transparent to the communicating endpoint processes, and
may be implemented without endpoint modification.

e Network Randomization for Network Paths: the Network-
Path Randomizer uses overlay networks to impede traffic
analysis, given that traffic analysis is a technique often
used by an adversary to identify endpoints. The underlying
network consists of several nodes that form a physical
mesh topology. Routing through the mesh is coordinated
among the nodes via an SDN controller. For each flow
through the network, the controller may assign asymmetric
forward/reverse paths, with the ability to modify them
given specified parameters (time, bitrate, etc). This
approach also improves network resiliency to
eavesdropping attacks and denial of service attacks by
providing multiple possible communications paths
between nodes.

The rest of this paper is organized as follows: Section 2
describes some of the past MTD research; Section 3 describes

the threat model and the restrictions we place on the adversary;
Section 4 describes our implementation of the MTD
approaches; Section 5 outlines our experiment setup and
results; and finally Section 6 concludes the paper, summarizing
our results, some of the limitations of our approach, and some
of our future areas of research.

II. RELATED WORK

A number of related approaches to mitigating attacks over a
network exist.

Anonymization of network traffic is an active area of research
with several implementations available in both the commercial
and open source communities. For example, onion routing [2]
depends on the use of an overlay network made up of “onion
routers.” The onion routers are responsible for
cryptographically removing one layer of an encrypted packet at
a time to determine the next hop routing information and
forwarding each packet to their final destinations. The
weaknesses are that side channel attacks exist including timing
attacks [3], packet counting attacks [4], and intersection attacks
[5] that can reveal the source and destination nodes of a
communication stream. Similarly, garlic routing [6] combines
and anonymizes multiple messages in a single packet but is
also susceptible to the same attacks.

Tor is one of the most popular implementations used for onion
routing with over 2.25 million users [7]. However, it has been
shown empirically with the aid of NetFlow data, that Tor
traffic can be de-anonymized with accuracy rates of 81.4% [8].
The results are achieved by correlating traffic between entry
and exit points within the Tor network to determine the
endpoints in communication.

While onion routing is useful for anonymization, it has been
shown that overlay networks can be used to mitigate
Distributed Denial of Service (DDoS) attacks [9]. The overlay
networks reroute traffic through a series of hops that change
over time to prevent traffic analysis, and thus prevent targeted
DDoS attacks. In order for users to connect to the secure
overlay network, they must first know and communicate with
the secure overlay access points within the network. The
knowledge of the overlay nodes prevents external adversaries
from attacking nodes on the network directly. This design can
be improved by relaxing the requirement of hiding the secure
overlay access points within the network architecture.

Artificial diversity is another active area of research that is
used to defend computer systems from attack. Introducing
artificial diversity into the Internet Protocol (IP) layer has been
demonstrated to work through Software Defined Networking
(SDN) [10]. Flows, (based on incoming port, outgoing port,
and incoming and outgoing Media Access Control (MAC)
addresses) are introduced into software-defined switches. The
rules for a packet that match a given flows parameters are
rewritten with random source and destination IP addresses
while the packet is in flight within the network. The drawback
is that through traffic analysis, endpoints of the communication
stream can still be learned. A passive adversary can observe
traffic and correlate which flows map to which endpoints.

Steganography can also be used to hide and covertly
communicate information between multiple parties within a

network. The methods described in current literature [11]
include the use of IPv4 header fields and reordering IPsec
packets to transmit information covertly. The described
approach would have to be refined to increase the amount of
information (log, n! bits that can be communicated through n
packets) that can be covertly communicated if a significant
amount of information is desired to be exchanged.

Transparently anonymizing IP-based network traffic is a
promising solution that leverages Virtual Private Networks
(VPNs) and Tor [12]. Tor hides the users true IP address with
the use of a Virtual Anonymous Network (VAN) while the
VPN provides the anonymous IP addresses. The challenge for
this solution is that every host must possess client software and
a VPN cryptographic key installed, which hinders the
scalability of this approach. To reduce the burden on larger
scale networks, it may be more effective to integrate this
approach into the network-level using an SDN-based approach.

Some combination of the benefits provided by these
approaches is necessary to provide full network anonymity,
which we believe could significantly improve security for time
critical systems. Critical infrastructure systems fit this need and
currently have no single solution existing to counter the
reconnaissance phase of an attack. Some of the areas of prior
work that need to be addressed in order to make their
application feasible include reducing the overhead costs of
multiple layers of encryption, the ability to easily scale up to a
large number of nodes, and relaxing the requirement to hide
nodes participating in the anonymous service. Additionally,
critical infrastructure systems are composed of both legacy and
modern devices that may not be capable of implementing IP
address randomization, port randomization, or overlay
networks at the end systems directly. For this reason, a
transparent solution to the end systems is needed that can
merge the above capabilities in a critical infrastructure
environment. The approach that we present in this paper
explores the use of software-defined networking as a solution.

III. THREAT MODEL

The network randomization (NR) portion of our approach
assumes that an adversary has successfully gained access to a
system and is able to observe traffic within the network. The
goal of the adversary may be D/DoS, reconnaissance, targeting
a specific service, or targeting a specific host on the network.
Our goal is to prevent that adversary from learning the true IP
addresses and port numbers of the services being offered on a
network to mitigate the scope of damage of targeted
reconnaissance attacks

IV. IMPLEMENTATION

We implemented a proof-of-concept for randomizing IP
addresses, port numbers, and network routes. Each of these
techniques is described in detail below.

A. NR with Port Randomization

Randomizing network port numbers increases the difficulty
required for an adversary to learn the services running on a

system. Well-known services are typically run on port numbers
less than 1024 and are defined in the /etc/services file on
UNIX-like systems. One of the first steps an adversary
typically takes during the reconnaissance phase of an attack is
to probe a system or sniff traffic on the network to learn which
services are running. This knowledge is used to gather
vulnerabilities related to those services and subsequently plan
attack vectors based on those services. Port randomization
forces the adversary to both track and reverse engineer the
communication protocols to learn information that is typically
easy to determine without network port randomization.

Port randomization has been implemented on each host within
a network with the aid of the netfilter kernel module. In our
implementation, the iptables firewall utility is used to facilitate
the random port mappings. iptables provides an interface for a
system to filter traffic entering, passing through, and leaving a
system based on policy rules defined by a user. The port
randomization implementation leverages the Network Address
Translation (NAT) iptable filter chain. Rules applied to the
NAT chain allow a user to filter just before a packet has been
routed on the incoming interface and just before a packet
leaves the outgoing interface. The NAT filter rules allow a user
to redirect or overwrite port numbers and IP addresses in each
packet if it matches user-specified IP header parameters.

LOCAL
PROCESS
([MANGLE)
__ouTRPUT)

IL

INPUT OUTPUT

ouTPUT |

NPUT)

N
)

Figure 1: iptables filter engine control flow.

4

FORWARD POSTROUTING || POSTROUTING |

I

Figure 1 shows how packets traverse the filtering engine [13]
provided by iptables. With the NAT chain, first the packet will
pass through the PREROUTING chain. The PREROUTING
chain allows a user to overwrite both the IP addresses and port
numbers before routing takes place. If the potentially modified
packet is to be forwarded to a remote system on the network,
then it will be passed through the POSTROUTING chain
where packets can be redirected to another IP address or port
number if desired. If the packet is destined for a local host
process, then the potentially modified packet is sent to that
process. If the local process wishes to send a packet outbound,
then that packet will pass through the NAT OUTPUT rules
where modifications of IP addresses and port numbers can be
made, as was the case with forwarding.

The algorithm used to randomize port numbers in our
implementation is as follows, in pseudo-code:

// well known ports

SportMaps = [1, 2, ..., 1023]
random. seed (time ())

// random permutation of well known ports

random. shuffle ($portMaps)

for $i = 0 to len(
// map a random

$inboundRule = iptables -t nat

-A PREROUTING -p tcp

--dport $portMaps[$i] -j DNAT
-to-desti i 127.0.0.1: ($i+1)

ing

—-A OUTPUT

-p tcp --dport ($i+1l) -j DNAT

--to-destination

127.0.0.1:$portMaps[i]
// Apply the rules to the
syscall ($inboundRule)
syscall ($outboundRule)

system

In the algorithm, first, all nodes synchronize clocks and seed
the random number generator with time. We note that time was
used for simplicity in our test implementation, but in practice a
non-predictable seed should be used. Next, the port mappings
are randomized and iterated to create random mappings. The
random mappings are then appended to an incoming
PREROUTING iptables NAT rule as well as to an outgoing
OUTPUT rule. Both rules to create and invert the mappings are
necessary for both sides of the communication channel to be
aware of the translation. A cron job is then scheduled to run
every minute on each machine participating in the port
mapping. Our implementation is required to run on each
endpoint participating in the port randomization. However, a
similar implementation can be deployed at the network layer
within an SDN setting so that our approach can scale to a larger
number of nodes and be transparent to the end nodes.

B. NR with IP Address Randomization

The goals of randomizing the network IP addresses are to
deceive an adversary and mitigate “hitlist” type attacks [14]
without placing additional burden on the end users of a
network. To achieve these goals, it is desirable to randomize
the IP addresses at the switch level so that the randomization is
transparent to the end user themselves. This architecture
eliminates the need for every client to load and run the IP
address randomization protocol. Only the network switches
participating in this protocol are required to maintain and
perform the IP address mappings which allows the IP address
randomization to scale on a per-switch basis rather than a per-
user basis. This architecture also reduces the attack surface
from every client on the network to only the switches running
on the network.

The IP address randomization application is a multi-component
module written for an OpenFlow-based software-defined-
networking (SDN) controller. At the heart of the IP address
randomizer are three components: the network randomization
algorithm and OpenFlow interface (nwr), the random IP
address generator (gen) and the network mapping database
module (netmap). Ancillary modules/code provide for a
RESTful API via which an external application may trigger a
force-randomization action for the network.

The nwr component is the main body of the IP address
randomizer application. Upon initialization, the nwr module
reads a network specification file and populates a backend
database. Thereafter, it creates random IP address generator
objects for each network under randomization.

The nwr module listens for OpenFlow (OF) events regarding
the connection of OF compatible switches. It then creates a

Switch object for each of the connected switches, and keeps
track of those Switch objects in using the unique datapath-id
(dpid) of the OF switch. Using a deny-by-default approach, the
Switch object will only switch packets when said packets
match installed flow rules on the switch. If there is not a flow
rule that the packet may match against, the packet header is
sent to the controller to determine how to treat the packet.

The nwr module hosts an address-resolution protocol (ARP)
server. So, if the packet is an ARP packet, the controller
checks the backend database to see if the requestor and the
requested IPs are part of the network. If they are, it responds
with the appropriate MAC address. After this condition is met,
the primary packet processing algorithm is traversed.

The algorithm only permits communication (and random IP
address assignment) between entities that are part of the
network as specified, and are directly connected to an
OpenFlow-compatible switch. Special considerations have
been given to devices that may not be able to meet the latter
requirement — particularly router gateways and/or DHCP
servers. Gateways are included in the network map, and are
also specified in the nwr code. When an ARP is received from
a gateway address for a random IP address, the gateway IP
address and MAC addresses are checked against the backend
database. If validated, the database is accessed for the MAC
address of the random IP address and subsequently returned to
the gateway. A similar process is employed for DHCP servers.

When the two endpoints in a communication request are
validated, random IP addresses are assigned to each. Flow-
rules are then constructed and sent to the endpoint’s first hop
OpenFlow switch. These flow rules contain matches for the
respective endpoints to translate real IP addresses into the
assigned random IPs (and vice versa). For this, there are two
implementations: (1) reactive IP address randomization, and;
(2) proactive IP address randomization. The former only
installs flow-rules when communication is initiated by an
endpoint. The latter enumerates links for all pre-defined
connection requirements, and actively installs flow-rules to
first-hop switches.

A roll interval prescribes the timeout period for each of the
randomization flow-rules. Each flow rule’s idle timeout is set
for infinity. Thus, this period is used for the hard timeout of a
flow-rule. The roll intervals may be set for static periods of
time, or for random periods of time between a set of upper and
lower bounds.

The gen component contains the logic for random IP address
generation. It contains a queue data structure whose depth is
initialized with the size of network (total assignable IP
addresses under the defined network length). Its purpose is to
keep track of the used random IP addresses, so as to avoid
reassignment or collision. Additionally, an array is kept to
track the random IP address and the true MAC address of the
endpoint. This is primarily used for ARP responses to
gateways that may not be part of the subnetworks under
randomization.

The netmap component provides the necessary interface
backend database that stores the true network map(s). All
entries are derived from a network specification file. The
netmap component itself consists of the several functions to aid

the primary nwr switch algorithm. The getsource function is
used by nwr to verify that a packet received from some IP is
allowed to be within the network(s) under randomization.
Using the source’s IP address, and packet information detailing
the data path identifier (dpid; the unique identifier of an
OpenFlow switch on a network) and port it was received on, a
check is done against the data in the database. If the IP
address, dpid and port are validated, the dpid’s “uplink” port is
returned to the nwr (for the crafting of the forwarding action in
the nwr flow-rule action). If the data is invalid, nothing is
returned and the packet(s) is dropped. The getpest function
does a similar test, but on the destination IP address for the
packet. If the destination IP address is not in the database,
nothing is returned (and the packet is dropped). If the
destination is valid, an array of information containing the
destination MAC address, dpid, port and dpid uplink port is
returned. The final function, getmac, is primarily used by
nwr’s ARP server, to retricve MAC addresses for validated
source/destination pairs. The function returns nothing for
unfound MAC addresses.

C. NR with Route Randomization

IP address randomization is still susceptible to traffic analysis.
A passive adversary can determine the endpoints in
communication by monitoring ingress and egress points in a
network regardless if IP address randomization is deployed.
Therefore, it becomes necessary to randomize the paths that
packets traverse through the network to prevent such
correlations. To randomize paths, the network topology
describing endpoints and interconnections is needed to
compute all possible network paths between each pair of nodes
that does not contain loops. The set of network nodes a packet
can traverse are defined as an overlay network as shown in
Figure 2. When two endpoints communicate, a random path is
selected as the circuit switched line of communication within
the overlay network for a configurable period of time. This
circuit is periodically randomized and is user configurable on
how frequently it is randomized. A Breadth First Search (BFS)
algorithm is used to generate all possible paths. A stack is
maintained to ensure that no paths are included that contain
loops to prevent. Since the paths packets take within the
network are constantly changing, an adversary must correlate
traffic at every switch participating in the overlay network
instead of just the entry and exit points of packets.

T

/_,_;(Y - A

, N\
~ Overlay A
7~ Network N A
— i,

Ovwverlay Network Internals

O © ¢

SDN
\ E Controller

J
/
A

Figure 2: Nodes A and B communicating through an overlay of switches
C, D, and E with flows installed from the SDN Controller.

Our implementation operates within an SDN setting where the
controller is responsible for learning the topology and installing
random flows for packets to traverse. Since a centralized
controller manages the installed flows, the path randomization
is transparent to the end devices. The initialization costs
associated with the path randomization implementation itself
are the storage and computational costs to calculate all possible
non-looping paths between each pair of nodes. Because the
paths are constantly changing, our implementation proactively
installs flows to avoid the same startup costs each time paths
are randomized. The performance overheads vary depending
on network topology, link speeds, and additional hops taken
within the randomly selected network path.

V. EXPERIMENT SET UP AND RESULTS

To assess the efficacy of our network randomization
approaches, we leveraged research done by Van Leeuwen, et al
[15] regarding the development of defensive work factors for
MTDs. The experimental setup consisted of a highly-
instrumented testbed using virtual machines running the three
different randomization techniques. For the port and IP
hopping techniques, each endpoint in the virtual system ran
network performance monitoring software to capture
performance data for TCP and UDP; the former was comprised
of bandwidth counts, while the latter consisted of bandwidth,
jitter and packet loss counts. Included in the parameters for
testing were the rotation intervals for the reactive IP address
randomizer. To test route randomization, we used the IPerf
[16] tool to measure Round Trip Times (RTT), bandwidth, and
data transfer times.

Table 1 displays the TCP bandwidth tests for the Port-hopper
and IP address randomization techniques. Tests were run for
240 seconds and 480 seconds, to observe the smoothing effect
for longer periods of time. For proactive IP address
randomization, the randomization time were fixed at 30
seconds. For the Port-hopper, hopping was set at 1 second
intervals. The reactive IP address randomizer had
randomization intervals set at 10, 30, 60 and randomly between
30 and 60 seconds.

Table 1: TCP Bandwidth Tests for IP Address and Port Randomization

Test Duration (s) Technique BW Percentage
240 Port hopper 0.977628
480 Port hopper 0.981913
240 IP-proactive 0.998191
480 IP-proactive 0.998593
240 IP-reactive 10s 0.711685

IP-reactive 30s 0.908663

IP-reactive 60s 0.952302

IP-reactive random 0.955762

480 IP-reactive 10s 0.724593
IP-reactive 30s 0.910393

IP-reactive 60s 0.967297

IP-reactive random 0.953270

RTT, data transfers and bandwidth measurements were
collected with path randomization disabled and enabled as
shown in Table 2. The experiment was performed using five
overlay switches between a pair of nodes communicating
within a virtual machine network. With path randomization
enabled, longer routes than the direct path were randomly

selected which negatively affected the RTT, data transfers and
bandwidth measurements.

Table 2: No Randomization vs. Path Randomization

10s Data . 1MB
RTT (ms) Transfers B?a(:":gg)t h Transfer

(GB) (ms)
Baseline _ 50.90798 22.25135 19.21674 69.11273
R"{,‘;‘:ﬁm 62.64078 21.59769 2059946 101.96778

To test UDP, tests were again run for 240 and 480 seconds;
bandwidth streams were set for 1Mb, 10Mb, 50Mb and
100Mb. Here, we captured the resultant jitter and packet loss
metrics, as show in the figures below. The bandwidth tests for
UDP were less interesting, all three techniques performed at
99% or better, with the exception of reactive IP address
randomization for 10 second rotation intervals — at 100Mbit
streams, they were only able to satisfy 98% of the stream data
rate.

Port Hopper UDP/Bit Loss

os00 — 03000
05000
07000
05000 | g 02000
1 —- H —
g0 |———FF £ s =
Foaoo R z
03000 £ 000 |

Port Hopper UDP/Jitter

0.2500

0.2000
0.1000
0.0000 4

ot000 &—20 40 e s 100 120
Data Rate in Mbits

¢ === base-480s 0.0500

4 0000 . . .
0 a0 k0 A0 100 120
Data Rate In Mbits

Figure 3: Port Hopper

Of the three techniques, the port hopper most closely
represented the baseline traffic tests. At 100 Mbits, the
smoothed averages of bit loss were approximately 0.10 units
different. The jitter profiles between the tests remained largely
the same.

IP-Proactive UDP/Bit Loss

18000 —— — 03000
1.6000
1.4000
12000
10000
0.8000
06000
04000
0000
0.0000
02000

IP-Proactive UDP/lJitter

02500

50.2000 -
. m e 2405

T0.1500

BitLoss

———-4305 f == 4805
base-240s 0.1000 m— base-240s

=== -basc-4805 0.0500

0.0000

0 0 20 40 60 8 100 120
Data Rate in Mbits

== base-480s

Data Rate in Mbits

Figure 4: IP Address Proactive

The proactive IP address randomization technique displayed
the same jitter profile as the baseline tests, finding a ‘sweet
spot’ the 10 Mbit date rate. The bit loss was higher than the
port hopper, exceeding the baseline by approximately 0.8 units.

IP-Reactive UDP/Bit Loss IP-Reactive UDP/litter

—— 1072405 03] ——10/2405

=== 10/1805 ——— 107805
———30/240s 30/240s

— - 30fz80s === 30/480s

—— 60/2405 ——60/2405

=== 60/480s

=== 60fE805

——Rand/240s

Rand/480s

—base- 2405

0 20 40 60 80 100 120 ——— baseds0s

Data Rate in Mbits

Figure 5: IP Address Reactive

Tests performed on the reactive IP address randomization
technique involved varing the rotation time of the IP addresses,
specifically for 10, 30, 60 and a random interval between 30-60
seconds. As expected, those experiments with smaller rotation
times experience greater bit loss, with as much as
approximately 1.2 units greater than baseline. Interestingly, we
expected the bit losses to be higher than the proactive IP
address randomization approach — due to the reactive IP
address randomization approach having to install flows on
demand, and the proactive IP address randomization installing
them beforehand — but for a 30 second rotation time the bit
losses are strikingly similar, at approximately 1.35 units. Like
the previous techniques, however, the impact to jitter was
minimal.

VI. CONCLUSIONS

Computer networks, in particular systems running in many
critical infrastructure facilities, continue to foster predictable
communication paths and static configurations that provide a
vector for accessing the critical assets of a network. In our
research, we provide a means to mitigate certain classes of
attacks by automatically reconfiguring network settings and
randomizing application communications dynamically.

Our experimental results show that the port randomization
approach provides the least amount of performance impact,
while successfully maintaining connectivity of a
communication session. While port hopping works well to
thwart application-based attacks, it still does not address
protocols below TCP/UDP (e.g., ICMP). Addressing those
types of attacks, as well as others mentioned, may be done with
the IP Randomization techniques. The experimental results for
the IP address randomization showed that while the two
approaches successfully maintained connectivity between two
hosts communicating with one another, impacts to performance
were greater than the port hopper, most notably with the
reactive IP address randomization approach. The advantage to
the reactive IP address randomization approach is that
resources and flow-rules are only used when communication is
required; the reactive IP address randomization approach may
suit well for low-bandwidth applications such as SCADA.
However, for systems that require greater bandwidth coupled
with delay-intolerance, the proactive IP address randomization
approach should be considered. Path randomization should be
used with care since additional hops through the overlay
network may cause potentially unacceptable delays. In time
critical applications, limiting the number of additional random
hops in the overlay network should be considered.

A. Limitations

1. Our focus for IP address randomization has only been at the
switch level. The functionality of OpenFlow would allow this
technique to be applied to other network elements, for
example, routers, but this is beyond the scope of this paper.

2. The port randomization and IP address randomization
techniques can be run in tandem but are separate pieces of
code. A more elegant design would be to combine the two—
this is possible but outside the scope of our project.

3. IP address randomization must consider a large enough
bitmask. For reactive IP address randomization, four IP
addresses are used for each bidirectional communication
session, and two IP addresses are used for the proactive IP
address randomization implementation.

REFERENCES

[1] Rosslin John Robles, Min-kyu Choi, Eun-suk Cho, Seok-soo Kim, Gil-
cheol Park, Jang-Hee Lee, “Common threats and vulnerabilities of
critical infrastructure,” International Journal of Control and
Automation, 2008.

[2] David Goldschlag, Michael Reed, Paul Syver- son, “Onion routing for
anonymous and private internet connections,” Communications of the
ACM, vol. 42, no. 2, pp. 39-41, 1999.

[3] Wang Shmatikov, Ming-Hsiu Vitaly, “Timing analysis in low-latency
mix networks: Attacks and defenses,” Proceedings of the 11th Euro-
pean conference on Research in Computer Security, pp. 18-33, 2012.

[4] Jean-Franc ois Raymond, “Traffic analysis: Protocols, attacks, design
issues and open problems,” Springer-Verlag Lecture Notes in Computer
Science, pp. 10-29, 2009.

[5] Roger Dingledine, Nick Mathewson, Paul Syverson, “Tor: The second-
generation onion router,” 2004.

[6] Gildas Nya Tchabe and Yinhua Xu,”Anonymous Communications: A
survey on I2P”,CDC Publication Theoretische Informatik-Kryptographie
und Computeralgebra (https://www.cdc.informatik.tu-darmstadt.de),
2014

[7] http://metrics.torproject.org/users.html, 2014.

[8] Sambuddho Chakravarty, Marco V Barbera, Georgios Portokalidis,
Michalis Polychronakis, Angeles D Keromytis, “On the effectiveness of
traffic analysis against anonymity networks using flow records,”
Springer-Verlag Lecture Notes in Computer Science, vol. 8362, pp.
247-257,2014.

[9] Angelos D Keromytis, Vishal Misra, Dan Rubenstein, “Sos: An
architecture for mitigat- ing ddos attacks,” Journal of Selected Areas in
Communications, vol. 21, 2003.

[10] J. H. J. Ehab Al-Shaer, Qi Duan, “Random host mutation for moving
target defense,” ACM, 2012.

[11] Kamran Ahsan, Deepa Kundur, “Practical data hiding in tcp/ip,”
Workshop Multimedia aand Security at ACM Multimedia, 2002.

[12] Lexi Pimenidis, Tobias K olsch, “Transparent anonymization of ip based
network traffic,” In Proceedings of 10th Nordic Workshop on Secure IT-
systems, 2005.

[13] R. Russell, “Linux 2.4 nat howto.”
http://www .netfilter.org/documentation/HOWTO/NAT- HOWTO.html,
2002.

[14] B. Rajesh, Y.R. Janardhan Reddy, B. Dillip Kumar Reddy, “A Survey
Paper on Malicous Computer Worms,”, International Journal of
Advanced Research in Computer Science and Technology, vol. 3, 2015.

[15] B.Van Leeuwen, “Operational Cost of Deploying Moving Target
Defenses: Defensive Work Factors,” Pending Publication, 2015

[16] IPerf: https://iperf.fr/

