
  
  

SPIE 2016 Defense & Security Symposium - 1 - Vol. 9829 

 

 Representing SAR complex image pixels 

A. W. Doerry*  
 

Sandia National Laboratories, P.O. Box 5800, MS 0519, Albuquerque, NM 87185 
 

ABSTRACT 
Synthetic Aperture Radar (SAR) images are often complex-valued to facilitate specific exploitation modes.  Furthermore, 
these pixel values are typically represented with either real/imaginary (also known as I/Q) values, or as Magnitude/Phase 
values, with constituent components comprised of integers with limited number of bits.  For clutter energy well below 
full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation.  Further improvement can be had 
with companding of the Magnitude value. 
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1 INTRODUCTION 

The digital processing of radar data for a number of airborne Intelligence, Surveillance, and Reconnaissance (ISR) radar 
modes entails images or maps typically of range versus range-rate, sometimes termed “Doppler.”  Individual range-
Doppler cells are rendered as elements in a 2-dimensional array, often displayed as pixels in an image format.  We will 
hereafter term these complex elements generically as “pixels” regardless of any display limitations.   

Digital processing allows these pixels to manifest phase information as well as magnitude information; corresponding to 
complex values.  That is, each pixel is a complex number.  Such pixel values require description with two independent 
components, such as real and imaginary components, also known as In-phase (I) and Quadrature-phase (Q) components, 
or perhaps Magnitude and Phase components.  This is true of Synthetic Aperture Radar (SAR), Inverse SAR (ISAR), and 
Moving Target Indicator (MTI) range-Doppler maps.  The ability to process phase as well as magnitude information is 
essential for some image exploitation algorithms, including Coherent Change Detection (CCD), Interferometric SAR 
(InSAR, or IFSAR), and multi-channel MTI processing. 

Furthermore, data size limitations typically cause standard image formats to describe the complex pixel values with pairs 
of integer values, rather than floating point values.  Consequently there are inherent dynamic range issues with the 
precision limitations that integer descriptions impose upon pixel values.  However, for a fixed number of bits per pixel, 
the precise format of the complex number will impact the dynamic range that is achievable.  Quite simply, some formats 
are ‘better’ than others, especially for the kinds of radar target data the radar is likely to encounter. 

In this report, we will confine our analysis to complex pixel encoding for a SAR image of uniform distributed land 
clutter.  In particular, we are interested in the relative performance of integer encoding of I/Q pixel values versus 
Magnitude/Phase pixel values.  In particular, we desire the clutter to be adequately represented to facilitate exploitation 
as described above.  We will further discuss alternate encoding schemes for the pixel magnitude to enhance the dynamic 
range that is achievable.  We will generally ignore any system noise effects, and assume that the only perturbation of 
pixel values is due to quantization itself.  Our measure will be the ratio of mean clutter energy to quantization noise 
energy in the pixel, which we will term as the Clutter-to-Noise Ratio (CNR). 

As background to the following discussion, we offer the following reference material. 
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The underlying nature of uniform distributed clutter is described by Oliver and Quegan.1 

Typical clutter reflectivity values are described by Long2 and also by Ulaby and Dobson.3 

The topic of radar complex image encoding is very related to radar complex image compression, which seeks to 
minimize, or at least reduce, the number of bits necessary to store or transmit the image data without 
unacceptable loss in precision and/or accuracy.  A paper by Eichel and Ives discusses SAR complex image 
compression.4 

The impact on various complex pixel encoding schemes on SAR CCD is discussed in a report by Thompson.5 

This paper abridges an earlier more comprehensive report.6 

2 CLUTTER MODEL 

We shall model uniform clutter in a pixel as a complex random variable, with In-phase (I) and Quadrature-phase (Q) 
components modelled as independent Gaussian random variables.  That is, the pixel value is given as 

( ),z m n X jY= +  = complex pixel value, (1) 

where 

m  = pixel row number, 
n  = pixel column number, 
X = pixel In-phase value (random variable), and 
Y = pixel Quadrature-phase value (random variable). (2) 

The Probability Density Distribution (PDF) functions for the individual independent random variables are Gaussian, and 
described by 
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where σ  = standard deviation of the random variable.  Since these components are independent of each other, the joint 
PDF can be written as 

( ) ( ) ( ), ,X Y X Yf x y f x f y= . (4) 

We note that the very same pixel can be written in Magnitude-Phase format as 

( ), jPz m n R e= , (5) 

where 

R = pixel magnitude value (random variable), and 
P = pixel phase value (random variable). (6) 

We note that these are related to the I/Q coordinates as 
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These are also random variables, but with PDF functions given as Rayleigh and Uniform respectively, described by 
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Similarly to the I/Q coordinates, since these components are independent of each other, their joint PDF can be written as 

( ) ( ) ( ), ,R P R Pf r p f r f p= . (10) 

We note that the clutter model exhibits circular symmetry in the complex plane.  Note that the average pixel clutter 
power is 

22C σ= . (11) 

3 QUANTIZATION ERROR ANALYSIS 

Let us now define a quantized version of the pixel value as having constituent components 

ix  = quantized pixel In-phase value, and 

iy  = quantized pixel Quadrature-phase value,  (12) 

where i  = index value into some finite set of allowable quantized values.  Corresponding magnitude and phase values 
are 
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. (13) 

A corresponding quantized complex pixel value is then 

( ), ijp
i i i iz m n x jy r e= + =  = quantized complex pixel value. (14) 

The quantized values for these components are limited to some set of allowable values.  Generally, the allowable values 
are not independent of each other.  We will assume the particular member of the set that is chosen will be that member 
that is nearest the actual un-quantized value being considered for conversion (quantization).  We define the quantization 
error as the distance between the true value and its quantized value, namely 

( ) ( ), ,i iz m n z m nε = −  = quantization error, (15) 
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where the quantized value is that which is nearest the true value.  The Mean-Squared-Error (MSE) due to quantization 
error is the statistical measure in which we are interested.  We calculate this for an individual member of the set of 
allowable quantization values as 

( )2meani iMSE e=  = MSE quantization error for ( ),iz m n , (16) 

where the mean is calculated over the space of pixel complex values before any quantization.  We perform this mean 
calculation as follows.  Consider an area in the complex plane around some allowed quantized pixel value with index i, 
where all points in this area are assigned to quantized values ( ),i ix y  or equivalent.  We define this area as 

iA  = area in complex plane quantized to value ( ),i ix y . (17) 

This is illustrated in Figure 1.  We define the overall mean squared quantization error then as 

( )2
, ,

i

i X Y
i A

MSE f x y dxdyε= ∑ ∫ ∫  = mean squared quantization error. (18) 

For the purposes of this report, we will assume that ( ), ,X Yf x y  is relatively constant over any particular area iA .  In fact 
we will assume a conditional Uniform distribution over iA  which allows us to approximate the probability of selecting a 
coordinate within area iA  as 

( ) ( ),Prob ,i X Y i i iA f x y A≈ . (19) 

This may also be written as 

( ) ( ),Prob ,i R P i i iA f r p A≈ . (20) 

Note that the sum of probabilities for all pixels is one, that is 

( )Prob 1i
i

A =∑ . (21) 

The mean squared quantization error is then 

( )Probi i
i

MSE MSE A≈ ∑ , (22) 

where the local MSE is the variance in the quantization error, that is iMSE  = the local MSE within and over the area iA .  
In any case, the Clutter-to-Noise Ratio (CNR) for quantization noise is given by 

22CCNR
MSE MSE

σ
= = . (23) 

We now consider two special cases. 
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Figure 1.  Generalized quantization process. 

 

3.1 Uniform I/Q Quantization 

Consider a rectangular area in the complex plane that is centered at ( ),i ix y , and is defined by 

x∆  = the span of the area in the I direction, and 
y∆  = the span of the area in the Q direction. (24) 

This is illustrated in Figure 2.  The area can then be calculated as 

iA x y= ∆ ∆ . (25) 

Since we will presume that ( ), ,X Yf x y  is constant over this area, then we have essentially a uniform distribution of the 
quantization error over the area iA .  The variance in the quantization error is then identified as 

2 2

12 12i
x yMSE ∆ ∆

= +  = variance in quantization error over the area iA , (26) 

The overall MSE for uniform I/Q quantization is then calculated as 
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Figure 2.  Uniform I/Q Quantization model. 
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Figure 3.  Uniform Magnitude/Phase Quantization model. 
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Now consider that the spans of the quantization area can be written in terms of full-scale values and number of bits as 
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where fss  = full-scale signal value, Ib  = number of bits to represent I value, and Qb  = number of bits to represent Q 
value.  The factor of “2” in the numerator of the equations accounts for allowing the signal to span the range ( ),fs fsss −  
in each of the I and Q dimensions.  We are also assuming that full-scale signals are substantially larger than the clutter 
level, that is fsss >> .  This is quite typical for SAR images.  Combining these allows us to write 
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The CNR is then calculated as 
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We observe that bits in I versus bits in Q have equivalent impact on MSE.  Consequently, there is no advantage in trading 
one for the other. 

3.2 Uniform Magnitude/Phase Quantization 

Now consider a segment of an annular ring in the complex plane that is centered at ( ),i ir p , and is defined by 

r∆  = the span of the area in the magnitude direction, and 
p∆  = the span of the area in the phase direction. (31) 

This is illustrated in Figure 3.  For small spans in both magnitude and phase, the area can then be calculated as 

i iA r r p≈ ∆ ∆ . (32) 

Since we will presume that ( ), ,R Pf r p  is constant over this area, then we have essentially a uniform distribution of the 
quantization error over the area iA .  The variance in the quantization error is then identified as 

2 22

12 12
i

i
r prMSE
∆∆

≈ +  = variance in quantization error, (33)   

The overall MSE for uniform Magnitude/Phase quantization is then calculated as 
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This can be expanded and then simplified to 
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Now consider that the spans of the quantization area can be written as 

2 R

fs
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∆ = , and 

2
2 Pbp p

∆ = , (36) 

where fss  = full-scale signal value, Rb  = number of bits to represent Magnitude value, and Pb  = number of bits to 
represent Phase value.  We are also still assuming that full-scale signals are substantially larger than the clutter level, that 
is fsss >> .  Recall that this is quite typical for SAR images.  Combining these allows us to write 

2 2
2

2 2 2
1 2 14

12 2 2R P

fs
RP b b

fs
MSE

s sπ
s

       ≈ +          
. (37) 

The CNR is then calculated as 
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We observe that bits in Magnitude have a different impact than bits in Phase.  For low clutter levels, the phase bits have 
severely diminished influence, and this can be approximated as 

2
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This also suggests that phase bits can be traded for magnitude bits to some degree.  For example, for a mean clutter level 
50 dB below full-scale, that is 2 2 52 10fsss  −= , equivalent impact allows about 6 fewer phase bits than magnitude bits.6 

3.3 Comments on Comparing the Two 

We can examine the relative MSE for the two complex pixel representations by looking at their ratio, namely 
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For the same number of bits in all components (i.e. I, Q, Magnitude, and Phase), this simplifies to 
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For average clutter levels well below the full-scale limit, this ratio approaches 
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This suggests that Magnitude/Phase format approaches a 9 dB advantage over I/Q format with respect to quantization 
noise for low clutter levels.  We observe that 6 dB of this is due to the finer spacing of magnitude increments being 
limited to the range 0, fss   , and 3 dB of this is due to the phase contribution to MSE disappearing at low clutter levels.  
This advantage manifests as an improved CNR, which in turn manifests as an improved coherence measure with truth, 
and ultimately as improved performance of those modes that depend on coherence, such as Interferometric SAR (InSAR 
or IFSAR), and Coherent Change Detection (CCD). 

4 MAGNITUDE COMPANDING 

We observe from the previous sections that CNR is improved with finer quantization in the region of the complex plane 
where signal levels are more likely, which for clutter means at smaller magnitudes.  This begs the question “Can we just 
use finer quantization near the origin of the complex plane where the clutter signal is more likely, and leave the coarser 
quantization away from the origin where the clutter signal is less likely?”  The answer is quite obviously “Yes.”  In 
telephony this is often called “companding,” as a blending of “compressing and expanding” the signal for transmission 
through a channel with limited dynamic range.  The essence of companding is to increase sensitivity to small signals by 
sacrificing sensitivity to large signals; reducing the ratio of peak to average power.  Schemes to accomplish this are 
discussed in any number of communications texts. 7,8,9   

The companding can be effected by putting the linear signal through a nonlinear gain stage prior to the channel 
(compression), and then at the other end applying the inverse of the nonlinear characteristic to the signal (expansion)  to 
recover the original linear signal.  If the channel is an Analog-to-Digital Converter (ADC) then the process is described 
as nonlinear encoding of the signal.  If applied to digital data, it might be called Digital Companding.  While we could 
apply companding to I/Q values, the circular symmetry of our clutter suggests that we are best served applying 
companding to only the magnitude of the clutter signal, and not the phase.  We will henceforth only consider companding 
applied to clutter signal magnitude.  Any of the following functions would serve as a compression function prior to 
quantization 

• Nth root of magnitude, 

• logarithm of magnitude, 

• floating-point representation of magnitude (i.e. magnitude with exponent), and 

• any monotonic increasing function with diminishing slope. 

A number of other specific companding functions also exist, which we will not specifically address here.   

Recovering the linear magnitude involves applying the inverse function of these compression functions.  This expands 
the signal to its original magnitude.  When expanded, we witness that any additive noise now has power that is signal-
magnitude dependent, or more so than without companding.  This is true for both quantization noise as well as additive 
system noise.  Consequently, our metric for companding performance will remain the CNR.  Table 1 details some 
examples of various companding functions as well as bit-resolutions for magnitude and phase data.  We make some 
observations as follows. 

• Companding increases CNR, more so for lower clutter levels. 

• For equal number of magnitude and phase bits and −50 dB clutter with respect to full-scale, companding with a 
cubic magnitude scaling (companding function) is worth about 4 bits each (8 bits total) with respect to a linear 
magnitude scaling. 

• Even with linear magnitude scaling and −50 dB clutter with respect to full-scale, trading 3 phase bits for 3 
magnitude bits yields about a 13 dB increase in CNR.   
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Table 1.  CNR estimates for various bit-resolutions and sample companding functions. 

 

Magnitude 
Bits

Phase
Bits

calculation 
vs.

numerical
Magnitude 

scaling

Clutter 
relative to 
Full-scale 

(dB)
CNR
(dB)

16 16 calculation linear -70 37.1214
16 16 numerical linear -70 37.1227
16 16 numerical square root -70 66.6096
16 16 numerical cube root -70 74.5925

16 16 calculation linear -50 57.1214
16 16 numerical linear -50 57.1216
16 16 numerical square root -50 76.4769
16 16 numerical cube root -50 80.9259

12 12 calculation linear -50 33.0390
12 12 numerical linear -50 33.0346
12 12 numerical square root -50 52.3910
12 12 numerical cube root -50 56.8407

8 8 calculation linear -50 8.9566
8 8 numerical linear -50 8.4298
8 8 numerical square root -50 28.3069
8 8 numerical cube root -50 32.7573

19 13 numerical linear -50 71.0051
15 9 numerical linear -50 46.9219
11 5 numerical linear -50 22.8403  

How much companding is desired? 

The somewhat broader question is “When and how much companding is desired or required?”  The answer to this 
requires as prerequisite two items of knowledge, namely “How much dynamic range do we have?” and “How much 
dynamic range do we need?”  Dynamic range is measured here in dB.  We define it here as the difference between full 
scale and the noise level, presumed to be the quantization noise for this discussion.   

Consider magnitude only for now.  We recall that with a linear scaling, each magnitude bit yields 6.02 bits of dynamic 
range.  Quantization noise manifests at approximately 11 dB below the Least Significant Bit (LSB), adding 11 dB to the 
dynamic range as limited by quantization noise.  Recall that we are ignoring other noise sources in this discussion.   
Consequently, for linear scaling we identify the dynamic range available as 

6.02 11linear RDR b≈ + . (43) 

For example, with 16 bits of magnitude, and neglecting phase, we identify a dynamic range of about 107 dB.  If we 
require more than this, then companding should be considered.   

But with companding, quantization noise is clutter signal-level dependent.  Therefore dynamic range as defined above is 
signal dependent when companding is used.  However, since our reason to improve dynamic range is generally to allow 
observation of weaker signals, we will assume for analysis that the signal level of interest is when the RMS clutter level is 
at the LSB.  For 16 bits of magnitude, this is at a clutter level about 96 dB below full-scale.  At this clutter signal-level, 
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we retain a CNR of about 11 dB, due to quantization alone and of course absent any other noise sources.  With clutter at 
this signal-level, based on numerical simulations, a square-root companding function will boost dynamic range to about 
53 dB, and a cube-root companding function will yield about 66 dB of dynamic range.  This illustrates the improvement 
that companding offers.  We do note that while companding magnitude gives us smaller magnitude steps for smaller 
signals, we do not get smaller phase steps.  However, the quantization error due to phase also depends on magnitude as 
Eq. (33) suggests.  Consequently, for small signals, magnitude still dominates quantization, even with companding. 

In addition, with other noise sources perturbing the pixel value, such as system noise, there is essentially no advantage in 
reducing MSE due to quantization very far below the system noise.  As a practical matter, real CNR will be dominated by 
the larger of quantization noise or system noise.  

5 CONCLUSIONS 

We summarize the preceding analysis by stating that for complex radar image pixels, a specific number of bits with 
Magnitude/Phase representation generally offers superior precision and accuracy over an I/Q representation.  For low-
clutter signals, the advantage is about 9 dB as measured with respect to quantization noise.  Furthermore, an equal 
number of Magnitude and Phase bits will have unequal impact on quantization noise.  Consequently, several Phase bits 
can generally be traded for Magnitude bits to achieved improved (lower) quantization noise.  Finally, companding the 
magnitude of a pixel can significantly reduce the statistical quantization noise for clutter. 
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