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ABSTRACT 
Antenna apertures are often parsed into subapertures for Direction of Arrival (DOA) measurements.  However, when the 
overall aperture is tapered for sidelobe control, the locations of phase centers for the individual subapertures are shifted 
due to the local taper of individual subapertures.  Furthermore, individual subaperture gains are also affected.  These 
non-uniform perturbations complicate DOA calculations. Techniques are presented to calculate subaperture phase center 
locations, and algorithms are given for equalizing subapertures’ gains.   
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1 INTRODUCTION 

The ability of a radar system to make Direction-of-Arrival (DOA) measurements, especially of moving targets, requires 
the ability to generate multiple antenna beams and compare responses from the collection.  Techniques for this are well 
established in the literature.  When more than two receive antenna beams are required along any one axis, the typical 
antenna architecture is to use distinct antenna subapertures with multiple separated phase centers in a general phase-
monopulse configuration.1 We also generally desire low sidelobe responses from the antenna, including its main 
reference beam, and to some extent even any other beams the antenna may generate in order to make its DOA 
calculations.  Low sidelobe response generally requires beam shaping via antenna aperture tapering. 

We will assume herein that we are dealing with a monostatic antenna configuration, wherein the same overall aperture is 
used for transmit and receive signals.  We assume that the transmit signal will use the entire aperture, but the receive 
signal is collected by subapertures, wherein the subapertures are parsed from the larger overall sum aperture.  That is, the 
sum of the individual receive subapertures equals the transmit aperture.  This architecture complicates the nature of the 
receive subapertures in that they inherently have different characteristics, perhaps in beamwidth, gain, or both.  
Nevertheless, of ultimate interest to the subsequent signal processing are the locations of the phase centers of the various 
subapertures, and the gains imparted to the subapertures’ received signals.  Knowledge of these is required for optimal 
DOA calculations. 

Herein we discuss locating the phase centers of uneven aperture illuminations, and of subapertures in overall tapered 
apertures.  We confine our discussion to one-dimensional analysis and examples.  We furthermore ignore many aspects 
of practical antenna design such as mutual coupling in array antennas, etc.  This paper presents an abridged analysis 
detailed in a previous report.2 

2 PHASE CENTER OF ARBITRARY APERTURE ILLUMINATION 

We begin by considering a linear aperture with illumination 

( )w z  = normalized (domain) aperture illumination function, (1) 
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where the illumination function is limited to a finite extent such that 

( ) ( ) ( )rect
x x

w z dz w z z dz
−∞ −∞

=∫ ∫ , (2) 

Where the bounding rect( ) function is defined as 

( )
1 1 2

rect 1 2 1 2
0

z
z z

else

 <
= =



. (3) 

We define the rect( ) function this way to make later mathematics in this report more precise.  We now define a point on 
the linear axis, specified as the x axis, about which we rotate the aperture as 

0x  = rotation point of the aperture. (4) 

We furthermore define 1x  as the physical center the aperture, and L as the actual length of the aperture.  This geometry 
is identified in Figure 1.  The far-field pattern can then be calculated as 

( )
( )1

0

1

2 sin2
1

2

x L j x x

x L

x xG w e dx
L

π θ
λθ

+ − −

−

− =  
 ∫ , (5) 

where θ  is the Direction of Arrival (DOA) incidence angle, and λ  is the wavelength of the sinusoidal signal.  Note that 
this is just the well-known axiom that the far-field antenna pattern is essentially a Fourier transform of the aperture 
illumination function.  In general, ( )G θ is complex-valued.  Our concern here is with a phase change in ( )G θ  as we 
vary θ .  We desire the value of 0x  for which there is no phase change in ( )G θ  as θ  is varied.  The value of 0x  that 
accomplishes this is the “phase center” of the aperture.  We now examine two example cases. 

 

x
x0x1

L

L/2
θ

 
Figure 1.  One-dimensional aperture geometry definitions.  The aperture illumination is essentially the 
current distribution within the finite aperture. 
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2.1 Uniform Aperture Illumination 

Consider the case where we have a uniformly illuminated aperture described by 

( ) ( )rectw z z= . (6) 

In this case, then the far-field pattern is given by 

( )
( )1

0

1

2 sin2

2

x L j x x

x L
G e dx

π θ
λθ

+ − −

−

= ∫ , (7) 

where θ  = Direction of Arrival (DOA) incidence angle, which can be solved and simplified to 

( )
( )1 0

2 sin

sinc sin
j x x LG e L
π θ
λθ θ

λ

− −  =  
 

, (8) 

where the sinc( ) function is given by 

( ) ( )sin
sinc

z
z

z
π

π
= . (9) 

We identify the phase term as the exponent of the exponential factor, which shows a dependence on angle θ  whenever 
0 1x x≠ .  Consequently, the far-field pattern phase is independent of rotation angle θ  when 0 1x x= .  Therefore, we 

identify the phase center for this aperture as 

1pcx x= . (10) 

The aperture illumination and the phase center location for this example are illustrated in Figure 2, where we have 
arbitrarily presumed 1 0x = .  We may furthermore stipulate that Fourier properties suggest that any even-symmetric and 
real ( )w z  will result in 1pcx x= . 
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Figure 2.  Uniform aperture illumination. 
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2.2 Linear-Gradient Aperture Illumination 

Now consider an aperture illumination of the form 

( ) ( ) ( )1 rectw z z zα= +  (11) 

where α  = constant such that 0 1α< < .  Note that this is not an even function, and definitely not uniform.  In this 
case, the far-field pattern is then given by 

( )
( )1

0

1

2 sin2
1

2
1

x L j x x

x L

x xG e dx
L

π θ
λθ α

+ − −

−

 −  = +  
  

∫ . (12) 

With no loss of generality, we will assume that 1 0x = .  We will then rewrite the far-field pattern as 

( ) 0

2 sin 2 sin2

2
1

Lj x j x

L
G e x e dx

L

π θ π θ
λ λαθ

−

−
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This can be solved to yield 
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. (14) 

Recall that we desire to identify a phase center that is a single constant value for 0x  that results in a phase that is 
independent of angle θ .  We may solve for the phase as 

( )( ) 0
1 2 sinPhase atan cot sin

2 sin

LG x
L

a π θθ π θ
λ λπ θ

λ

  
       = − +                

. (15) 

We can solve for a position 0x  that causes the phase to go to zero, and designate this as the phase center of the aperture.  
Doing so yields the phase center location as 

1atan cot sin
2 sin 2 sin

pc
Lx

L
λ a p θ

p θ λ p θ
λ

  
  −      = −                

. (16) 

We note that phase center pcx  is not a constant, and in fact actually depends on DOA angle θ .  No single value of pcx  
causes the phase to go to zero for all angles θ .  That is, the phase center moves as a function of DOA angle θ .  In the 
neighborhood of the center of the beam where 0θ ≈  we may nevertheless choose a constant pcx  that minimizes 
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dependence of ( )G θ on angle θ  by setting the derivative of Eq. (15) to zero and solving for the 0x  that causes a nearly 
constant phase in the neighborhood of 0θ = .  We identify the derivative of the phase in the direction of 0θ =  as 

( )( ) ( )0
0

lim Phase 12
6

d G L x
dθ

πθ a
θ l→

  = − − 
 

. (17) 

Consequently, we designate the phase center as the value of 0x  that causes this to go to zero, namely 

12pc
Lx α

= . (18) 

Essentially, the phase slope of ( )G θ  as a function of θ  is zero with this value for 0x  at the angle 0θ = .  We observe 
that the non-uniform aperture illumination in Figure 3  has the phase center indicated, as calculated above.  Note that it is 
off-center with respect to the aperture center at 1 0x = .   Furthermore, it is shifted in the direction of heavier weighting of 
the aperture, as we might expect.  The far-field antenna pattern is illustrated in Figure 4, and the received signal phase as 
a function of rotation position and incidence DOA angle is shown in Figure 5.  Note that rotating about the nominal 
phase center exhibits a fairly constant phase value within the mainlobe of the far-field pattern. 

2.3 Comments 

We offer the following additional comments. 

• More complicated aperture illumination functions might cause us to use numerical techniques to estimate the 
phase center location. 

• More complicated aperture illumination functions will generally have phase centers that are DOA angle 
dependent.  However, some locations are more well-behaved than others, in minimizing phase variations over 
DOA angles of interest. 

• Phase centers will be pulled in the direction of more weighting in the aperture. 
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Figure 3.  Example non-uniform aperture illumination. 
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Figure 4.  Far-field antenna pattern for illumination of Figure 3. 
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Figure 5.  Received signal phase versus incidence DOA angle for various rotation positions 0x .  The 
optimum 0x , that which is most flat at a zero DOA angle, indicates the phase center. 
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3 SUBAPERTURES IN A TAPERED SUM PATTERN 

We now build upon the previous section and examine a larger aperture composed of contiguous but non-overlapping 
subapertures, wherein the larger aperture has a specified taper function for sidelobe control of the overall combined, or 
sum, antenna beam.  We now modify and add the following definitions. 

apL  = physical length of the overall aperture, 

( )apw x  = illumination (taper) function of the overall aperture, 

i  = index of phase centers, ( ){ }0,1,2,..., 1i I∈ −  , 

I  = number of subapertures, 
1,ix  = physical center of the ith subaperture, 

,pc ix  = phase center of the ith subaperture, 

iL  = physical length of the ith subaperture. (19) 

We will assume that ( )apw x  is real and even, and nonzero over the interval [ ]0.5,0.5− .  Without loss of generality, we 
will also assume that the overall aperture is physically centered at zero.  The contiguous but non-overlapped nature of the 
subapertures is then such that 

1
1,

0
rect rect

I
i

ap ii

x xx
L L

−

=

  − 
=       
∑ . (20) 

This basically means that they don’t overlap, and there are no gaps.  The far-field pattern for the overall aperture, also 
referred to as the “sum” beam, is calculated as 

( )
2 sinj x

ap ap
ap

xG w e dx
L

p θ
λθ

∞ −

−∞

 
=   

 
∫ , (21) 

whereas the far-field patterns of the individual subapertures are calculated as 

( )
2 sin

1,rect
j xi

i ap
i ap

x x xG w e dx
L L

p θ
λθ

∞ −

−∞

  − 
 =          

∫ . (22) 

Note that the quantity in the square brackets represents the taper function of the individual subapertures.  These 
individual subaperture tapers are real but not by themselves even.  Interestingly, a consequence of this is that the sum of 
the individual subaperture beams equals the overall sum pattern beam shape.  Recall that we have not yet specified the 
lengths of the individual subapertures; merely that they add up to the overall aperture length.   

Furthermore, we will assume that subapertures with indices i  and 1I i− −  are mirror images of each other, and 
consequently will each have the same shapes of their beam patterns; same in magnitude but not necessarily in phase.  
This follows from the Fourier property that the transform of a real function will have symmetry in the magnitude of its 
spectrum.  This is why in some of the following plots some subapertures’ patterns are not visible; they are basically 
covered up by other subapertures’ responses. 

Now we examine some specific cases. 
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3.1 Uniform Width Subapertures 

We illustrate with an example that divides the aperture into 5 equal-length subapertures.  We shall assume an overall 
aperture weighting defined by a Taylor window with −30 dB sidelobes and 5n = .  Furthermore, we shall assume apL  = 
1 m, and λ  = 0.02 m.  Subaperture phase centers are calculated using numerical integration. 

Relevant measures are given in Table 1.  Figure 6 plots the subapertures and their phase centers.  Figure 7 plots the one-
way patterns.  Figure 8 illustrates the two-way pattern, with the transmitted signal using the sum pattern.  We observe that 
for this example there is nearly a 9 dB gain difference between center and outer subapertures. 

 

Table 1.  Subaperture characteristics for 5 subapertures using -30 dB Taylor window, 5n = . 

Subaperture Physical Center (m) Phase Center (m) Width  
(m) 

Gain  
(dBc) 

0 −0.4 −0.3856 0.2 −19.1214 

1 −0.2 −0.1913 0.2 −12.5004 

2 0 0 0.2 −10.3295 

3 0.2 0.1913 0.2 −12.5004 

4 0.4 0.3856 0.2 −19.1214 
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Figure 6.  Subaperture definitions and parameters.  Overall aperture weighting is −30 dB Taylor window 
with 5n = . 
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Figure 7.  One-way beam patterns for overall aperture and subapertures. 
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Figure 8.  Two-way beam patterns for overall aperture and subapertures. 
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3.2 Uniform Gain Subapertures 

We illustrate with an example that divides the aperture into 5 equal-gain subapertures.  To accomplish this, we will give 
up the constraint of equal widths.  We illustrate a specific example. We shall assume an overall aperture weighting 
defined by a Taylor window with −30 dB sidelobes and 5n = .  Furthermore, we shall assume apL  = 1 m, and λ  = 0.02 
m.  Subaperture phase centers are calculated using numerical integration. 

Relevant measures are given in Table 2.  Figure 9 plots the subapertures and their phase centers.  Figure 10 plots the one-
way patterns.  Figure 11 illustrates the two-way pattern, with the transmitted signal using the sum pattern. 

 

Table 2.  Subaperture characteristics for 5 subapertures using -30 dB Taylor window, 5n = . 

Subaperture Physical Center (m) Phase Center (m) Width  
(m) 

Gain  
(dBc) 

0 −0.3558 −0.3265 0.2885 −13.9794 

1 −0.1382 −0.1351 0.1466 −13.9794 

2 0 0 0.1298 −13.9794 

3 0.1382 0.1351 0.1466 −13.9794 

4 0.3558 0.3265 0.2885 −13.9794 
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Figure 9.  Subaperture definitions and parameters.  Overall aperture weighting is −30 dB Taylor window 
with 5n = . 
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Figure 10.  One-way beam patterns for overall aperture and subapertures. 
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Figure 11.  Two-way beam patterns for overall aperture and subapertures. 
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3.3 Comments 

We offer the following comments. 

• The width of the mainlobe responses from the individual subaperture beams will always be wider than the width 
of the mainlobe response of the sum beam. 

• For a tapered sum beam with segmented subapertures, uniform-width subapertures will have different maximum 
gains, whereas uniform-maximum-gain subapertures will have different physical widths. 

• Tapering the sum beam will draw the phase centers of the individual subapertures inwards, towards the center of 
the overall aperture. 

• Uniform-maximum-gain subapertures will have the phase centers of their individual subapertures moved 
inwards somewhat from those of uniform-width subapertures, towards the center of the overall aperture. 

• Although the previous analysis dealt with non-overlapping subapertures, we can just as easily analyze feathered 
or blended subapertures.  We refer the reader to the earlier report for details and examples.2 

4 BRIEF COMMENTS ON PERFORMANCE  

Recapping, subapertures in antenna arrays are used to estimate DOA.   The subaperture weighting functions affect both 
the subarray gain and the relative position of phase centers.  In DOA estimation, the performance is a function of the 
Signal-to-Noise Ratio (SNR) and the (projected) separation distance between phase centers, B .  In fact the angle 
estimation noise depends on these as 

1
B snrθs ∝   (23) 

The SNR, is in turn a function of the product of the transmit and receive antenna gains (plus any additional processing 
gain between subarrays for the DOA estimation).  As we have just seen in the previous analysis, the subaperture 
weightings affect both the gains and the phase center separations.  Therefore, the radar designer needs to account for 
these in performing the trade-off between different subaperture weightings. 

5 CONCLUSIONS 

We summarize herein that uneven subaperture tapering will shift the phase center away from the center of the 
subaperture, and generally in the direction with greater weighting. Subaperture phase center spacing is not guaranteed to 
be constant (i.e. uniform), even with equal-width subapertures. Furthermore, subaperture gain will not necessarily be 
identical for all subapertures, although subapertures can be defined to specifically make them so, albeit with other 
consequences. 
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