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§  Albany	
  supports	
  a	
  wide	
  variety	
  of	
  applicaAon	
  physics	
  areas	
  
including	
  heat	
  transfer,	
  fluid	
  dynamics,	
  structural	
  mechanics,	
  
plasAcity,	
  quantum	
  device	
  modeling,	
  climate	
  modeling,	
  and	
  
many	
  others	
  

§  Leverages	
  Trilinos	
  framework	
  for	
  linear	
  and	
  nonlinear	
  solvers,	
  
precondiAoning,	
  load	
  balancing,	
  hardware	
  portability	
  layers,	
  
finite	
  element	
  data	
  structures	
  and	
  mulAphysics	
  code	
  support	
  
infrastructure	
  

§  Advanced	
  analysis	
  capabiliAes	
  (embedded	
  SA	
  and	
  UQ),	
  
supported	
  by	
  parallel	
  scalable	
  RPI	
  adapAve	
  meshing	
  
technologies,	
  support	
  for	
  topology	
  opAmizaAon	
  

Overview	
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Albany	
  ecosystem	
  

Application 
 
 

 

 

 

 

 

Embedded UQ 

Nonlinear Solvers and Inversion 

Application Impact: Ice Sheets 

Scalable Linear Algebra Performance Portability 

Mesh Adaptivity 

Application Impact: Computational Mechanics Additional Application Impact 
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Concurrent Evaluations in Inner Loop
Ensemble as Outer Loop

•  Surface flow velocities for 
Greenland and Antarctic Ice 
Sheets 

•  Demonstrates nonlinear 
solves, linear solves, UQ, 
adaptivity, and performance 
portability 

•  Employs automatic 
differentiation, discretizations, 
partitioning, mesh database 

•  Homotopy and Anderson 
Acceleration in Trilinos::NOX 

•  The robustness of nonlinear 
solvers are critical when an 
application is to be called as a 
sub-component within a larger 
application code. 

•  Uses Automatic Differentiation, 
Preconditioning,  
Optimization algorithms from 
Trilinos 

•  New Ensemble 
data type in 
Sacado 
package 

•  Vectorization 
of kernels over 
ensembles 

•  Contiguous 
memory 
access in 
arrays 

•  Scalability of 
simulations 
requires 
effective 
preconditioning 

•  Multi-level 
solves are 
essential for 
the largest 
problems 

•  The Kokkos 
programming mode 
supports 
performance 
portability of 
kernels. 

•  Kokkos’ abstraction 
layer allows code to 
be tailored for 
specific devices 

•  Mesh adaptation can 
be essential for 
efficiency and 
robustness 

•  Cube geometry 
subjected to large 
deformation (elasticity 
and J2 plasticity results 
shown) 

•  Largest implicit problem solved in 
Albany to date: 1.7B degrees of 
freedom 

•  Initial capabilities for Schwarz 
multiscale coupling 



§  Use	
  of	
  embedded	
  meshing	
  to	
  address	
  problem	
  input	
  
challenges	
  on	
  advanced	
  hierarchical	
  plaXorms	
  

§  Implement	
  performance	
  portable	
  kernels	
  
§  The	
  target	
  hardware	
  architecture	
  and	
  programming	
  environment	
  is	
  

not	
  yet	
  clear	
  

§  Focus	
  on	
  performance	
  portability;	
  use	
  the	
  Kokkos	
  hardware	
  
abstracAon	
  library	
  to	
  allow	
  hosAng	
  of	
  parallel	
  on-­‐rank	
  algorithms	
  on	
  
mulAple	
  parallel	
  devices	
  (mulAcore	
  CPUs,	
  Intel	
  Phi,	
  Nvidia	
  GPU)	
  via	
  
recompile	
  

§  Embedded	
  Analysis,	
  including	
  UQ	
  

Extreme	
  scale	
  strategy	
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§  Read	
  the	
  problem	
  statement	
  that	
  describes	
  the	
  problem	
  and	
  
domain,	
  distribute	
  to	
  the	
  coarse	
  tasks	
  (ranks)	
  

§  Each	
  rank	
  generates	
  the	
  mesh	
  within	
  its	
  parAAon,	
  such	
  that	
  
the	
  overall	
  mesh	
  is	
  conformal	
  across	
  the	
  parallel	
  machine	
  

§  Rebalancing	
  of	
  the	
  final	
  parAAons	
  is	
  performed	
  as	
  needed	
  

Embedded	
  meshing	
  workflow	
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§  The	
  domain	
  geometry	
  is	
  tagged	
  with	
  iniAal	
  
and	
  boundary	
  condiAon	
  data	
  and	
  
parAAoned	
  in	
  advance	
  by	
  the	
  user,	
  into	
  
parts	
  

§  Each	
  part	
  is	
  meshed	
  as	
  an	
  independent	
  
parallel	
  task	
  

§  IniAally,	
  a	
  high	
  order	
  coarse	
  mesh	
  is	
  used	
  
that	
  represents	
  both	
  the	
  part	
  volumes	
  and	
  
the	
  geometry	
  of	
  the	
  surfaces	
  in	
  the	
  domain	
  
§  AdapAve	
  refinement	
  is	
  used	
  to	
  achieve	
  the	
  target	
  

element	
  size,	
  using	
  linear	
  elements	
  as	
  the	
  default	
  
case	
  

	
  

ParAAoned	
  problem	
  statement	
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§  Higher	
  order	
  coarse	
  elements	
  capture	
  surface	
  geometry	
  

§  Element	
  sizes	
  chosen	
  to	
  represent	
  feature	
  length	
  scales	
  in	
  
underlying	
  model	
  

§  Mesh	
  generated	
  on	
  coarse	
  elements	
  to	
  meet	
  simulaAon	
  
requirements	
  

Embedded	
  meshing	
  demonstraAon	
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§  Coupled	
  thermomechanics,	
  J2	
  plasAcity,	
  temperature	
  
dependent	
  material	
  hardening	
  at	
  the	
  weld	
  

Full	
  scale	
  example	
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§  Setup,	
  soluAon,	
  and	
  solver	
  scalability	
  as	
  a	
  funcAon	
  of	
  
parAAoning	
  granularity	
  on	
  BGQ	
  

Mechanics	
  scalability	
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Mesh	
  adaptaAon	
  

10	
  

Goals:	
  Maintain	
  element	
  quality	
  in	
  large	
  
deformaAon,	
  high	
  strain	
  rate	
  scenarios	
  
§  Method:	
  Employ	
  evolving	
  mesh	
  topology	
  

to	
  delay	
  the	
  transiAon	
  to	
  ALE	
  or	
  full-­‐
Eulerian	
  regime	
  

§  Challenges:	
  Ensuring	
  conservaAon	
  as	
  the	
  
mesh	
  adapts,	
  maintaining	
  element	
  
quality,	
  robustness	
  of	
  the	
  approach	
  during	
  
complex	
  deformaAon/mixing	
  states	
  

§  Method:	
  
§  Stress	
  model	
  is	
  a	
  funcAon	
  of	
  the	
  

deformaAon	
  gradient	
  tensor	
  F.	
  

§  F	
  is	
  stored	
  at	
  integraAon	
  points.	
  
§  In	
  a	
  step,	
  F	
  is	
  (a)	
  updated	
  and	
  then	
  (b)	
  

transferred	
  to	
  the	
  adapted	
  mesh.	
  
§  InterpolaAon	
  data	
  transfer	
  is	
  used	
  in	
  the	
  

examples	
  below.	
  Need	
  to	
  develop	
  
reconnecAon-­‐friendly	
  conservaAve	
  
interpolaAon	
  and	
  recovery	
  methods!	
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Schwarz	
  coupling:	
  concurrent	
  mul/scale	
  

§  Concurrent	
  mulAscale	
  methods	
  for	
  solid	
  mechanics	
  are	
  essenAal	
  for	
  the	
  understanding	
  and	
  
predicAon	
  of	
  behavior	
  of	
  engineering	
  systems	
  when	
  a	
  small	
  scale	
  event	
  will	
  eventually	
  
determine	
  the	
  performance	
  of	
  the	
  enAre	
  system.	
  

§  The	
  Schwarz	
  coupling	
  method	
  has	
  been	
  adapted	
  and	
  implemented	
  for	
  use	
  in	
  concurrent	
  
mulAscale	
  modeling	
  in	
  Albany,	
  thus	
  allowing	
  the	
  study	
  of	
  models	
  where	
  informaAon	
  is	
  
exchanged	
  back	
  and	
  forth	
  between	
  small	
  and	
  large	
  scales.	
  

structural scale, ~m

deformation twins

surface
flaw

reservoir

multiscale region
at crack tip

grain boundaries

sarc length
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grains

s

high-pressure
hydrogen gas
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§  The	
  method	
  is	
  capable	
  of	
  coupling	
  different	
  mesh	
  topologies.	
  
§  The	
  figure	
  below	
  shows	
  the	
  results	
  of	
  pulling	
  on	
  a	
  notched	
  cylinder.	
  
§  The	
  notched	
  region,	
  where	
  stress	
  concentraAons	
  are	
  expected,	
  is	
  finely	
  meshed	
  with	
  

tetrahedral	
  elements.	
  
§  The	
  top	
  and	
  boiom	
  regions,	
  presumably	
  of	
  less	
  interest,	
  are	
  meshed	
  with	
  coarser	
  

hexahedral	
  elements.	
  	
  
§  This	
  provides	
  the	
  flexibility	
  of	
  using	
  more	
  refined	
  meshes	
  in	
  criAcal	
  regions	
  of	
  complex	
  

geometry	
  and	
  phenomena	
  where	
  tetrahedral	
  meshers	
  excel,	
  and	
  less	
  refined	
  meshes	
  away	
  
from	
  criAcal	
  regions	
  that	
  can	
  be	
  meshed	
  by	
  hexahedra	
  that	
  are	
  tradiAonally	
  less	
  amenable	
  to	
  
very	
  complex	
  geometries.	
  

Schwarz	
  coupling:	
  notched	
  cylinder	
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Schwarz	
  coupling:	
  movie	
  of	
  half	
  notched	
  cylinder	
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§  PrecondiAoners	
  for	
  Schwarz:	
  the	
  method	
  works	
  with	
  a	
  variety	
  of	
  precondiAoners	
  provided	
  
with	
  Trilinos,	
  or	
  none	
  at	
  all	
  for	
  very	
  simple	
  problems.	
  To	
  obtain	
  the	
  best	
  performance,	
  
however,	
  Trilinos	
  provides	
  a	
  block	
  system	
  precondiAoner	
  package	
  called	
  Teko.	
  The	
  Schwarz	
  
method	
  can	
  be	
  formulated	
  as	
  a	
  block	
  system	
  of	
  equaAons,	
  and	
  therefore	
  the	
  best	
  
precondiAoner	
  to	
  use	
  is	
  Teko.	
  

§  Now	
  that	
  each	
  mesh	
  is	
  its	
  own	
  independent	
  applicaAon	
  from	
  the	
  point	
  of	
  view	
  of	
  Albany,	
  this	
  
opens	
  the	
  possibility	
  of	
  using	
  different	
  discreAzaAons	
  altogether	
  for	
  each,	
  as	
  shown.	
  

§  This	
  demonstraAon	
  calculaAon	
  used	
  linear	
  tetrahedral	
  elements	
  for	
  the	
  fine	
  region	
  and	
  
trilinear	
  hexahedra	
  for	
  the	
  coarse	
  region.	
  

§  It	
  is	
  known	
  that	
  linear	
  tetrahedra	
  are	
  notoriously	
  bad	
  at	
  represenAng	
  stress,	
  specially	
  under	
  
large	
  distorAon,	
  thus	
  the	
  non-­‐smooth	
  stress	
  field	
  near	
  the	
  notch	
  in	
  this	
  demonstraAon	
  
calculaAon.	
  The	
  emphasis	
  here	
  is	
  in	
  the	
  ability	
  to	
  couple	
  different	
  mesh	
  topologies,	
  which	
  is	
  a	
  
first	
  for	
  Albany.	
  

§  We	
  have	
  started	
  preliminary	
  performance	
  studies	
  of	
  Albany	
  under	
  Kokkos	
  using	
  OpenMP.	
  
Kokkos	
  can	
  use	
  a	
  variety	
  of	
  alternate	
  accelerators	
  such	
  as	
  OpenMP,	
  Cuda,	
  Intel	
  Phi,	
  etc.	
  

	
  
	
  

Schwarz	
  coupling:	
  summary	
  of	
  findings	
  



Strategy to extend Albany to provide good performance on new 
architecture machines (hybrid systems) and manycore devices (multi-

core CPU, NVIDIA GPU, Intel Xeon Phi, etc.)  

•  Kokkos: Trilinos library and programming model that provides performance 
portability across diverse devises with different memory models. 

 

•  The Kokkos strategy: write an algorithm once, and change a template 
parameter to get the optimal data layout for the target hardware. 

Performance	
  portability	
  using	
  Kokkos	
  



§  The	
  Kokkos	
  programming	
  model	
  focuses	
  on	
  performance	
  portability	
  of	
  
kernels.	
  

§  Kokkos	
  uses	
  the	
  ExecuAonSpace	
  parameter	
  to	
  tailor	
  code	
  for	
  a	
  device:	
  

1.  Memory	
  layout	
  for	
  the	
  MulADimVector	
  (Accessor	
  syntax	
  v(i,	
  j,	
  k)	
  
is	
  unchanged.)	
  

2.  Parallel	
  kernel	
  launch	
  direcAves	
  under	
  the	
  Kokkos::Parallel_for()	
  call.	
  

§  New	
  architectures	
  handled	
  by	
  new	
  ExecuAonSpace	
  parameters	
  being	
  
implemented	
  in	
  Kokkos.	
  

•  Leverage	
  ongoing	
  DOE	
  investments	
  in	
  hardware	
  and	
  somware	
  

§  Kokkos	
  implementaAon	
  requires	
  separaAng	
  thread-­‐safe	
  kernel	
  into	
  
separate	
  funcAon	
  that	
  is	
  launched	
  with	
  integer	
  loop	
  index	
  (e.g.,	
  cell).	
  

Performance	
  portability	
  details	
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Kokkos-­‐ificaAon	
  of	
  FE	
  assembly	
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typedef Kokkos::OpenMP ExecutionSpace;
//typedef Kokkos::CUDA ExecutionSpace;
//typedef Kokkos::Serial ExecutionSpace;
template<typename ScalarT>
vectorGrad<ScalarT>::vectorGrad()
{
Kokkos::View<ScalarT****, ExecutionSpace> vecGrad(“vecGrad”, numCells, numQP, numVec, numDim);
}
**********************************************
template<typename ScalarT>
void vectorGrad<ScalarT>::evaluateFields()
{
  Kokkos::parallel_for<ExecutionSpace> (numCells, *this);
}
**********************************************
template<typename ScalarT>
KOKKOS_INLINE_FUNCTION
void vectorGrad<ScalarT>:: operator() (const int cell) const
{
  for (int cell = 0; cell < numCells; cell++)
  for (int qp = 0; qp < numQP; qp++) {
    for (int dim = 0; dim < numVec; dim++) {
      for (int i = 0; i < numDim; i++) {
        for (int nd = 0; nd < numNode; nd++) {
          vecGrad(cell, qp, dim, i) += val(cell, nd, dim) * basisGrad(nd, qp, i);
} } } } }



MulAcore	
  scaling	
  using	
  Kokkos	
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Climate	
  models:	
  Aeras	
  and	
  FELIX	
  

§  Finite	
  Elements	
  for	
  Land	
  Ice	
  
eXperiments	
  

§  First	
  order	
  Stokes	
  (Glen’s	
  
law),	
  stress/velocity	
  soluAon	
  
of	
  ice	
  flow	
  over	
  Greenland	
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§  Next	
  generaAon	
  global	
  
atmosphere	
  model	
  

§  Model	
  development:	
  
shallow	
  water,	
  X-­‐Z	
  
hydrostaAc,	
  3D	
  hydrostaAc,	
  
clouds,	
  3D	
  non-­‐hydrostaAc	
  



Aeras	
  performance	
  and	
  portability	
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•  Right: results for a mini-app that uses 
finite element kernels from Albany/FELIX 
but none of the surrounding 
infrastructure. 

•  “# of elements” = threading index 
(allows for on-node parallelism).  

•  # of threads required before the Phi 
and GPU accelerators start to get 
enough work to warrant overhead: 
~100 for the Phi and ~1000 for the 
GPU. 

FELIX performance portability results 

•  Below: preliminary results for 3 of the finite                         
element assembly kernels, as part of full Albany/FELIX 
code run. 

 Kernel Serial 16 Threads 
OpenMP  

GPU 

Viscosity Jacobian 20.39 s 2.06 s 0.54s 

Basis Functions w/ FE Transforms 8.75 s 0.94 s 1.23s 

Gather Coordinates 0.097 s 0.107 s 5.77s 

Note: Gather 
Coordinates 

routine requires 
copying data 
from host to 

GPU. 



FELIX	
  scalability	
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Weak scaling: 
8km, 5 layers to 
2km, 20 layers 

Strong scaling: 
143M DOFs 
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Embedded	
  analysis	
  algorithms	
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Strong	
  potenAal	
  exists	
  to	
  improve	
  analysis	
  capabiliAes	
  
beyond	
  forward	
  simula8on:	
  

§  Parameter	
  Studies;	
  Sensi8vity	
  Analysis,	
  Bifurca8on	
  and	
  
Linear	
  Stability	
  Analysis;	
  Op8miza8on,	
  Calibra8on,	
  and	
  
Inversion;	
  Uncertainty	
  Quan8fica8on	
  

Ensembles	
  of	
  calculaAons	
  are	
  a	
  key	
  tool	
  in	
  uncertainty	
  
analysis:	
  

§  Random	
  sampling,	
  stochasAc	
  collocaAon,	
  …	
  	
  

§  Computes	
  probability	
  distribuAon	
  of	
  responses	
  with	
  
respect	
  to	
  probabilisAc	
  inputs	
  

§  Ranges	
  of	
  properAes,	
  geometries,	
  parameters,	
  forcing	
  
calculaAons	
  

§  Ensembles	
  typically	
  implemented	
  as	
  an	
  outer	
  loop	
  
around	
  the	
  code	
  execuAon	
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Exascale	
  embedded	
  ensembles	
  

24	
  

Embedding	
  ensembles	
  moves	
  them	
  to	
  an	
  inner	
  loop.	
  
Performance	
  gains	
  are	
  realized	
  by:	
  

•  AmorAzing	
  costs	
  for	
  mesh-­‐dependent	
  calculaAons	
  
•  Supports	
  compiler	
  vectorizaAon	
  of	
  kernels	
  over	
  ensembles	
  
•  AmorAzing	
  latency	
  over	
  larger	
  MPI	
  messages	
  
•  ConAguous	
  memory	
  access	
  for	
  arrays	
  of	
  data	
  

	
  

Timings for computing 64 total ensemble members with varying embedded sample 
sizes. Solving 3D Elasticity problem over a range of elastic modulus and Poisson ratio. 
Recent evidence shows larger speedups on Phi, GPU. 

Ack: E. Phipps; ASCR Equinox project 



Embedding	
  ensembles	
  in	
  FE	
  assembly	
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typedef Kokkos::OpenMP ExecutionSpace;
//typedef Kokkos::CUDA ExecutionSpace;
//typedef Kokkos::Serial ExecutionSpace;
template<typename ScalarT>
vectorGrad<ScalarT>::vectorGrad()
{
Kokkos::View<ScalarT****, ExecutionSpace> vecGrad(“vecGrad”, numCells, numQP, numVec, numDim);
}
**********************************************
template<typename ScalarT>
void vectorGrad<ScalarT>::evaluateFields()
{
  Kokkos::parallel_for<ExecutionSpace> (numCells, *this);
}
**********************************************
template<typename ScalarT>
KOKKOS_INLINE_FUNCTION
void vectorGrad<ScalarT>:: operator() (const int cell) const
{
  for (int cell = 0; cell < numCells; cell++)
  for (int qp = 0; qp < numQP; qp++) {
    for (int dim = 0; dim < numVec; dim++) {
      for (int i = 0; i < numDim; i++) {
        for (int nd = 0; nd < numNode; nd++) {
          vecGrad(cell, qp, dim, i) += val(cell, nd, dim) * basisGrad(nd, qp, i);
} } } } }

typedef Stokhos::Ensemble<double> ScalarT; 



Summary	
  
§  Created	
  a	
  Aghtly	
  coupled	
  thermomechanics	
  demonstraAon	
  

problem	
  possessing	
  complex	
  temperature	
  dependent	
  
properAes	
  

§  Demonstrate	
  proof-­‐of-­‐principle	
  of	
  parallel	
  embedded	
  
meshing	
  technology	
  on	
  quasi-­‐staAc	
  thermomechanics	
  
example	
  

§  Show	
  portability	
  of	
  ATDM	
  agile	
  components	
  on	
  convenAonal	
  
MPI,	
  Nvidia	
  Cuda	
  GPUs,	
  Intel	
  mulAcore,	
  and	
  Intel	
  Phi	
  
coprocessors.	
  

§  Show	
  principle	
  of	
  parallel	
  embedded	
  ensemble	
  UQ	
  
calculaAons	
  using	
  component	
  technologies	
  

§  Open	
  source:	
  hCp://gahansen.github.io/Albany/	
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