
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-XXXXP

Progress	
 on	
 Manycore	
 Mul/physics	
 Simula/on	
 in	

Albany	
 using	
 the	
 Kokkos	
 Portable	
 Hardware	

Abstrac/on	
 Library	

Andrew	
 Bradley,	
 Irina	
 Demeshko,	
 Brian	
 Granzow1,	
 Glen	

Hansen,	
 Alejandro	
 Mota,	
 Andy	
 Salinger,	
 Irina	
 Tezaur	

Sandia	
 NaAonal	
 Laboratories	

1Rensselaer	
 Polytechnic	
 InsAtute	

USNCCM13,	
 July	
 2015	

SAND2015-5946C

§  Albany	
 supports	
 a	
 wide	
 variety	
 of	
 applicaAon	
 physics	
 areas	

including	
 heat	
 transfer,	
 fluid	
 dynamics,	
 structural	
 mechanics,	

plasAcity,	
 quantum	
 device	
 modeling,	
 climate	
 modeling,	
 and	

many	
 others	

§  Leverages	
 Trilinos	
 framework	
 for	
 linear	
 and	
 nonlinear	
 solvers,	

precondiAoning,	
 load	
 balancing,	
 hardware	
 portability	
 layers,	

finite	
 element	
 data	
 structures	
 and	
 mulAphysics	
 code	
 support	

infrastructure	

§  Advanced	
 analysis	
 capabiliAes	
 (embedded	
 SA	
 and	
 UQ),	

supported	
 by	
 parallel	
 scalable	
 RPI	
 adapAve	
 meshing	

technologies,	
 support	
 for	
 topology	
 opAmizaAon	

Overview	

2	

3	

Albany	
 ecosystem	

Application

Embedded UQ

Nonlinear Solvers and Inversion

Application Impact: Ice Sheets

Scalable Linear Algebra Performance Portability

Mesh Adaptivity

Application Impact: Computational Mechanics Additional Application Impact

Number of Concurrent Evaluations
0 5 10 15 20 25 30 35

Ti
m

e
R

el
at

iv
e

to
 O

ne
 S

ca
la

r E
va

lu
at

io
n

0

5

10

15

20

25

30

35
Total Run Time, 3000 Time Steps

Concurrent Evaluations in Inner Loop
Ensemble as Outer Loop

•  Surface flow velocities for
Greenland and Antarctic Ice
Sheets

•  Demonstrates nonlinear
solves, linear solves, UQ,
adaptivity, and performance
portability

•  Employs automatic
differentiation, discretizations,
partitioning, mesh database

•  Homotopy and Anderson
Acceleration in Trilinos::NOX

•  The robustness of nonlinear
solvers are critical when an
application is to be called as a
sub-component within a larger
application code.

•  Uses Automatic Differentiation,
Preconditioning,
Optimization algorithms from
Trilinos

•  New Ensemble
data type in
Sacado
package

•  Vectorization
of kernels over
ensembles

•  Contiguous
memory
access in
arrays

•  Scalability of
simulations
requires
effective
preconditioning

•  Multi-level
solves are
essential for
the largest
problems

•  The Kokkos
programming mode
supports
performance
portability of
kernels.

•  Kokkos’ abstraction
layer allows code to
be tailored for
specific devices

•  Mesh adaptation can
be essential for
efficiency and
robustness

•  Cube geometry
subjected to large
deformation (elasticity
and J2 plasticity results
shown)

•  Largest implicit problem solved in
Albany to date: 1.7B degrees of
freedom

•  Initial capabilities for Schwarz
multiscale coupling

§  Use	
 of	
 embedded	
 meshing	
 to	
 address	
 problem	
 input	

challenges	
 on	
 advanced	
 hierarchical	
 plaXorms	

§  Implement	
 performance	
 portable	
 kernels	

§  The	
 target	
 hardware	
 architecture	
 and	
 programming	
 environment	
 is	

not	
 yet	
 clear	

§  Focus	
 on	
 performance	
 portability;	
 use	
 the	
 Kokkos	
 hardware	

abstracAon	
 library	
 to	
 allow	
 hosAng	
 of	
 parallel	
 on-­‐rank	
 algorithms	
 on	

mulAple	
 parallel	
 devices	
 (mulAcore	
 CPUs,	
 Intel	
 Phi,	
 Nvidia	
 GPU)	
 via	

recompile	

§  Embedded	
 Analysis,	
 including	
 UQ	

Extreme	
 scale	
 strategy	

4	

§  Read	
 the	
 problem	
 statement	
 that	
 describes	
 the	
 problem	
 and	

domain,	
 distribute	
 to	
 the	
 coarse	
 tasks	
 (ranks)	

§  Each	
 rank	
 generates	
 the	
 mesh	
 within	
 its	
 parAAon,	
 such	
 that	

the	
 overall	
 mesh	
 is	
 conformal	
 across	
 the	
 parallel	
 machine	

§  Rebalancing	
 of	
 the	
 final	
 parAAons	
 is	
 performed	
 as	
 needed	

Embedded	
 meshing	
 workflow	

5	

§  The	
 domain	
 geometry	
 is	
 tagged	
 with	
 iniAal	

and	
 boundary	
 condiAon	
 data	
 and	

parAAoned	
 in	
 advance	
 by	
 the	
 user,	
 into	

parts	

§  Each	
 part	
 is	
 meshed	
 as	
 an	
 independent	

parallel	
 task	

§  IniAally,	
 a	
 high	
 order	
 coarse	
 mesh	
 is	
 used	

that	
 represents	
 both	
 the	
 part	
 volumes	
 and	

the	
 geometry	
 of	
 the	
 surfaces	
 in	
 the	
 domain	

§  AdapAve	
 refinement	
 is	
 used	
 to	
 achieve	
 the	
 target	

element	
 size,	
 using	
 linear	
 elements	
 as	
 the	
 default	

case	

	

ParAAoned	
 problem	
 statement	

6	

§  Higher	
 order	
 coarse	
 elements	
 capture	
 surface	
 geometry	

§  Element	
 sizes	
 chosen	
 to	
 represent	
 feature	
 length	
 scales	
 in	

underlying	
 model	

§  Mesh	
 generated	
 on	
 coarse	
 elements	
 to	
 meet	
 simulaAon	

requirements	

Embedded	
 meshing	
 demonstraAon	

7	

§  Coupled	
 thermomechanics,	
 J2	
 plasAcity,	
 temperature	

dependent	
 material	
 hardening	
 at	
 the	
 weld	

Full	
 scale	
 example	

8	

§  Setup,	
 soluAon,	
 and	
 solver	
 scalability	
 as	
 a	
 funcAon	
 of	

parAAoning	
 granularity	
 on	
 BGQ	

Mechanics	
 scalability	
 	

9	

Mesh	
 adaptaAon	

10	

Goals:	
 Maintain	
 element	
 quality	
 in	
 large	

deformaAon,	
 high	
 strain	
 rate	
 scenarios	

§  Method:	
 Employ	
 evolving	
 mesh	
 topology	

to	
 delay	
 the	
 transiAon	
 to	
 ALE	
 or	
 full-­‐
Eulerian	
 regime	

§  Challenges:	
 Ensuring	
 conservaAon	
 as	
 the	

mesh	
 adapts,	
 maintaining	
 element	

quality,	
 robustness	
 of	
 the	
 approach	
 during	

complex	
 deformaAon/mixing	
 states	

§  Method:	

§  Stress	
 model	
 is	
 a	
 funcAon	
 of	
 the	

deformaAon	
 gradient	
 tensor	
 F.	

§  F	
 is	
 stored	
 at	
 integraAon	
 points.	

§  In	
 a	
 step,	
 F	
 is	
 (a)	
 updated	
 and	
 then	
 (b)	

transferred	
 to	
 the	
 adapted	
 mesh.	

§  InterpolaAon	
 data	
 transfer	
 is	
 used	
 in	
 the	

examples	
 below.	
 Need	
 to	
 develop	

reconnecAon-­‐friendly	
 conservaAve	

interpolaAon	
 and	
 recovery	
 methods!	

11	

Schwarz	
 coupling:	
 concurrent	
 mul/scale	

§  Concurrent	
 mulAscale	
 methods	
 for	
 solid	
 mechanics	
 are	
 essenAal	
 for	
 the	
 understanding	
 and	

predicAon	
 of	
 behavior	
 of	
 engineering	
 systems	
 when	
 a	
 small	
 scale	
 event	
 will	
 eventually	

determine	
 the	
 performance	
 of	
 the	
 enAre	
 system.	

§  The	
 Schwarz	
 coupling	
 method	
 has	
 been	
 adapted	
 and	
 implemented	
 for	
 use	
 in	
 concurrent	

mulAscale	
 modeling	
 in	
 Albany,	
 thus	
 allowing	
 the	
 study	
 of	
 models	
 where	
 informaAon	
 is	

exchanged	
 back	
 and	
 forth	
 between	
 small	
 and	
 large	
 scales.	

structural scale, ~m

deformation twins

surface
flaw

reservoir

multiscale region
at crack tip

grain boundaries

sarc length

grain scale evolution, ~μm

grains

s

high-pressure
hydrogen gas

12	

§  The	
 method	
 is	
 capable	
 of	
 coupling	
 different	
 mesh	
 topologies.	

§  The	
 figure	
 below	
 shows	
 the	
 results	
 of	
 pulling	
 on	
 a	
 notched	
 cylinder.	

§  The	
 notched	
 region,	
 where	
 stress	
 concentraAons	
 are	
 expected,	
 is	
 finely	
 meshed	
 with	

tetrahedral	
 elements.	

§  The	
 top	
 and	
 boiom	
 regions,	
 presumably	
 of	
 less	
 interest,	
 are	
 meshed	
 with	
 coarser	

hexahedral	
 elements.	
 	

§  This	
 provides	
 the	
 flexibility	
 of	
 using	
 more	
 refined	
 meshes	
 in	
 criAcal	
 regions	
 of	
 complex	

geometry	
 and	
 phenomena	
 where	
 tetrahedral	
 meshers	
 excel,	
 and	
 less	
 refined	
 meshes	
 away	

from	
 criAcal	
 regions	
 that	
 can	
 be	
 meshed	
 by	
 hexahedra	
 that	
 are	
 tradiAonally	
 less	
 amenable	
 to	

very	
 complex	
 geometries.	

Schwarz	
 coupling:	
 notched	
 cylinder	

13	

Schwarz	
 coupling:	
 movie	
 of	
 half	
 notched	
 cylinder	

14	

§  PrecondiAoners	
 for	
 Schwarz:	
 the	
 method	
 works	
 with	
 a	
 variety	
 of	
 precondiAoners	
 provided	

with	
 Trilinos,	
 or	
 none	
 at	
 all	
 for	
 very	
 simple	
 problems.	
 To	
 obtain	
 the	
 best	
 performance,	

however,	
 Trilinos	
 provides	
 a	
 block	
 system	
 precondiAoner	
 package	
 called	
 Teko.	
 The	
 Schwarz	

method	
 can	
 be	
 formulated	
 as	
 a	
 block	
 system	
 of	
 equaAons,	
 and	
 therefore	
 the	
 best	

precondiAoner	
 to	
 use	
 is	
 Teko.	

§  Now	
 that	
 each	
 mesh	
 is	
 its	
 own	
 independent	
 applicaAon	
 from	
 the	
 point	
 of	
 view	
 of	
 Albany,	
 this	

opens	
 the	
 possibility	
 of	
 using	
 different	
 discreAzaAons	
 altogether	
 for	
 each,	
 as	
 shown.	

§  This	
 demonstraAon	
 calculaAon	
 used	
 linear	
 tetrahedral	
 elements	
 for	
 the	
 fine	
 region	
 and	

trilinear	
 hexahedra	
 for	
 the	
 coarse	
 region.	

§  It	
 is	
 known	
 that	
 linear	
 tetrahedra	
 are	
 notoriously	
 bad	
 at	
 represenAng	
 stress,	
 specially	
 under	

large	
 distorAon,	
 thus	
 the	
 non-­‐smooth	
 stress	
 field	
 near	
 the	
 notch	
 in	
 this	
 demonstraAon	

calculaAon.	
 The	
 emphasis	
 here	
 is	
 in	
 the	
 ability	
 to	
 couple	
 different	
 mesh	
 topologies,	
 which	
 is	
 a	

first	
 for	
 Albany.	

§  We	
 have	
 started	
 preliminary	
 performance	
 studies	
 of	
 Albany	
 under	
 Kokkos	
 using	
 OpenMP.	

Kokkos	
 can	
 use	
 a	
 variety	
 of	
 alternate	
 accelerators	
 such	
 as	
 OpenMP,	
 Cuda,	
 Intel	
 Phi,	
 etc.	

	

	

Schwarz	
 coupling:	
 summary	
 of	
 findings	

Strategy to extend Albany to provide good performance on new
architecture machines (hybrid systems) and manycore devices (multi-

core CPU, NVIDIA GPU, Intel Xeon Phi, etc.)

•  Kokkos: Trilinos library and programming model that provides performance
portability across diverse devises with different memory models.

•  The Kokkos strategy: write an algorithm once, and change a template
parameter to get the optimal data layout for the target hardware.

Performance	
 portability	
 using	
 Kokkos	

§  The	
 Kokkos	
 programming	
 model	
 focuses	
 on	
 performance	
 portability	
 of	

kernels.	

§  Kokkos	
 uses	
 the	
 ExecuAonSpace	
 parameter	
 to	
 tailor	
 code	
 for	
 a	
 device:	

1.  Memory	
 layout	
 for	
 the	
 MulADimVector	
 (Accessor	
 syntax	
 v(i,	
 j,	
 k)	

is	
 unchanged.)	

2.  Parallel	
 kernel	
 launch	
 direcAves	
 under	
 the	
 Kokkos::Parallel_for()	
 call.	

§  New	
 architectures	
 handled	
 by	
 new	
 ExecuAonSpace	
 parameters	
 being	

implemented	
 in	
 Kokkos.	

•  Leverage	
 ongoing	
 DOE	
 investments	
 in	
 hardware	
 and	
 somware	

§  Kokkos	
 implementaAon	
 requires	
 separaAng	
 thread-­‐safe	
 kernel	
 into	

separate	
 funcAon	
 that	
 is	
 launched	
 with	
 integer	
 loop	
 index	
 (e.g.,	
 cell).	

Performance	
 portability	
 details	

16	

Kokkos-­‐ificaAon	
 of	
 FE	
 assembly	

17	

typedef Kokkos::OpenMP ExecutionSpace;
//typedef Kokkos::CUDA ExecutionSpace;
//typedef Kokkos::Serial ExecutionSpace;
template<typename ScalarT>
vectorGrad<ScalarT>::vectorGrad()
{
Kokkos::View<ScalarT****, ExecutionSpace> vecGrad(“vecGrad”, numCells, numQP, numVec, numDim);
}
**
template<typename ScalarT>
void vectorGrad<ScalarT>::evaluateFields()
{
 Kokkos::parallel_for<ExecutionSpace> (numCells, *this);
}
**
template<typename ScalarT>
KOKKOS_INLINE_FUNCTION
void vectorGrad<ScalarT>:: operator() (const int cell) const
{
 for (int cell = 0; cell < numCells; cell++)
 for (int qp = 0; qp < numQP; qp++) {
 for (int dim = 0; dim < numVec; dim++) {
 for (int i = 0; i < numDim; i++) {
 for (int nd = 0; nd < numNode; nd++) {
 vecGrad(cell, qp, dim, i) += val(cell, nd, dim) * basisGrad(nd, qp, i);
} } } } }

MulAcore	
 scaling	
 using	
 Kokkos	

18	

0"

2"

4"

6"

8"

10"

12"

14"

320" 3200"

Sp
ee
du

p&

#&of&elements&per&workset&

Speedup&

Serial"

Sandy"Bridge"
(OpenMP)"

CUDA"

Intel"Phi"

6.9x 11.9x 3.7x

3.8x 3.2x 11x

Climate	
 models:	
 Aeras	
 and	
 FELIX	

§  Finite	
 Elements	
 for	
 Land	
 Ice	

eXperiments	

§  First	
 order	
 Stokes	
 (Glen’s	

law),	
 stress/velocity	
 soluAon	

of	
 ice	
 flow	
 over	
 Greenland	

19	

§  Next	
 generaAon	
 global	

atmosphere	
 model	

§  Model	
 development:	

shallow	
 water,	
 X-­‐Z	

hydrostaAc,	
 3D	
 hydrostaAc,	

clouds,	
 3D	
 non-­‐hydrostaAc	

Aeras	
 performance	
 and	
 portability	

20	

•  Right: results for a mini-app that uses
finite element kernels from Albany/FELIX
but none of the surrounding
infrastructure.

•  “# of elements” = threading index
(allows for on-node parallelism).

•  # of threads required before the Phi
and GPU accelerators start to get
enough work to warrant overhead:
~100 for the Phi and ~1000 for the
GPU.

FELIX performance portability results

•  Below: preliminary results for 3 of the finite
element assembly kernels, as part of full Albany/FELIX
code run.

 Kernel Serial 16 Threads
OpenMP

GPU

Viscosity Jacobian 20.39 s 2.06 s 0.54s

Basis Functions w/ FE Transforms 8.75 s 0.94 s 1.23s

Gather Coordinates 0.097 s 0.107 s 5.77s

Note: Gather
Coordinates

routine requires
copying data
from host to

GPU.

FELIX	
 scalability	

22	

Weak scaling:
8km, 5 layers to
2km, 20 layers

Strong scaling:
143M DOFs

cores
10 1 10 2 10 3 10 4

tim
e

(s
ec

)

10 -2

10 0

10 2

10 4

10 6 Antarctica Scalability (AMG)
Total Time - I/O
Linear Solve Time
FEA Time
Time/Iter.

cores
10 3 10 4

tim
e

(s
ec

)

10 -2

10 0

10 2

Strong scalability for 1km GIS (ILU)

Total Time - I/O
Linear Solve Time
FEA Time
Time/Iter.
Slope = 1

1024
cores

16,384
cores

16
cores

1024
cores

cores
10 1 10 2 10 3 10 4

tim
e

(s
ec

)

10 -2

10 0

10 2

10 4

10 6 Antarctica Scalability (ILU)

Total Time - I/O
Linear Solve Time
FEA Time
Time/Iter.

cores
10 3 10 4

tim
e

(s
ec

)

10 -2

10 0

10 2

Strong scalability for 1km GIS (AMG)

Total Time - I/O
Linear Solve Time
FEA Time
Time/Iter.
Slope = 1

1024
cores

16,384
cores

16
cores

1024
cores

Embedded	
 analysis	
 algorithms	

23	

Strong	
 potenAal	
 exists	
 to	
 improve	
 analysis	
 capabiliAes	

beyond	
 forward	
 simula8on:	

§  Parameter	
 Studies;	
 Sensi8vity	
 Analysis,	
 Bifurca8on	
 and	

Linear	
 Stability	
 Analysis;	
 Op8miza8on,	
 Calibra8on,	
 and	

Inversion;	
 Uncertainty	
 Quan8fica8on	

Ensembles	
 of	
 calculaAons	
 are	
 a	
 key	
 tool	
 in	
 uncertainty	

analysis:	

§  Random	
 sampling,	
 stochasAc	
 collocaAon,	
 …	
 	

§  Computes	
 probability	
 distribuAon	
 of	
 responses	
 with	

respect	
 to	
 probabilisAc	
 inputs	

§  Ranges	
 of	
 properAes,	
 geometries,	
 parameters,	
 forcing	

calculaAons	

§  Ensembles	
 typically	
 implemented	
 as	
 an	
 outer	
 loop	

around	
 the	
 code	
 execuAon	

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000
Mode 1

range of j

sa

m
pl

es

Exascale	
 embedded	
 ensembles	

24	

Embedding	
 ensembles	
 moves	
 them	
 to	
 an	
 inner	
 loop.	

Performance	
 gains	
 are	
 realized	
 by:	

•  AmorAzing	
 costs	
 for	
 mesh-­‐dependent	
 calculaAons	

•  Supports	
 compiler	
 vectorizaAon	
 of	
 kernels	
 over	
 ensembles	

•  AmorAzing	
 latency	
 over	
 larger	
 MPI	
 messages	

•  ConAguous	
 memory	
 access	
 for	
 arrays	
 of	
 data	

	

Timings for computing 64 total ensemble members with varying embedded sample
sizes. Solving 3D Elasticity problem over a range of elastic modulus and Poisson ratio.
Recent evidence shows larger speedups on Phi, GPU.

Ack: E. Phipps; ASCR Equinox project

Embedding	
 ensembles	
 in	
 FE	
 assembly	

25	

typedef Kokkos::OpenMP ExecutionSpace;
//typedef Kokkos::CUDA ExecutionSpace;
//typedef Kokkos::Serial ExecutionSpace;
template<typename ScalarT>
vectorGrad<ScalarT>::vectorGrad()
{
Kokkos::View<ScalarT****, ExecutionSpace> vecGrad(“vecGrad”, numCells, numQP, numVec, numDim);
}
**
template<typename ScalarT>
void vectorGrad<ScalarT>::evaluateFields()
{
 Kokkos::parallel_for<ExecutionSpace> (numCells, *this);
}
**
template<typename ScalarT>
KOKKOS_INLINE_FUNCTION
void vectorGrad<ScalarT>:: operator() (const int cell) const
{
 for (int cell = 0; cell < numCells; cell++)
 for (int qp = 0; qp < numQP; qp++) {
 for (int dim = 0; dim < numVec; dim++) {
 for (int i = 0; i < numDim; i++) {
 for (int nd = 0; nd < numNode; nd++) {
 vecGrad(cell, qp, dim, i) += val(cell, nd, dim) * basisGrad(nd, qp, i);
} } } } }

typedef Stokhos::Ensemble<double> ScalarT;

Summary	

§  Created	
 a	
 Aghtly	
 coupled	
 thermomechanics	
 demonstraAon	

problem	
 possessing	
 complex	
 temperature	
 dependent	

properAes	

§  Demonstrate	
 proof-­‐of-­‐principle	
 of	
 parallel	
 embedded	

meshing	
 technology	
 on	
 quasi-­‐staAc	
 thermomechanics	

example	

§  Show	
 portability	
 of	
 ATDM	
 agile	
 components	
 on	
 convenAonal	

MPI,	
 Nvidia	
 Cuda	
 GPUs,	
 Intel	
 mulAcore,	
 and	
 Intel	
 Phi	

coprocessors.	

§  Show	
 principle	
 of	
 parallel	
 embedded	
 ensemble	
 UQ	

calculaAons	
 using	
 component	
 technologies	

§  Open	
 source:	
 hCp://gahansen.github.io/Albany/	

	

26	

