SAND2015- 5946C

Sandia

Exceptional service in the national interest @ National
Laboratories

Progress on Manycore Multiphysics Simulation in
Albany using the Kokkos Portable Hardware
Abstraction Library

Andrew Bradley, Irina Demeshko, Brian Granzow?, Glen
Hansen, Alejandro Mota, Andy Salinger, Irina Tezaur

Sandia National Laboratories
1Rensselaer Polytechnic Institute
USNCCM13, July 2015

ndia N nal Labor: eS|samuI i-pra gamlb tory managed a d operated by Sandia Corpor: wholly owned subsidiary of Lockheed Mart
Orpor: f the USDp of Energy’s National Nuclear Security Administration under con DEAC0494AL85000 SAND NO. 2015XXXXP

Sa
Cor

Sandia
’11 National
Laboratories

Overview

= Albany supports a wide variety of application physics areas
including heat transfer, fluid dynamics, structural mechanics,

plasticity, qguantum device modeling, climate modeling, and
many others

= Leverages Trilinos framework for linear and nonlinear solvers,
preconditioning, load balancing, hardware portability layers,
finite element data structures and multiphysics code support
infrastructure

= Advanced analysis capabilities (embedded SA and UQ),
supported by parallel scalable RPI adaptive meshing
technologies, support for topology optimization

Application Impact: Ice Sheets Additional Application Impact Application Impact: Computational Mechanics

Sandia
National
Laboratories

h

» Surface flow velocities for
Greenland and Antarctic Ice
Sheets

* Demonstrates nonlinear
solves, linear solves, UQ,
adaptivity, and performance
portability

» Employs automatic
differentiation, discretizations,
partitioning, mesh database

Nonlinear Solvers and Inversion

Homotopy and Anderson
Acceleration in Trilinos::NOX dg 09T of Tof oy

dp Oz oz % B_p

The robustness of nonlinear
solvers are critical when an
application is to be called as a
sub-component within a larger
application code.

Uses Automatic Differentiation,
Preconditioning,

Optimization algorithms from
Trilinos

Embedded UQ

Scalable Linear Algebra

« Largest implicit problem solved in
Albany to date: 1.7B degrees of
freedom

+ Initial capabilities for Schwarz
multiscale coupling

= E

Mesh Adaptivity

* Mesh adaptation can
be essential for
efficiency and
robustness

» Cube geometry
subjected to large
deformation (elasticity
and J2 plasticity results
shown)

Total Run Time, 3000 Time Steps

« New Ensemble %
data type in ol
Sacado '% —©—Concurrent Evaluations in Inner Loop
g valuatio
package Tost as Outer Loop
w
* Vectorization gzo |
of kernels over g
ensembles S5t
H o
+ Contiguous 20l
3
memory 2
access in E st
arrays

o

0 5 10 15 20 25 30 35
Number of Concurrent Evaluations

Antarctica Scalability (AMG)

+ Scalability of 100
simulations
requires
effective 10

—=—Total Time - /0
—*— Linear Solve Time
—*—FEATime

— Timeflter.

preconditioning

* Multi-level
solves are
essential for
the largest 10
problems

time (sec)
=3

2
10 10
cores

10

10

FEA-Gather/Scatter

* The Kokkos 200 120
programming mode §* g%
supports g (-)
performance * . 0
portablllty of g 2536 s 2536
ke rn e|s # of elements per workset # of elements per workset

: . FEA Residual FEA Jacobian

» Kokkos’ abstraction 4 150

w

layer allows code to
be tailored for
specific devices

° \\ gioo
20 g \\ =
£ 50
10 ‘—LI- 1
’ 4
o
317 2536 317 2536

of elements per workset

OpenMP

time, sec

of elements per workset

~—— Serial CUDA

National

Extreme scale strategy)

= Use of embedded meshing to address problem input
challenges on advanced hierarchical platforms

= |Implement performance portable kernels

= The target hardware architecture and programming environment is
not yet clear

= Focus on performance portability; use the Kokkos hardware
abstraction library to allow hosting of parallel on-rank algorithms on
multiple parallel devices (multicore CPUs, Intel Phi, Nvidia GPU) via
recompile

= Embedded Analysis, including UQ

National

Embedded meshing workflow) .

= Read the problem statement that describes the problem and
domain, distribute to the coarse tasks (ranks)

= Each rank generates the mesh within its partition, such that
the overall mesh is conformal across the parallel machine

= Rebalancing of the final partitions is performed as needed

Partitioned problem statement)

= The domain geometry is tagged with initial
and boundary condition data and
partitioned in advance by the user, into
parts

= Each partis meshed as an independent
parallel task

= |nitially, a high order coarse mesh is used
that represents both the part volumes and
the geometry of the surfaces in the domain

= Adaptive refinement is used to achieve the target

element size, using linear elements as the default
case

Embedded meshing demonstration

Sandia
m National _
Laboratories

Higher order coarse elements capture surface geometry

Element sizes chosen to represent feature length scales in
underlying model

Mesh generated on coarse elements to meet simulation
requirements

VS
N
g#‘f

N\~
5
)

7

N

X5
O
e

A

VAVAY.

orAva
~
AN

National

Full scale example &

= Coupled thermomechanics, J2 plasticity, temperature
dependent material hardening at the weld

temp
_3.254e+02

Sandia
| Netional
Laboratories

Mechanics scalability

= Setup, solution, and solver scalability as a function of
partitioning granularity on BGQ

Albany weak scaling; 50,000 DOF per part Albany weak scaling; 50,000 DOF per part
1000 T T T T T T T T 60 T T T T T T T T
900
° I GMRESiters —+—
800 |
700 total time —+— 50 |
] preconditioner setup —— o
600 L linear solve —x— =
@ © 45 ¢
o 500 |] =2
E // 2 .
|_ -
. 1l &
400 : <
O
300 1 35 |
200
30 -
100 /
0 1 1 N 1 N N N N 25 1 L L L 1 1 1 1
26 27 28 29 210 211 212 213 214 2] 26 27 28 29 210 211 212 213 214 215

Num Parts Num Parts

Mesh adaptation

Goals: Maintain element quality in large
deformation, high strain rate scenarios

Method: Employ evolving mesh topology
to delay the transition to ALE or full-
Eulerian regime

Challenges: Ensuring conservation as the
mesh adapts, maintaining element
guality, robustness of the approach during
complex deformation/mixing states

Sandia
m National _
Laboratories

= Method:

Stress model is a function of the
deformation gradient tensor F.

F is stored at integration points.

In a step, Fis (a) updated and then (b)
transferred to the adapted mesh.

Interpolation data transfer is used in the
examples below. Need to develop
reconnection-friendly conservative
interpolation and recovery methods!

eqps_1
:2‘000e+00

|2

“0.000e+00

National

Sandia
Schwarz coupling: concurrent multiscale) e,

= Concurrent multiscale methods for solid mechanics are essential for the understanding and
prediction of behavior of engineering systems when a small scale event will eventually
determine the performance of the entire system.

= The Schwarz coupling method has been adapted and implemented for use in concurrent
multiscale modeling in Albany, thus allowing the study of models where information is
exchanged back and forth between small and large scales.

reservoir

high-pressure
hydrogen gas

D structural scale, ~m

grain boundaries
deformation twins

multiscale region
. atcracktip :

. > . grain scale evolution, ~um

National

Sandia
Schwarz coupling: notched cylinder) S,

= The method is capable of coupling different mesh topologies.
= The figure below shows the results of pulling on a notched cylinder.

= The notched region, where stress concentrations are expected, is finely meshed with
tetrahedral elements.

= The top and bottom regions, presumably of less interest, are meshed with coarser
hexahedral elements.

= This provides the flexibility of using more refined meshes in critical regions of complex

geometry and phenomena where tetrahedral meshers excel, and less refined meshes away
from critical regions that can be meshed by hexahedra that are traditionally less amenable to
very complex geometries.

Sandia
National

Schwarz coupling: movie of half notched cylinder) .

Sandia
Schwarz coupling: summary of findings) e

= Preconditioners for Schwarz: the method works with a variety of preconditioners provided
with Trilinos, or none at all for very simple problems. To obtain the best performance,
however, Trilinos provides a block system preconditioner package called Teko. The Schwarz
method can be formulated as a block system of equations, and therefore the best
preconditioner to use is Teko.

= Now that each mesh is its own independent application from the point of view of Albany, this
opens the possibility of using different discretizations altogether for each, as shown.

= This demonstration calculation used linear tetrahedral elements for the fine region and
trilinear hexahedra for the coarse region.

= |tis known that linear tetrahedra are notoriously bad at representing stress, specially under
large distortion, thus the non-smooth stress field near the notch in this demonstration
calculation. The emphasis here is in the ability to couple different mesh topologies, which is a
first for Albany.

= We have started preliminary performance studies of Albany under Kokkos using OpenMP.
Kokkos can use a variety of alternate accelerators such as OpenMP, Cuda, Intel Phi, etc.

14

Sandia
National

Performance portability using Kokko8? .

Strategy to extend Albany to provide good performance on new
architecture machines (hybrid systems) and manycore devices (multi-
core CPU, NVIDIA GPU, Intel Xeon Phi, etc.)

* Kokkos: Trilinos library and programming model that provides performance
portability across diverse devises with different memory models.

* The Kokkos strategy: write an algorithm once, and change a template
parameter to get the optimal data layout for the target hardware.

Sandia
m National _
Laboratories

Performance portability details

The Kokkos programming model focuses on performance portability of
kernels.

= Kokkos uses the ExecutionSpace parameter to tailor code for a device:

1. Memory layout for the MultiDimVector (Accessor syntax v(i, j, k)
is unchanged.)

2. Parallel kernel launch directives under the Kokkos::Parallel for()call.

- New architectures handled by new ExecutionSpace parameters being
implemented in Kokkos.

. Leverage ongoing DOE investments in hardware and software

: Kokkos implementation requires separating thread-safe kernel into
separate function that is launched with integer loop index (e.g., cell).

National

Kokkos-ification of FE assembly) .

typedef Kokkos::0OpenMP ExecutionSpace;
//typedef Kokkos::CUDA ExecutionSpace;
//typedef Kokkos::Serial ExecutionSpace;
template<typename ScalarT>
vectorGrad<ScalarT>::vectorGrad()

{

Kokkos: :View<ScalarT#****, ExecutionSpace> vecGrad(“vecGrad”, numCells, numQP, numVec, numDim);

}

khkkkkkhkhkhkhkhhkhkhkkkkhkhkhkhkhhhhkhkkkkhkhkhkhkhkhhhkkkkkkik k) kk*k*%x
template<typename ScalarT>
void vectorGrad<ScalarT>::evaluateFields()

{

Kokkos::parallel for<ExecutionSpace> (numCells, *this);

}

kkhkkkkkkhkkhkhkkhkkhkhkhkhkkhhkhkhkkhkkhkhkkhkkhkhkkhkk ki) ik kkk*x*%

template<typename ScalarT>
KOKKOS INLINE FUNCTION
void vectorGrad<ScalarT>:: operator() (const int cell) const

{

feor (int-ecell = 0+ cell < numCells cellltl)

for (int gp = 0; gp < numQP; gp++) {

for (int dim = 0; dim < numVec; dim++) {
for (int i = 0; i < numDim; i++) {
for (int nd = 0; nd < numNode; nd++) {
vecGrad(cell, gp, dim, i) += val(cell, nd, dim) * basisGrad(nd, gp, i);

PP b}

Multicore scaling using Kokkos

Speedup
14
12 =
=0=Serial
10
S g Total time
S =@=Sandy Bridge
a6 (OpenMP) 18
D 16
4 CUDA
e i — 140
0 p— @ =<Intel Phi 12
9
320 3200 410
Q
of elements per workset E 8
FEA time (time without communications) 6 - -3 g
11x 13.2x
4 > « 1t A
7 2 %
6 =o=Serial o ™ s e ™, o
320 3200
5 A) # of elements per workset
O O 7y ® «=Sandy Bridge
4 T . (OpenMP)
11.9k3.7x
CUDA

time, sec
w

w,< =>&|ntel Phi

320 3200
of elements per workset

Climate models: Aeras and FELIX =

= Next generation global
atmosphere model

= Model development:
shallow water, X-Z
hydrostatic, 3D hydrostatic,
clouds, 3D non-hydrostatic

= Finite Elements for Land Ice ®
eXperiments

= First order Stokes (Glen’s
law), stress/velocity solution
of ice flow over Greenland

Aeras performance and portability

TOTAL FEA time
45

40

25 \ =$=Serial

20 \ M-OpenMP

s \ “»=CUDA

317 2536
of elements per workset

a)

time,sec

time, sec

45

40

35

w
o

N
o1

N
(@)

—
o1

0

Sandia
m National

Laboratories

FEA time - (Gather+Scatter)

P ———

~8.5x

10
: 'M

317 2536

of elements per workset
b)

~24X

FELIX performance portability resulis

Right: results for a mini-app that uses
finite element kernels from Albany/FELIX
but none of the surrounding
infrastructure.

« “# of elements” = threading index
(allows for on-node parallelism).

« # of threads required before the Phi
and GPU accelerators start to get
enough work to warrant overhead:
~100 for the Phi and ~1000 for the

time, sec

0.01

0.001 [~

0.0001

NVIDIA GPU (K20)
===|ntel Phi
==|ntel Sandy Bridge

Sandia
National _
Laboratories

—==|nitial code (1 core)

G P U 10 100 1000 10000
) # of elements
» Below: preliminary results for 3 of the finite
element assembly kernels, as part of full Albany/FELIX
code run.
Kernel Serial 16 Threads GPU | Note: Gather
OpenMP Coordinates
: : : routine requires
Viscosity Jacobian 20.39 s 2.06s 0.54s | copying data
. . from host to
Basis Functions w/ FE Transforms | 8.75 s 0.94 s 1.23s
Gather Coordinates 0.097 s 0.107 s BI7s

FELIX scalability .

Antarctica Scalability (ILU)

lul
000
1000

=100
r -10
‘1

0.1

106 Antarctica Scalability (AMG)

—oe—Total Time - I/0
—o— Linear Solve Time

104+ ; 104t —o—FEATime
—o—Time/lter.

Ic! ——O

- Weak scaling:
—o—Total Time - I/0O
—e—Linear Solve Time 8km; 5 |ayer3 tO
00t —o—FEA Time 1000 . 1 2km, 20 layers

5 o | o Timellter.

time (sec)
o
n
time (sec)
o
nN

10| 16 - —{ 1024 J e T 102 108 | 1024 [g4
cores 102 10° | cores |10* cores # cores
cores cores
beta
Strong scalability for Tkm GIS (ILU) ‘?80
' Strong scalability for 1km GIS (AMG) £10
T =1
0.1
102} i \e\ﬁ\e_\—e (EJ.OI
10° M |
g _G_I_Ota' Tg“f) '/T(_) T —o—Total Time - 1/O
° inear solve fime | ¢ —e— Linear Solve Time : .
£ o —o—FEA Time 2 g Strong scaling:
= I , E ,q0l
~—~___ —o—Time/lter. = 10 - Time/lter. 143M DOFS
\\\\\\ ——-Slope =1 =~ — —-Slope = 1
1024 16,384 J | 1024 16,384 J
1q ' 1071 ' cores
cores 10 4 cores) cores 10 4

Embedded analysis algorithms) .

Strong potential exists to improve analysis capabilities
beyond forward simulation:

= Parameter Studies; Sensitivity Analysis, Bifurcation and
Linear Stability Analysis; Optimization, Calibration, and
Inversion; Uncertainty Quantification

Ensembles of calculations are a key tool in uncertainty
analysis:

= Random sampling, stochastic collocation, ...

= Computes probability distribution of responses with
respect to probabilistic inputs

= Ranges of properties, geometries, parameters, forcing
calculations

= Ensembles typically implemented as an outer loop
around the code execution

23

Sandia
’11 National
Laboratories

Exascale embedded ensembles

Embedding ensembles moves them to an inner loop.

Performance gains are realized by:
* Amortizing costs for mesh-dependent calculations
* Supports compiler vectorization of kernels over ensembles
 Amortizing latency over larger MPl messages
 Contiguous memory access for arrays of data

s A4 e » 13 o
© 35l Residual Fill —+— b1 Jacobian Fill —+—
o] - -r:_.‘ om | -
% 3 . % Ee
: 2.9 7 : 11 _ + -
© 2 . 2. T
é 1.5 -+-+ e é 18 - N .
- —— . 4
g 1 — g 9 - -
A 8.5 + . A
B " " a2 aaal " " 8 " 1 a2 a3 aal
1 10 1 10
Enbedded Ensenble Size Enbedded Ensenble Size

Timings for computing 64 total ensemble members with varying embedded sample
sizes. Solving 3D Elasticity problem over a range of elastic modulus and Poisson ratio.
Recent evidence shows larger speedups on Phi, GPU.

Ack: E. Phipps; ASCR Equinox project

- ___
24

Embedding ensembles in FE assemb§ .

typedef Stokhos::Ensemble<double> ScalarT;

typedef Kokkos::0OpenMP ExecutionSpace;
//typedef Kokkos::CUDA ExecutionSpace;
//typedef Kokkos::Serial ExecutionSpace;
template<typename ScalarT>
vectorGrad<ScalarT>::vectorGrad()

{

Kokkos: :View<ScalarT#****, ExecutionSpace> vecGrad(“vecGrad”, numCells, numQP, numVec, numDim);

}

Rk Sk kS kS e R R Ik Sk o S kR kL S o

template<typename ScalarT>
void vectorGrad<ScalarT>::evaluateFields()
{

Kokkos::parallel for<ExecutionSpace> (numCells, *this);

}

kkhkkkkkkhkkhkhkkhkkhkhkhkhkkhhkhkhkkhkkhkhkkhkkhkhkkhkk ki) ik kkk*x*%

template<typename ScalarT>
KOKKOS INLINE FUNCTION
void vectorGrad<ScalarT>:: operator() (const int cell) const

{
feor (int-ecell = 0+ cell < numCells cellltl)
for (int gp = 0; gp < numQP; gp++) {
for (int dim = dim < numVec; dim++) {
for (int i i < numDim; i++) {
for (int nd 0; nd < numNode; nd++) {
vecGrad(cell, gp, dim, i) += val(cell, nd, dim) * basisGrad(nd, gp, i);

g
0
0

.
4
.
4

Prrrd

Sandia
’11 National
Laboratories

Summary

= Created a tightly coupled thermomechanics demonstration
problem possessing complex temperature dependent

properties

= Demonstrate proof-of-principle of parallel embedded
meshing technology on quasi-static thermomechanics
example

= Show portability of ATDM agile components on conventional
MPI, Nvidia Cuda GPUs, Intel multicore, and Intel Phi
COprocessors.

= Show principle of parallel embedded ensemble UQ
calculations using component technologies

= QOpen source: http://gahansen.github.io/Albany/

26

