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Turbulent Flow Simulations for Machine Learning
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Problem Comparison to DNS

Directly resolving turbulent flow is computationally Streamwise Velocity Turbulent Kinetic Energy

expensive. Reynolds Averaged Navier-Stokes (RANS)
simulations do not resolve turbulence exactly, but employ
empirical approximations that are computationally efficient.
These RANS approximations are often inaccurate and lead to
uncertainty that must be quantified. Machine Learning (ML) RANS
techniques have been developed to detect regions of high |
uncertainty. The ML algorithms are trained across a database .. -
of high fidelity Direct Numerical Simulations (DNS) and RANS y
simulations. The current database includes seven canonical | |
flows, such as jets in crossflow and flows around bluff bodies.

The goal of this project was to a(.zld a r.1ew f.low configuration CO nt ri b Utio N tO Data ba Seé

to the database: a converging-diverging channel.

DNS

The Mahalanobis distance, D, indicates which regions of the flow are “new” to the
database by quantifying the statistical distance between the points in the
converging-diverging channel flow and the distribution of data points in the current

Converging Diverging database.
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represent new flow regimes in the database.

) Machine Learning Results
Sle rra Fuego SEtu p The converging-diverging channel flow was added to the ML database. The ML

algorithms were used to predict in which regions of the flow the eddy viscosity
model was violated.

DNS dataset?

Sierra Fuego was used for the RANS. The simulation was

set-up to reproduce the conditions used by Laval et al. in 2.0
. [ o ° |
their DNS. 1.5 k* g S o s
* |nlet — data from channel flow DNS! 10k )
* Qutlet — constant pressure outlet os |
* Top/Bottom walls — no slip walls, i.e. u.= 0 |

* Reynolds Number of 12600 based on channel 0.00 2 4 6 8 10 12

half-height, U

3 nd k| nematic Viscosity Above are contours of velocity magnitude. Green dots indicate areas where ML algorithms predict that

max?’ RANS will have high uncertainty.

Mesh Refinement L2 Norms
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Mesh refinement across three meshes: o The ML classifiers predict that the eddy viscosity assumption breaks down in the
* 278k cells 1 boundary layer, particularly immediately upstream and downstream of the bump.
* 52932()'\';' cel IS N These results are in agreement with the fact that RANS error for mean velocity
e 2.2Mcells 2

02 f field was also greatest in the same regions. The ML classifier accuracy was 94%
on this data set.

An additional mesh of 4M e
elements is being run to complete — = .
' Number of Elements '
the study. Conclusions
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