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Abstract

Dynamic Analysis Environment (DAE) is a graphical, user-
interactive environment used to facilitate the analysis of data.
Current efforts are focused on applying DAE to the analysis of
nuclear forensics data. For this purpose, my contribution has
been to add the following functionalities to DAE: 1) the K-
nearest neighbor supervised learning algorithm, and 2)
numerous data-visualization tools to complement the principal
component analysis supervised learning method already
available in DAE.

Introduction

What is Nuclear Forensics? — Nuclear forensics is the
characterization of intercepted nuclear materials to identify
evidence of their source and intended use. The Domestic
Nuclear Detection Office (DNDO) has supported the creation of
national nuclear forensics libraries (NNFLs) of known nuclear
materials against which to compare questioned materials as
well as the development of multivariate group
inclusion/exclusion algorithms to enable the linking of
questioned materials/samples to their potential processes or
facility of origin. Significant progress has been made in the
creation of NNFLs and data analysis tools. However there has
been little work done to integrate these data sets and tools into
a single package to streamline group exclusion/inclusion
analysis. DAE accomplishes this task.

What is group inclusion/exclusion?

Inclusion: Identify a match between signatures of a questioned
sample and that of a known group.

Exclusion: Eliminate the possibility that a questioned sample
originated from a known group.
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DAE — Basic Function and Capabilities

DAE is an interactive, configurable environment that facilitates

the analysis of very large data sets though the use of

predefined analytical modules, called nodes. These nodes can

be arranged into an analytical “chain” of data processing steps.

Available nodes include:

1. Data Source — Extracts known and unknown data from files.

2. Merge Data — Combines data streams.

3. Filter Data — Reduces data based on defined parameters
(i.e. reactors or specific isotopic measurements).

4. Augment Data — Prepares PCA or KNN model based on
known/training data.

5. Relate Data — Relates test data to PCA or KNN model.

6. View Data — Displays data at any point in the analysis chain.
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A data chain in DAE consisting of two data source nodes, a merge data node, and
two filter data nodes. Green nodes have completed their functions, yellow nodes
are in the process of completing their functions, and red nodes have yet to begin.

Nuclear Forensics Data — SFCOMPO

In constructing and evaluating the performance of the PCA and
KNN group inclusion/exclusion methods, known nuclear
material data were taken from the open-source Spent Fuel
Isotopic Composition (SFCOMPOQ) database, which consists of
isotopic measurements of spent fuel samples from fourteen
different nuclear reactors from around the world.
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Principal Component Analysis (PCA)
Theory — The objective of PCA is to transform the coordinates
of a data matrix to a new set of
axes, called principal
components, which optimally
describe the data variance.
Principal components (PCs) are
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assigned to the data matrix
such that the first principal
component explains the
maximum amount of variation
possible in the data set in one
direction. Successive PCs are
defined such that they are
orthogonal to the previous PCs
and describe the maximum
amount of remaining variation in the data. Often, a small
number of PCs describe a large percentage of the variance in
the data, and subsequent PCs may be ignored. Once PCA is
performed on model data, sample data can be compared to the
model data by projecting the measurement variables of each
sample into the PC space. Sufficiently small values of the Q,
Hoteling's T2, and Hawkins’ T2 statistics indicate the sample is
consistent with the model data.

An example of PCA applied to a two-
dimensional data set. The first PC
accounts for the maximum variance in
the data set in one direction, the second
the maximum remaining variation.
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An example of comparing sample data to a PC model using Q and T? values.
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A PCA Sample to Model table output by DAE. The cells give each of 11 samples’ Q-
probability to PC models formed by data from three reactors. Higher Q-probabilities
indicate a close match with a model and are designated by brighter colors.

Additions to DAE — A number of data visualization tools have
been added to DAE to complement the existing PCA

capabilities.
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This newly-added visualization tool displays the percent variance captured by each
of the five PCs for models formed using data from three reactors. This feature allows
the user to determine how many PCs need to be retained in order to adequately
model the data. An additional tool displays both the percent variance captured by
each PC and the total variance captured up to that point by previous PCs in a bar
graph.

PCA (continued)
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A newly-added data visualization tool that plots the Q value of each sample against
its T2 value, in this case for three different PCA reactor models.

K-Nearest Neighbors (KNN)

Theory — The KNN algorithm predicts the class of an unknown

sample based on the A

majority vote of the e
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value threshold of its assigned class, the sample is deemed to
not be a member of that assigned class.

Addition to DAE — KNN is now available in DAE as a method of
group inclusion/exclusion. A “KNN Training” augment data
node allows users to choose a distance metric (i.e. Euclidean,
City Block, Minkowski, etc.) for which to compute the k nearest
neighbors of sample data points. The KNN Training augment
node both determines the goodness value threshold of each
individual class as well as performs the KNN algorithm on each
class, recording the percentage of known samples correctly
classified for each value of k, thus allowing the user to choose
an optimal value of k to use in subsequent calculations. A “KNN
Sample to Training” relate data node assigns a class and
goodness value to each unknown sample. If the goodness value
of a sample exceeds the threshold of the class to which it is
assigned, the assignment is removed.
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The KNN Sample to Training classification table output by DAE. The cells give each of
9 samples’ goodness values for classes (formed by data from three reactors) to
which they are assigned for k = 3. Lower (or negative) goodness values indicate a
close match with a class and are designated by brighter colors. A value of NaN in a
cell indicates that a sample has not been assigned to the corresponding class.
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Future Plans

Data visualization tools to complement the new KNN group
inclusion/exclusion method will be added.

Work will also be performed to evaluate and compare the
success with which the PCA and KNN algorithms in DAE relate

questioned data samples to reactors in the SFCOMPO database.
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