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scraps: an open-source Python-based analysis
package for analyzing and plotting superconducting

resonator data
Faustin W. Carter, Trupti Khaire, Valentyn Novosad, and Clarence Chang

Abstract—We present “scraps” (SuperConducting Analysis
and Plotting Software), a Python package designed to aid in the
analysis and visualization of large amounts of superconducting
resonator data, specifically complex transmission as a function of
frequency, acquired at many different temperatures and driving
powers. The package includes a least-squares fitting engine as
well as a Monte-Carlo Markov Chain sampler for sampling the
posterior distribution given priors, marginalizing over nuisance
parameters, and estimating covariances. A set of plotting tools
for generating publication-quality figures is also provided in
the package. We discuss the functionality of the software and
provide some examples of its utility on data collected from
a niobium-nitride coplanar waveguide resonator fabricated at
Argonne National Laboratory.

Index Terms—Superconducting resonators, Microwave mea-
surements, Superconducting microwave devices

I. INTRODUCTION

WE BEGIN by assuming that the reader is sufficiently
interested in superconducting micro-resonators that the

introduction of a new tool to help manage, analyze, and
visualize large quantities of experimental data will be viewed
with enthusiasm, and we proceed accordingly by dispensing
with an overarching introduction to the field. Here we present
our open-source Python packaged called scraps, which stands
for “SuperConducting Resonator Analaysis and Plotting Soft-
ware”. scraps is specifically designed to automate the load-
ing, fitting, and plotting of large amounts of transmission data
with two independent variables (temperature and input power),
while leaving the details of the models used in the fitting under
the control of the user. It contains both a least-squares fitting
engine as well as a Monte-Carlo Markov Chain (MCMC)
sampler for generating posterior distributions for the param-
eters through Bayesian inference. We present an overview
of the package features in this paper, using as an example,
data taken from a niobium-nitride (NbN) coplanar-waveguide
(CPW) micro-resonator chip fabricated at Argonne National
Laboratory (ANL). We also briefly discuss the experimental
setup we use and provide permanent links to the raw data,
the Python scripts (and an archive of the current version of
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scraps) used to create each of the figures in this paper [1],
[2].

II. THE TARGET EXPERIMENT

In the target experiment that scraps was developed to
assist with, one (or more) superconducting resonator(s) are
capacitively coupled to a transmission line and mounted
on the cold-plate of a cryostat. The complex transmission
S21 = I+ iQ (where I and Q are the in-phase and quadrature
components, respectively) is measured at several different
frequencies (2000 in our case), either with a pair of mixers or
a vector network analyzer. The resulting data product is a set
of three numbers (f , I , Q) at each of the frequency points and
will be referred to as a “trace” hereafter. We use a LabVEIWTM

program to sweep the temperature and power of our High
Precision Devices Olympus model adiabatic demagnetization
cryostat, generating transmission measurements at several
hundred temperature/power combinations. (The LabVIEWTM

control software for this cryostat was also developed from
scratch at Argonne by one of the authors and is available in
its entirety at [3], [4].)

Once the experimental data has been loaded into scraps,
high-quality figures can be generated easily. Figure 1a shows
I vs. Q, magnitude, and phase of one of the resonators from
our NbN chip at several different temperatures (at fixed input
power). The black dashed lines superimposed on the I vs. Q
curves are least-squares fits to the included resonator model
(see section III-B). Figure 1c shows the resonant frequencies
(f0) and internal quality factors (Qi) of the resonator (extracted
from the fits shown in Fig. 1a) as functions of temperature
at several different input powers. Finally, Fig. 1b shows the
parameter covariances (via MCMC sampling with flat priors)
of one of the fits shown in Fig. 1a. Figures 1a, 1c, 2a, and
2b were generated directly within scraps and have not been
subsequently edited in any way. Figures 1b, 2c, and 2d used a
package called pygtc, which was also developed at ANL [5].

III. OVERVIEW OF SCRAPS

Development of scraps happens at GitHub in a public
repository [6]. Documentation is hosted at ReadTheDocs [7],
and several example tutorials have been provided to help a
new user get up to speed. The latest release is hosted on PyPi,
the Python Package Index [8], and installable with pip, the
standard package manager for Python packages [9]. Anyone is
welcome to download, install, reuse, and/or modify the source
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Fig. 1. a) I vs Q, magnitude (uncalibrated power axis), and phase of a NbN CPW resonator at several different temperatures and fixed input power. The
dashed black lines in the first panel are best fits. b) Parameter covariances generated via MCMC sampling of the posterior distribution; contours are at 1, 2,
and 3 sigma. The dashed black lines indicate the best-fit values generated by the least-squares routine. Inset shows the fit model MIQ(f). c) f0 and Qi as
functions of temperature at several different input powers. Power indicated is the power output from the VNA; power at the resonator was ∼60 dB lower.

code. Anyone that wishes to participate in development is
encouraged to and should contact the authors either through
GitHub or using the contact info on the title page of this paper.

The software handles three primary functions: 1. Loading,
managing, organizing, and accessing data; 2. Fitting data
to models and generating posterior distributions for the pa-
rameters; 3. Plotting and exporting the results of 1 and 2.
Our design philosophy has been to provide a framework to
handle the heavy lifting, but to otherwise stay out of the
way of the user. In practice this means that scraps is not
a standalone application for a lay-user. Rather, it is a set
of tools that extends the flexibility and functionality of the
Python language and is designed to be integrated into the

analysis development at the code level. We have found that
using scraps in conjunction with a JuPyter notebook running
IPython [10] is a particularly efficient way to quickly create
an analysis pipeline that is easy to document, share, and reuse.
To underscore this point, the public GitHub repository [6]
contains the JuPyter notebook used to make every figure in
this paper and the documentation [7] features that notebook
as “Example 3”. A permanent archive of the same, including
the raw data, is hosted at Zenodo [1].

A. Data organization and management

The scraps package is built on the Resonator object.
There is one Resonator object per data trace in an experiment
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(several hundred in the above example). This object has
attributes describing the experimental data, as well as any
state variables like temperature or power, and contains the
necessary infrastructure to run least-squares fitting and MCMC
sampling on the constituent data. Results of fits are stored in
the Resonator object. The most convenient way to work with
a collection of Resonator objects is to make a Python list
object out of them. scraps provides a tool that will create
a list of Resonator objects from raw data, and another that
will index such a list by temperature and power, making it
easy to iterate through a list and perform operations on selected
objects. The data-loading tool takes, as an argument, a custom
function that maps the user’s data file format to the scraps
format, and is therefore completely data-format agnostic (at the
expense of some extra work by the user). A default mapping
function for output generated by most Agilent/Keysight VNAs
is provided with the distribution and serves as a template.

The next level of hierarchy is the ResonatorSweep object.
A ResonatorSweep object subclasses a Python dict object,
adding a custom initialization method. It takes a list of
Resonator objects and extracts all of the fit information
into two-dimensional data structures. The core data-structure
functionality is provided by the pandas package [11]. One
ResonatorSweep object will contain such a structure for
every parameter in the model used to fit the original trace
data. The ResonatorSweep object is indexable by temperature
and power, can do interpolation to fill in missing points, may
be sliced to return any subset of data desired, and gracefully
handles NaN (not a number) or None entries. Finally, the
object is able to apply external fit models to the data and
stores the results of those fits locally within the object.

Loading data in from hundreds of raw text files is a com-
putationally expensive activity that shouldn’t need to be done
more than once. Resonator and ResonatorSweep objects
can be rapidly cached to, and loaded from, disk using Python’s
cPickle package, which stores Python objects to a binary
file. A corollary of this is that it is easy to enable multithread-
ing with scraps. The only hardware requirement for using
scraps is sufficient RAM to store an entire experiment in
memory. Our NbN example chip has three physical resonators
on it and a 2000 point trace was measured at 54 temperatures
and 6 input powers for each resonator for a total of just under
1000 total traces. scraps requires about 350 MB of disk space
to cache the entire set of data, including fits.

B. Fitting models to data

The software is designed for flexibility in model choice
and application. A scraps model consists of two user-defined
functions. One function specifies parameter names and calcu-
lates initial guesses. The other takes a set of parameters and the
data and calculates a residual (weighted or otherwise). scraps
then handles organizing and plotting the results, primarily
through the creation of a ResonatorSweep object as described
above. We include a model for fitting complex transmission
data to an asymmetric Lorentzian (see inset of Fig. 1b) as well
as a very basic model for fitting f0 and Qi shifts with power
and temperature.

1) Fitting engines: There are two fitting engines built into
scraps. The first is a Levenberg-Marquardt least-squares fit-
ting routine that wraps the lmfit package [12]. The second is
a Monte-Carlo Markov Chain (MCMC) sampler that assumes
the residual calculated by the fit function is Gaussian, accepts
an optional prior distribution for each parameter, and generates
a posterior distribution for each parameter through Bayesian
inference. scraps implements MCMC sampling through the
emcee package [13]. The least-squares fitter is very fast,
but can become stuck in local minima within the parameter
space. The MCMC sampler takes more time, but does a better
job exploring the parameter space and also generates the
covariances of all the fit parameters, allowing one to extract
a maximum-likelihood estimate for each parameter. It is also
possible to specify prior distributions for any parameter using
the MCMC sampler (the default is a flat prior), a feature that
is not possible in a least-squares minimization.

The fitting engines are accessed through either the
Resonator object (for fitting transmission data as a function
of frequency and generating primary fit parameters) or the
ResonatorSweep object (for fitting primary fit parameters as
functions of temperature and/or power). In either implemen-
tation one may choose to use the least-squares routine, the
MCMC routine, or both. The ResonatorSweep object can
simultaneously fit any number of primary parameters (f0, Qi,
etc.) vs. temperature and power, each to a different model,
while constraining shared parameters to have the same value
between models.

2) Included models: For fitting transmission data, scraps
includes a model called cmplxIQ that fits an asymmetric
Lorentzian model to the I and Q data vs frequency (see inset
of Fig. 1b for equation). For a derivation of the asymmetric
Lorentzian equation, see [14]. This model also has an option
to compensate for electrical delay, mixer offset, and slowly-
varying transmission-line resonances. Figure 1c shows an
example of this model applied to a list of Resonator objects
using the least-squares engine. Figure 1b shows the posteriors
for the highest-temperature fit calculated with the MCMC
engine using a flat prior.

For most superconducting materials, the primary causes of
f0 and Qi shift in a given resonator are two-level system
behavior (TLS) at low temperatures and low powers [15],
and changing surface impedance as the temperature nears the
critical temperature [16]–[22]. The latter is typically known as
the Mattis-Bardeen effect (MBD). Although analytic expres-
sions exist for limiting cases of each effect, generally a full
numerical calculation must be done to describe a real material.
We provide a simple fitting model for these two effects as an
example for this paper, but we caution users not to apply it
blindly. For a description of the model, see [23].

As a demonstration, we fit f0 and Qi (independently from
each other) of our NbN resonator to the above model (that
combines TLS and MBD behavior). It is likely that the
approximations made in this model do not apply to NbN
(no dependence on mean-free-path or coherence length at a
minimum), and so the numerical values of the fit parameters
should be viewed with skepticism. However, the model quali-
tatively captures the behavior of the data and so is useful as an
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(a) (b)

(c) (d)

Fig. 2. The top two panels show the f0 and Qi surfaces as functions of temperature and power. The semi-transparent colored surfaces are produced by fitting
the S21 traces at several different temperatures and powers. The black dashed wire-frame surfaces are the best fits (independant, not joint) to the 2D surfaces
from the least-squares fitting engine. The bottom two panels show the parameter covariances, sampled with the MCMC engine, for f0 (blue) and Qi (green)
for parameters that are shared by the two fit models. The black dashed lines correspond to the best-fit values from the least-squares algorithm.

example. The results of these fits are displayed in Fig. 2. The
top panels show the f0 and Qi surfaces (as functions of tem-
perature and power). The dashed black meshes superimposed
on the surfaces correspond to the results of the fits. The bottom
panels show the posteriors (given a flat prior), calculated by
the MCMC sampler, for those parameters shared between the
two models. Although the parameter values returned by the
two models agree within an order of magnitude, it is clear
that a joint fit would do little to resolve the tension, and so
we do not demonstrate that here.

C. Plotting data

One of the core tenets of scraps is that it should be easy to
make a beautiful plot for a paper, poster, or group meeting. To
this end, we have included several plotting routines to generate
a number of useful plots. All the plotting routines are built on
the matplotlib package [24]. Usage is as simple as calling
a plot function, passing it a list of Resonator objects or a
ResonatorSweep object and specifying a few options. Using
the functions included in the plotting tools it is possible to
view almost any combination of data along any axis. scraps
was used to generate Figs. 1a, 1c, 2a, and 2b without external
editing.

IV. CONCLUSION AND FUTURE OF DEVELOPMENT

The scraps package is undergoing continual development
at Argonne as we work to extend it to satisfy our analysis and
plotting needs. The next feature we are working on is adding
the ability to handle noise data. We are also considering ex-
tending it to handle magnetic field as an independent variable,
in addition to temperature and input power, given that recent
conversations with colleagues, and our own experimental data
(unpublished), suggest that the resonator quality factor is a
strong function of magnetic field under certain circumstances.
Finally, we are working towards adding “good” models that are
geared towards specific geometries and materials; this process
in particular would benefit from collaboration!

We conclude by inviting the superconducting resonator
community to install, test, modify, contribute to, and critique
our new package. We also remind the reader that all of the
code used to analyze the data and make plots for this paper,
along with the raw data, is available at [1] and [2]. The latest
version of the code is at [6].
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