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ABSTRACT

For film cooling of combustor linings and turbine blades, it
is critical to be able to accurately model jets-in-crossflow. Cur-
rent Reynolds Averaged Navier Stokes (RANS) models often give
unsatisfactory predictions in these flows, due in large part to
model form error, which cannot be resolved through calibration
or tuning of model coefficients. The Boussinesq hypothesis, upon
which most two-equation RANS models rely, posits the existence
of a non-negative scalar eddy viscosity, which gives a linear rela-
tion between the Reynolds stresses and the mean strain rate. This
model is rigorously analyzed in the context of a jet-in-crossflow
using the high fidelity Large Eddy Simulation data of Ruiz et al.
(2015), as well as RANS k-¢€ results for the same flow. It is shown
that the RANS models fail to accurately represent the Reynolds
stress anisotropy in the injection hole, along the wall, and on the
lee side of the jet. Machine learning methods are developed to
provide improved predictions of the Reynolds stress anisotropy
in this flow.
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k  Turbulent kinetic energy
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A i component of the velocity fluctuations

U; i'" component of the mean velocity field

Uje: Bulk jet velocity

U.. Freestream crossflow velocity

xp,yp Barycentric coordinates

& Turbulent dissipation rate

II, Second invariant of the Reynolds stress anisotropy tensor
A Eigenvalue of the Reynolds stress anisotropy tensor
p Density

Vv, Eddy viscosity
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1 INTRODUCTION

Jets-in-crossflow occur in multiple contexts in turbomachin-
ery flows, including in the film cooling of turbine blades and the
combustor lining, and in fuel injection. Multiple studies have
shown that current Reynolds Averaged Navier Stokes (RANS)
models are insufficient for accurate heat transfer and velocity
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predictions in these flows [1-6]. Hoda and Acharya [1] evalu-
ated several RANS models for prediction of a jet-in-crossflow,
and reported that all models over-predicted the velocity on the
lee-side of the jet. He et al. [2] reported that their k-€ RANS sim-
ulation under-predicted the turbulence intensity in their jet-in-
crossflow configuration. Muppidi and Mahesh [3] suggested that
many RANS models would struggle with jets-in-crossflow be-
cause of the non-isotropic, non-equilibrium, three-dimensional
nature of the turbulence in these flows. Coletti et al. [4] com-
pared experimental results to realizable k-€ RANS results for an
inclined jet-in-crossflow and showed that RANS under-predicted
the strength of the counter rotating vortex pair and significantly
over-predicted the centerline film cooling effectiveness. Harrison
and Bogard [5] compared heat transfer predictions for multiple
RANS turbulence models for a film cooling flow and showed that
no model was accurate in all regions of the flow. Ling et al. [7]
analyzed Large Eddy Simulation (LES) results for an inclined
jet-in-crossflow and showed that a fixed turbulent Prandtl num-
ber paired with the gradient diffusion hypothesis would not ac-
curately predict the magnitude or direction of the turbulent heat
fluxes. These results reflect the general consensus that current
RANS models do not yield satisfactory jet-in-crossflow predic-
tions.

Several efforts have been made to improve RANS predic-
tions for jets-in-crossflow. Ray et al. [8, 9] used Bayesian meth-
ods to calibrate k-& model parameters for a jet-in-crossflow and
showed improved accuracy with this calibrated model. However,
even the calibrated model was not accurate in all regions of the
flow, particularly at higher blowing ratios. Ling et al. [10] used
experimental results to optimize the turbulent diffusivity for an
inclined jet-in-crossflow, and demonstrated improved, but still
imperfect, heat transfer predictions with this tuned diffusivity.
However, simply tuning the model parameters does not address
model form uncertainty, which is the uncertainty due to the un-
derlying model assumptions. Therefore, the success of calibrated
RANS models will continue to be limited in flows where the
model assumptions are invalid.

More complex RANS models have also been investigated in
an effort to achieve improved predictions. Hoda and Acharya [1]
evaluated two non-linear eddy viscosity models for jet-in-
crossflow simulations and reported that neither produced sig-
nificantly improved accuracy. They attributed this unimproved
accuracy to the fact that most non-linear models are calibrated
to simple wall-bounded flows, quite unlike the jet-in-crossflow.
Kaszeta and Simon used triple wire anemometry to measure the
Reynolds stresses in a film cooling configuration and revealed
significant anisotropy in the stresses [11]. Subsequent efforts to
implement more sophisticated RANS models capable of more
accurately modeling this anisotropy have met with some suc-
cess. Rajabi-Zagarabadi and Bazdidi-Tehrani [12] demonstrated
improved heat transfer predictions using their implicit algebraic
heat transfer model. Similarly, Azzi and Lakehal [13] showed

that using anisotropic eddy viscosity and eddy diffusivity mod-
els led to improved predictions of the lateral spread of the film
coolant. These studies show that understanding which assump-
tions are violated in key regions of the flow can lead to improved
model selection and enhanced predictivity.

Given the observations above, it is useful to investigate in
more detail the validity of RANS assumptions for the jet-in-
crossflow. This paper will focus on RANS models that rely on
the Boussinesq hypothesis of a linear eddy viscosity

—_ 2
u;u’j = —2VZS,']‘ + §k5ij~ (1)

In this equation, uﬁu; is the Reynolds stress tensor, V; is the
eddy viscosity, £ is the turbulent kinetic energy, and S;; is the
mean strain rate tensor. Implicit in Eq.(1) are two underlying
assumptions: i) the eddy viscosity is non-negative, and ii) the
mean strain rate tensor adequately captures the anisotropy of the
Reynolds stresses. Once it has been determined where these
model assumptions are violated, it would be desirable to correct
the models to mitigate these sources of model form error. This
paper will present machine learning methods that can be used to
determine more accurate closures for the Reynolds stresses.

Machine learning encompasses a broad set of data-driven al-
gorithms, including familiar methods such as linear regression
as well as more advanced concepts such as neural networks,
random forests, and support vector machines. These methods
have been broadly applied in many fields, such as finance [14],
marketing [15], and image recognition [16]. Machine learning
methods have also recently been employed for several turbulence
modeling applications. Tracey et al. [17] used non-parametric
data-driven methods to model the Reynolds stress anisotropy in
a converging diverging channel and a non-equilibrium boundary
layer. These methods showed improved anisotropy predictions
when tested on the same flow on which they were trained, but
significant inaccuracy on other flows. Duraisamy et al. [18] used
neural networks to predict an intermittency factor to improve tur-
bulence transition simulations. Ling and Templeton [19] devel-
oped a suite of machine learning classifiers that can predict when
different RANS modeling assumptions are violated. These clas-
sifiers were shown capable of generalizing to flows significantly
different from those on which they were trained.

In this paper, the highly resolved LES jet-in-crossflow re-
sults of Ruiz et al. [20] and corresponding RANS results for the
same flow are analyzed in depth. The objective is to determine
in which regions of this flow the various RANS eddy viscos-
ity assumptions are violated, and to explore the potential of ma-
chine learning techniques to provide improved models. Section 2
presents the flow configuration and computational set-up for the
LES and RANS simulations. Section 3 presents analysis of the
LES results that shows in which regions of the flow the RANS
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FIGURE 1. Schematic of LES flow configuration showing instanta-
neous isosurfaces of the Q-criterion.

Boussinesq assumption is violated. In Section 4, the ability of
Random Forests to improve the Reynolds stress anisotropy pre-
dictions is explored, and Section 5 presents the conclusions of
these investigations.

2 Computational Methodology
2.1 Flow Configuration

The flow configuration is based on that of the experiments
of Su and Mungal [21], and is shown in Figure 1. The jet is
injected perpendicularly into the crossflow and the jet Reynolds
number based on the jet bulk velocity Uj; and hole diameter d is

5000. The blowing ratio is ’22—5’:‘ = 6.1 and the density ratio is

Piet — 1.07. The flow is in a low-Mach, incompressible regime.

In this configuration, the x-axis is aligned with the jet injection,
the y-axis is aligned with the crossflow direction, and the z-axis
is in the spanwise direction.

2.2 LES Set-up

Details of the LES computational methodology can be found
in Ref. [20]. A brief synopsis will be provided here. The LES
was performed using RAPTOR [22], an in-house solver that uses
a finite-volume framework with non-dissipative numerical meth-
ods. A mixed dynamic Smagorinksy SGS model was employed
to model the subgrid-scale (SGS) stresses.

A fine isotropic and uniform grid spacing (A = d/15) was
used, which yielded a mesh containing 190 million cells. The

jet pipe was 10d long, and a fully developed velocity profile was
prescribed at the jet inlet. The channel inlet was set 5d upstream
of the injection hole, and a Blasius profile was used to prescribe
the mean streamwise velocity at the channel inlet. The boundary
layer thickness, & = 1.025d, was set to match the conditions of
the experiments of Su and Mungal [21].

Figure 1 shows an instantaneous isosurface of the Q-
criterion calculated by this LES. A wide range of structures were
identified, including ring-vortices, v-shape secondary instabili-
ties, the counter-rotating vortex-pair, hair-pin vortices at the wall,
and far-field turbulence. The complex turbulence dynamics ex-
hibited in this LES reinforce the difficulty associated with mod-
eling this flow using RANS.

In Ref. [20], a extensive validation of the LES results with
experimental data was performed, which demonstrated that tur-
bulence is accurately resolved by this high-fidelity LES. Figure 2
presents profiles of mean velocity from the LES and from the
experiments of Su and Mungal [21]. The mean relative error
between the numerical results and the hot-wire measurements
was 7% across the profile locations shown, confirming the good
agreement between the LES and experiment. An a posteriori
analysis also showed that on average 99% of the turbulent ki-
netic energy was directly resolved and only 1% of the turbulent
kinetic energy was modeled via the SGS model, indicating that
this was a well-resolved simulation. This high fidelity simula-
tion data was critical in this analysis, since the analysis required
knowledge of all components of the Reynolds stresses and ve-
locity gradients throughout the flow; experimental acquisition of
such a complete data set would have been infeasible.

2.3 RANS Set-up

The RANS simulation has been previously reported in
Ref. [19]. An in-house Sandia solver, Sierra Fuego, was used
to run the RANS simulation using the k-¢€ turbulence model. The
same computational domain as in the LES was used, with the
same mean flow boundary conditions. An unstructured mesh
with 5-million hexahedral cells was used, as shown in Fig. 3.
A mesh refinement study was conducted, and it was shown that
when RANS simulations run on a 7.5-million cell mesh were
compared to those run on the 5-million cell mesh, the turbulent
kinetic energy and mean velocity field both differed by less than
3% between the two meshes. These results confirmed grid con-
vergence on the 5-million cell mesh.

3 Analysis of Model Form Uncertainty
3.1 Comparison of RANS and LES Results

It is useful to begin by comparing the RANS and LES results
to determine to what extent RANS is able to accurately capture
the flow field and turbulence quantities. Figure 4 shows contours
of x-velocity and turbulent kinetic energy k from LES and RANS
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FIGURE 2. Time average profiles of the velocity magnitude in the jet center plane (z/d=0). Reference data labeled “Exp” were extracted from the

experiment of Su and Mungal [21].
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FIGURE 3. Zoomed-in view of near-injection region of mesh used
for RANS simulations

in a plane located at z = 0.25d. The contours are shown at this
plane instead of the mid-plane at z = 0 in order to avoid the singu-
larities and atypical behavior that are often observed at symmetry

planes. As this figure shows, RANS over-predicts the penetration
of the jet into the cross flow. This over-prediction could be due
to under-prediction of the turbulent mixing in the near-injection
region, as indicated by the severely under-predicted levels of tur-
bulent kinetic energy in this region. These results are in agree-
ment with those of He et al. [2], who also reported that RANS k-¢
under-predicted the turbulence intensity in their jet-in-crossflow
configuration. In the next section, the root causes of these inac-
curacies are investigated.

3.2 Violation of Key RANS Assumptions

In order to determine the cause of the inaccurate RANS pre-
dictions, it is useful to analyze when different RANS model as-
sumptions are violated. Many of these assumptions can be di-
rectly evaluated using the LES data.

One key assumption common to all eddy viscosity models
is that the eddy viscosity is non-negative. Indeed, in k-& models,

Cuk? .
Vv, = “T, where C,; is a model parameter, commonly set at a
value of 0.09. In this formulation, v; is guaranteed to be positive,
since € is restricted to be positive in most solvers. However, in
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FIGURE 4. Contours of x-velocity (a,b) and turbulent kinetic energy (c,d) as predicted by LES (a,c) and RANS (b,d). Isocontour lines super-imposed
in gray. The velocity and turbulent kinetic energy have been non-dimensionalized with the mean free stream velocity Us... Contours shown in a spanwise

plane at z = 0.25d.

real flows, it is possible for momentum to be transported counter
to a velocity gradient, leading to negative eddy viscosities. An
eddy viscosity field can be extracted from the LES as [7,23]

v —USij + 3K8;Si; @
' 28kSk ’

where

—_ 2
ugu'j = u;ulj,res + ngGS&'j — 2VI,SGSSij- 3)

In Eq.(3), ugu}’m are the resolved Reynolds stresses, and ksgs
and V; sGs are the SGS turbulent kinetic energy and turbulent vis-
cosity, respectively. Because the LES is highly resolved, the SGS

contribution to the Reynolds stresses is minimal (= 1%).

Figure 5 shows contours of the extracted eddy viscosity. As
shown in the figure, there are significant regions of this flow with
negative eddy viscosities. The eddy viscosity is negative in the
near wall region downstream of injection, as well as in the shear
layer on the lee-side of the jet. These results show that in these
regions, an eddy viscosity model will not accurately capture the
turbulent transport. Analysis of the cause of the negative eddy
viscosity on the lee-side of the jet suggests that it is due in part
to anisotropy in the normal stresses in this region. The normal
Reynolds stress in the x-direction wju; is greater than %k and
S = % is greater than O on the lee-side of the jet, leading to the
calculation of a negative eddy viscosity. This anisotropy is not
unexpected given that previous researchers have noted the pres-
ence of large coherent vortices in jet-in-crossflow wakes [24].

A related assumption in the Boussinesq hypothesis (Eq.(1))
is that the mean strain rate tensor accurately captures the

Reynolds stress anisotropy. The non-dimensional Reynolds
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FIGURE 5. Contours of eddy viscosity, non-dimensionalized by Us.
and d. Regions of negative eddy viscosity are outlined with solid lines.

stress anisotropy tensor a;; is defined as

0y 5~ 3k @

Based on the Boussinesq hypothesis, RANS predicts that

—ViSij

aijRANS = —— - ©)

One method of assessing the accuracy of the RANS
anisotropy predictions is to visualize the anisotropy on a barycen-
tric map [25]. The barycentric map plots the Reynolds stress
anisotropy on a triangle that represents the realizable states
of turbulence. The top corner of the triangle represents 3-
component turbulence, the bottom left corner represents 2-
component turbulence, and the bottom right corner represents
I-component turbulence. A schematic of this map is shown in
Fig. 6. This figure also shows a dashed line, representing plane
strain states of the Reynolds stresses. In 2-D flow, RANS would
predict the Reynolds stresses to lie entirely along this dashed line.

Figure 7(a, b) shows the barycentric maps of the Reynolds
stress anisotropy, both as calculated using LES, and as predicted
by RANS, for randomly selected points in this flow. As these
plots show, the RANS model does a poor job of predicting the
Reynolds stress anisotropy in this flow, predicting far too many
points lying near the 3-component limit at the top of the trian-
gle, and not enough points in the 1-component and 2-component
limits at the bottom corners of the triangle.

In order to visualize in which regions of the flow RANS pre-

3 component

2 componenf 1 component

FIGURE 6. Schematic of the barycentric map

dicts the anisotropy poorly, Figure 8(a, b) shows contours of the
second invariant of the anisotropy tensor Il, = g;;a; as predicted
by RANS and LES. This invariant is a useful indicator of the
degree of stress anisotropy: it ranges in value from O (indicat-
ing isotropic turbulence) up to 2/3 (indicating a high degree of
anisotropy) [26,27]. As Fig. 8 demonstrates, RANS cannot satis-
factorily model the Reynolds stress anisotropy. It misses several
regions of high anisotropy along the wall, in the injection hole,
upstream of the jet, and on the lee-side of the jet. It also predicts
falsely high values of II, in the upstream shear layer. Based on
these results, it is clear that there is significant room for improve-
ment in the RANS predictions of the Reynolds stress anisotropy.

4 Machine Learning for Reynolds Stress Anisotropy

Predictions
4.1 Machine Learning Algorithm

Machine learning algorithms are data-driven methods that
can be applied for clustering, classification, and regression [16].
In the present study, Random Forest (RF) regressors were em-
ployed to predict the barycentric coordinates (xp,yp) of the
Reynolds stress anisotropy. This algorithm uses supervised
learning: the model is trained on data for which the correct an-
swer is known. The training data used in this study are presented
in Section 4.2. Random Forests are composed of an ensemble
of binary decision trees. Each decision tree uses an if-then logic
to categorize points based on a series of binary branches. While
individual decision trees are susceptible to over-fitting, ensem-
bles of multiple decision trees have been shown to be both ro-
bust and high-performing [28]. Random Forests are ensembles
of decision trees where each tree is trained on a random subset
of the training data and the random subset is sampled with re-
placement from the original training data in a strategy known as
bagging [29].

Each tree in the ensemble was allowed to grow to its full
depth, allowing for maximal tree diversity. Therefore, the only
hyper-parameter for this algorithm was the number of trees in the
ensemble. In general, the performance of the RF will improve as
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FIGURE 8. Contours of the second anisotropy invariant I, from (a) LES, (b) RANS, and (c) Random Forest predictions in a plane at z = 0.25d.

the number of trees in the ensemble grows larger, but with dimin-
ishing returns. On the other hand, a larger ensemble size imposes
larger computational cost and memory usage requirements. Fig-
ure 9 shows RF model error in predicting xp as a function of
ensemble size. As shown in the figure, there is a general trend of
decrease in error as the ensemble size increases, but for ensemble
sizes greater than 50, there is not a strong dependence of error on
size. The ensemble size was therefore set to 100 to avoid any
strong dependence of performance on ensemble size.

While there are many possible choices of regression algo-

rithms, RF regressors were chosen for this application because
they are robust to noise, they do not require input feature pre-
processing or feature selection, they have only one tunable hyper-
parameter, and they can handle the non-linear decision bound-
aries that would be expected in turbulence modeling. In compar-
ison, linear regression, while robust and simple, is limited in its
ability to handle non-linear behavior. Neural networks, on the
other hand, are well suited to non-linear decision boundaries, but
have many tunable hyper-parameters such as network size, ar-
chitecture, regularization scheme, and activation function. Addi-
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tionally, neural networks can be very computationally intensive
to train because training them requires iteratively optimizing a
non-convex cost function. Ling and Templeton [19] showed that
RF classifiers performed well in comparison to Adaboost Deci-
sion Trees and Support Vector Machines in detecting regions of
high RANS uncertainty. RFs, therefore, represent an attractive
balance between robustness, ease-of-implementation, and high
performance that makes them suitable for this early effort at ap-
plying machine learning methods to turbulence modeling.

4.2 Training Data

If the machine learning model were trained on the same jet-
in-crossflow configuration upon which it was tested, that would
provide limited insight into the ability of the model to generalize
to new flows for which high fidelity results may not be available.
Therefore, the machine learning model was trained on data sets
from two very different flows: flow around a wall-mounted cube
and fully developed turbulent duct flow. These two data sets were
chosen because there is Direct Numerical Simulation data avail-
able for both flows, and they contain many of the relevant flow
regimes.

The flow around the wall-mounted cube data has been pre-
viously presented by Rossi et al. [30,31]. The Reynolds number
was 5,000, based on the cube height and mean free stream veloc-
ity. This data set has regions of stagnation and impingement on
the upstream face of the cube, flow curvature, and separation and
re-attachment on the leeward side of the cube. It therefore con-
tains many of the challenging three-dimensional and anisotropic
regimes that are encountered in jets-in-crossflow.

The duct flow DNS data was presented by Pinelli et al. [32],
and represents a square duct at a Reynolds number of 3,500 based
on the channel half-height and streamwise bulk velocity. This
flow has stress-driven corner vortices that the linear Boussinesq
hypothesis model fails to predict. This configuration is therefore
a good example of a flow where Reynolds stress anisotropy plays
a crucial role in determining key flow structures.

For both of these flows, DNS and RANS k — € data were
available. The training data were composed of 5,000 randomly
sampled points from each of these two flows, for 10,000 total
training points.

4.3 Machine Learning Inputs and Outputs

The inputs to the machine learning algorithm were local flow
variables from the RANS simulations. The available RANS lo-
cal flow variables included the mean velocity, the mean velocity
gradient, the turbulent kinetic energy, the turbulent kinetic en-
ergy gradient, the turbulent dissipation rate, the density, the pres-
sure gradient, the molecular and turbulent viscosities, and the
distance to the nearest wall. While it would have been possible
to use these raw flow variables as inputs to the machine learning
model, the resulting model would have been unlikely to gener-
alize well, since those raw variables are neither non-dimensional
nor Galilean invariant.

Ling et al. [33] described a procedure for creating a basis of
features that respect invariance properties using concepts from
invariant theory and representation theory. This methodology
was used to construct a basis of 49 rotationally invariant, trans-
lationally invariant, and non-dimensional input features based
on the tensor, vector, and scalar raw local flow variables from
RANS. While conventional eddy viscosity models predict the
Reynolds stresses as a function of only &, € and the mean veloc-
ity gradient, the machine learning model had information on the
mean pressure gradient and the turbulent kinetic energy gradient
as well.

The output from the RF model was a real number prediction
for the barycentric coordinates (xg,yg). These coordinates fully
define the Reynolds stress anisotropy eigenvalues A;, 43,43 by
the following relations [25]:

3 1
xB:kl—AQ‘i‘EAQ,‘FE (6)
3
B = %(313-1- 1) (7
0O=Ah+A+2 )

The RF model predictions of the barycentric coordinates could
therefore be used to modify the eigenvalues of the Reynolds
stress anisotropy tensor in order to construct a more accurate
Reynolds stress closure. At each point in the flow field, the ma-
chine learning model uses the RANS local flow variables to make
a prediction about the local Reynolds stress anisotropy. In or-
der to ensure realizability, all RF predictions were constrained
to lie in the triangle that delineates the realizable region in the
barycentric map. Predictions outside this triangle were moved to
the closest point within the triangle.

The models were trained on the aforementioned data from
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the cube in crossflow and duct flow data sets, and tested on the
Ruiz et al. [20] jet-in-crossflow data set.

4.4 Machine Learning Results

As was discussed in Section 3, the Boussinesq hypothesis
leads to inaccurate predictions of the Reynolds stress anisotropy.
Visualizations of the barycentric map in Fig. 7(b) showed
that the RANS predictions significantly under-predicted the 1-
component and 2-component regions of the flow. Figure 7(c)
shows the corresponding RF predictions of the barycentric coor-
dinates. It is clear that the RF is not able to completely replicate
the LES results for the barycentric map. Nevertheless, the RF
does successfully predict the tendency of some regions of the
flow to have turbulence approaching the 1-component limit. In
order to quantitatively compare the accuracy of the RANS and
RF predictions for (xg,yg), it is useful to evaluate the relative
prediction errors Ey, and Ey,:

Y |XB pred; — XB LES;|
1

Ey = )
xB ¥ |xp Les |
1
Y |VB pred; — YBLES; |
E,, = - (10)

L |vB.LEs; |
l

In Eq.(10) the sum is over all the points in the test data set
and (X pred, VB pred) denote the predicted values of the barycen-
tric coordinates, either from RANS or the RF. For the RANS
predictions, E,, = 0.25 and E), = 0.53, reflecting the high error
in the RANS predictions of the anisotropy. For the RF predic-
tions, Ey, = 0.23 and Ey, = 0.31. While these error levels are
still relatively high, they represent a decrease in error relative to
the nominal RANS performance, particularly in the prediction of
YB-

The anisotropy invariant II, can also be calculated from the
barycentric coordinates, using the relations (6)-(8), along with
the relation II, = 2(112 +MA+ 122) Figure 8(c) shows the RF
predictions of II,. While the RF was trained to optimize its pre-
dictions of (xp,yp), Fig. 8(c) shows that its improved predic-
tions of the barycentric coordinates have also translated to im-
proved predictions of II,. Unlike the default RANS model, the
RF is able to correctly predict elevated levels of 11, in the injec-
tion hole, along the wall, and in the shear layer on the lee side
of the jet. These results demonstrate that even though the RF
model was trained on two very different flows—flow over a cube
and duct flow—it is able to make reasonable predictions of the
Reynolds stress anisotropy on the jet-in-crossflow configuration
that significantly surpass the default RANS model predictions in
accuracy.

To further explore the generalization properties of this ma-

chine learned model, it was tested on two other canonical flow
configurations for which high-fidelity data were available. The
first was flow over a wavy wall at Re = 6850, for which DNS
data have been presented by Rossi et al. [?, ?]. The second was
flow around a square cylinder at Re = 21,400, for which a highly
resolved LES was presented in References [?, 8]. A detailed dis-
cussion of these computations is beyond the scope of this paper,
but they have been well documented in the referenced papers.
The RF model was able to reduce E,, by 41% and E,, by 80%
for the wavy wall case, and by 9% and 47% respectively for the
square cylinder case. While it would be desirable to test the RF
model across a much wider database of flows, these results across
three challenging and disparate flow configurations suggest that
the RF model could provide improved predictions across a broad
class of flows.

However, this RF model is not expected to be a universal
model across all turbulent flows. The machine learned model is
only expected to be valid in flows dynamically similar to those
on which it was trained: i.e. incompressible and non-reacting.
In order to develop a more universal model, the algorithm would
almost certainly need to be trained on a much broader class of
flows. Nevertheless, these initial results are very encouraging, as
they demonstrate consistently improved predictions, not only for
the jet-in-crossflow case of interest in this study, but also for two
other canonical flow cases.

It should also be noted that the RF model would not add sig-
nificant computational cost to the RANS calculation if it were
built into the solver. On a single CPU, the RF model requires
5 seconds to make Reynolds stress anisotropy predictions for 1
million points. Because the RF prediction process is completely
parallelizable, including it in the RANS solver would add less
than 1% to the RANS compute time per iteration. Overall, the
Ruiz et al. [20] LES results required approximately 2 x 10° pro-
cessor hours to run the 20 flow through times required for sta-
tistical convergence. The RANS simulation used in this study
required approximately 2 x 10* processor hours to reach conver-
gence, representing a decrease in computational cost of 2 orders
of magnitude. The Reynolds stress anisotropy predictions pro-
vided by the RF model have the potential to improve the accu-
racy of the RANS predictions without sacrificing this significant
computational costs savings.

5 Conclusions

The high-fidelity LES of Ruiz et al. [20] was rigorously an-
alyzed to determine regions of the flow where the RANS Boussi-
nesq hypothesis would be invalid. This flow configuration has
relevancy to film cooling, dilution cooling, and fuel injection
flows in the context of turbomachinery. Two different underly-
ing assumptions were investigated: the non-negativity assump-
tion for the eddy viscosity and the ability of the mean strain
rate to capture the Reynolds stress anisotropy. It was shown
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that anisotropy in the normal stresses caused the eddy viscos-
ity to go negative in the leeward shear layer of the jet. It was
also shown that the RANS models significantly under-predicted
the Reynolds stress anisotropy in that shear layer, in the injec-
tion hole, and along the wall. This model form error is a root
cause of the inaccuracy widely reported in RANS calculations
of jet-in-crossflow and film cooling configurations, and cannot
be eliminated through model calibration alone. More detailed
model closures, which can represent the correct Reynolds stress
anisotropy, are required to mitigate this source of uncertainty.
Machine learning models were investigated for their ability
to more accurately capture this Reynolds stress anisotropy. Ran-
dom Forest regressors were trained to predict the barycentric co-
ordinates (xg,yg). These regressors were trained on two different
flows: a duct flow and flow around a wall-mounted cube. They
were then tested on the jet-in-crossflow configuration. These
models showed a remarkable ability to generalize across flows,
and provided significantly improved Reynolds stress anisotropy
predictions as compared to the default RANS predictions. These
machine learning models therefore demonstrate the potential for
giving improved anisotropy predictions. However, these results
represent only the first step in improving RANS predictions for
this flow. Future work will be aimed at integrating these machine
learning models into the forward RANS simulation, instead of
applying them a posteriori as was done here. It remains to be
seen if they will pose challenges in simulation convergence, and
to what extent they can improve predictions of quantities of in-
terest such as wall stresses and heat fluxes. In order to further ex-
plore the use of data-driven methods for turbulence modeling, it
would be useful to have an open-access database of high fidelity
flow solutions available to all turbulence modeling researchers.
This database would enable faster model development, broader
generalization studies, and improved reproducibility.
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