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What is Information? 

 Information theory provides entropy of a discrete random 
variable as a quantitative measure of information 

 

𝐻 𝑋 =  𝑝 𝑥 log⁡(
1

𝑝 𝑥
)

𝑥∈𝑋

 

 
 The intuitive idea behind Shannon’s measure is that the more 

surprising a message is, the more information it conveys.  
 Ex: If I tell you that none of you will win the lottery 

tomorrow, this is not very surprising. But if I say that one of 
you will, this is very surprising indeed, and in some intuitive 
sense more informative. 

 
 So what? 
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Applicability to Neuroscience  

 Can be applied to neuroscience to quantitatively measure 
the information content of firing neurons. 
 And it has been with various methods such as: 

 Plug-in Entropy, Jackknife debiased, Asymptotically debiased, Ma bound 

 Bayesian/Dirichlet prior, Coverage-adjusted, Best upper bound, …  

 

 But there are issues… 
 Entropy (and many other concepts from information theory) 

calculations require knowledge of the firing behavior probability 
distributions for the neurons  - however 
 Limitations to in vivo recording capabilities  

 Neurons are somewhat deterministic 

 Neural plasticity effectively creates non-static distributions  

 Applicable to single neurons but not ensembles  
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Neural Transform 

𝑁(𝑡) 

Neural Ensemble 

Information Content  

 

𝑇(𝑁) 

𝑛1 

𝑛2 

𝑛𝑒 

𝐶(𝑇(𝑁)) 

~ 𝐻(𝑁(𝑡)) 

Approximation of 

Neural Ensemble 

Information 

Content 
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Compression 

 Use complexity as a measure of compressibility in order to 
estimate entropy to quantitatively assess the information 
content of a signal. 

 
 Szczepanski et al. applied the general Lempel-Ziv complexity (LZ-

Complexity) measure to estimate entropy of real and simulated neurons. 

 LZ Compression is a dictionary technique that does not require a 

probabilistic model.  
 Rather dictionary compression techniques exploit redundancies in the data. 

 LZ compression has been used in applications such as UNIX compress 
command and GIF compression. 
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LZ 78 Example 



Compression 

 LZ-Complexity is based upon measuring the rate of 
generation of new patterns along a sequence of 
characters in a string being compressed.  

 Applied to neuron spike trains, this technique looks for 
repeated spiking behavior over time.  

 

 

 

 

1 0 1 1 0 0 1 … … … 
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Compression 

 Once the spike signal is converted into a binary signal, 
where an action potential is encoded as a one and the 
absence of activity by a zero, the normalized complexity 
may then be computed as follows: 

𝑐𝛼 𝑥
𝑛 =
𝐶𝛼(𝑥

𝑛)

𝑛
∗ 𝑙𝑜𝑔𝛼𝑛 

 

 Normalized complexity measures the generation rate of 
new patterns along a word of length n with letters from an 
alphabet of size α (in this case two). 

 

 

 
9 



Compression 

 But unlike the work of Szczepanski et al., rather than 
applying LZ-Complexity analysis to individual neuron spike 
trains, we have applied the approach to a neural 
population as a whole. 

 

 It can be proven that as the string length goes to infinity, 
the supremum of the normalized complexity approaches 
the entropy of the signal S:  

 
lim
𝑛→∞
sup 𝑐∝(𝑥

𝑛) ≤ 𝐻𝛼(𝑆) 
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Spike Illustration  



Mixed Coding 

Aimone, Deng and Gage 

Neuron; 2011 

• Dentate Gyrus performs sparse 

coding for episodic memories 

 

• Mature neurons are tightly 

tuned to specific features 

• Not all events will activate 

mature neurons  

 

• Immature neurons are broadly 

tuned 

• All events will activate 

some immature neurons 

 

• Neurons mature to be 

specialized to those events later 

• Coding range of network 

gets more sophisticated 

over time 

 

Immature and mature neurons encode 

information differently 
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Computational Paradigm  
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Sample Paths 

Random Path 1 Random Path 2 Random Path 3 

Random Path 4 Random Path 5 Combined Random Path 

Coverage 
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Results Exploring Mix Ratio  
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100 Neurons 

10% Mix Ratio   

 



Implications for Computation  
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 Neurogenic Deep Learning 

 High Performance Computing  

 Hippocampal Models 

 Modulation Model  

 SVM Model   
 

 

 

 

 



Neurogenic Deep Learning  
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Draelos et al. Deep Learning for Transfer Learning and Concept Drift through Adult Neurogenesis-inspired Adaptation (in preparation) 



Neurogenic Deep Learning  

18 

Without neurogenesis With neurogenesis 



High Performance Computing 
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Exascale-class supercomputers will require unprecedented 

amounts of memory bandwidth and capacity - To satisfy 

these requirements, vendors are proposing Multi-Level 

Memory (MLM) combining different memory technologies in 

a single system 

 

Proposing to explore the ability of neural inspired dynamic 

memory management strategies to learn application specific 

memory management schemes for HPC architectures 

Physical Memory Address Histograms  

Memory Analysis: Diverse Patterns  



Hippocampus Modeling  

• Proposed to enhance the encoding of 

new memories by performing pattern 

separation 

• Orthogonalization 

• Autoassociative 

encoding of input 

patterns 

• Pattern 

completion 

• Primary 

input to the 

hippocampal 

formation 

• Grid cell 

encoding 

• Comparator of the input from EC with 

the output from CA3 

*Scholarpedia Function of Hippocampal subregions 
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A New Modulation Model  
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 CA3 is static dynamical “soup” 
 EC->CA3 selects population of 

stable attractor paths (green) 
that are valid for a given context 

 EC->DG induces a sparse and 
unique representation of EC in 
DG 

 DG->CA3 activates some 
ensemble (~uniquely) in CA3, 
which settles into one of the 
valid attractors 

 EC->CA1 connections learns that 
this attractor (set of CA3 
representations) is associated 
with some EC representation  
 CA1 “learns” to read CA3 

attractors  
 Context dependent readout 

 In future, partial EC input can 
reactivate CA1 accordingly 



Alternative Hippocampus Perspective 
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SVM Hippocampus Perspective 

 “Is there a support vector machine hiding in the 
dentate gyrus?” 

 John L. Baker - Neurocomputing 2003 

 

 Our conjecture – rather there is a support vector 
machine hiding in the hippocampus (EC – DG – CA3) 
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SVM Hippocampus Perspective 

through a high 

dimensional adaptive 

transformation in 

dentate gyrus (DG)  

and subsequent 

compressive 

encoding by the 

CA3 

to restructure and 

refine the multimodal 

associative encoding 

provided by the 

entorhinal cortex (EC)  

We hypothesize that the role of the hippocampus in information processing is … 
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SVM Hippocampus Perspective 

 Implications -  

 

 However, unlike conventional SVM theory, the 
existence of adult neurogenesis in DG confers an 
adaptive high dimensional projection which impacts 
the resulting CA3 encoding (or discriminant in a 
canonical SVM)  

 

 VC dimension (which SVM is based upon) describes 
the ability of a set of functions to separate data in a 
space 

 

25 



 Presented a metric & computational paradigm for quantifying 
neural information content  
 As a specific case study we have used this framework to study the 

impact of hippocampal neurogenesis 

 Experimentally shown benefit to mixed coding 

 Quantifying Neural Information Content: A Case Study of the Impact 
of Hippocampal Adult Neurogenesis (IJCNN 2016 submission) 

 

 Several exciting implications for computation  
 Computer design (conventional and neuromorphic)  

 New perspectives on hippocampal function in information encoding & 
transformation (potential implications for machine learning  and 
insights for neural computation) 

Summary 
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Backup 



UQ & SA 
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UQ & SA 
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Exploring Mix Ratio – 100 Neurons 

10% Mix Ratio 
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Normalized 

Information 

Content 



Exploring Mix Ratio – 100 Neurons 

15% Mix Ratio 
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Normalized 

Information 

Content 



Exploring Mix Ratio – 100 Neurons 

25% Mix Ratio 
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Normalized 

Information 

Content 



Exploring Mix Ratio – 100 Neurons 

50% Mix Ratio 
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Normalized 

Information 

Content 



Exploring Mix Ratio – 100 Neurons 
10% Mix Ratio 15% Mix Ratio 

25% Mix Ratio 50% Mix Ratio 
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Mixed Coding Analysis 

  0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300 

0.0100 

5.9559 6.7196 7.3064 7.7418 7.9513 7.9348 7.7806 7.5582 7.2862 6.9229 

0.0233 

11.8376 12.4588 12.9120 13.2711 13.4474 13.4236 13.2805 13.0811 12.8301 12.4988 

0.0367 

15.6965 16.2832 16.6958 16.9875 17.1077 17.0479 16.8820 16.6673 16.4103 16.0795 

0.0500 

18.1140 18.6909 19.0770 19.3526 19.4350 19.3490 19.1633 18.9282 18.6609 18.3250 

0.0633 

18.9772 19.5544 19.9337 20.1879 20.2609 20.1569 19.9554 19.7095 19.4361 19.0946 

0.0767 

18.3350 18.9188 19.2982 19.5461 19.6036 19.5014 19.2722 19.0193 18.7362 18.3870 

0.0900 

16.4977 17.0915 17.4734 17.7200 17.7725 17.6462 17.4234 17.1551 16.8637 16.5047 

0.1033 

14.0290 14.6394 15.0306 15.2815 15.3323 15.1964 14.9572 14.6821 14.3740 14.0053 

0.1167 

10.7681 11.4036 11.8135 12.0679 12.1104 11.9657 11.7076 11.4127 11.0858 10.6980 

0.1300 

7.1748 7.8600 8.2914 8.5696 8.6149 8.4560 8.1820 7.8634 7.5114 7.0811 

10 % Mix Ratio – 100 Neurons Resolution 25 
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Mixed Coding Analysis 

  0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300 

0.0100 

5.9559 7.0405 7.8437 8.4354 8.7266 8.7121 8.5028 8.1691 7.6834 7.1075 

0.0233 

11.5624 12.4588 13.1157 13.6348 13.8950 13.8826 13.6917 13.3867 12.9394 12.4123 

0.0367 

15.2479 16.0969 16.6958 17.1337 17.3307 17.2776 17.0668 16.7514 16.3050 15.7859 

0.0500 

17.5447 18.3829 18.9417 19.3526 19.5034 19.4160 19.1822 18.8454 18.3873 17.8680 

0.0633 

18.3570 19.1935 19.7425 20.1241 20.2609 20.1490 19.8968 19.5443 19.0741 18.5448 

0.0767 

17.7287 18.5722 19.1230 19.4951 19.6106 19.5014 19.2153 18.8484 18.3635 17.8239 

0.0900 

15.9521 16.8108 17.3668 17.7378 17.8420 17.7046 17.4234 17.0334 16.5403 15.9857 

0.1033 

13.5976 14.4818 15.0489 15.4271 15.5339 15.3840 15.0801 14.6821 14.1591 13.5857 

0.1167 

10.5665 11.4831 12.0751 12.4585 12.5544 12.3917 12.0633 11.6353 11.0858 10.4849 

0.1300 

7.1940 8.1769 8.7977 9.2045 9.3068 9.1294 8.7861 8.3323 7.7434 7.0811 

15 % Mix Ratio – 100 Neurons Resolution 25 
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Mixed Coding Analysis 

  0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300 

0.0100 

5.9559 7.7698 9.0473 9.9208 10.2719 10.1307 9.6809 9.0324 8.1598 7.2303 

0.0233 

10.9018 12.4588 13.5763 14.3866 14.7260 14.5934 14.1789 13.5779 12.7617 11.9020 

0.0367 

14.1832 15.6624 16.6958 17.4008 17.6734 17.5199 17.0895 16.4918 15.6912 14.8495 

0.0500 

16.2576 17.7151 18.6841 19.3526 19.5609 19.3625 18.9131 18.2983 17.4895 16.6558 

0.0633 

17.0444 18.5023 19.4561 20.0741 20.2609 20.0302 19.5528 18.9201 18.0997 17.2571 

0.0767 

16.5544 18.0202 18.9771 19.5768 19.7358 19.5014 18.9833 18.3260 17.4857 16.6299 

0.0900 

15.0314 16.5195 17.4778 18.0804 18.2181 17.9394 17.4234 16.7388 15.8836 15.0118 

0.1033 

12.9730 14.5038 15.4772 16.0816 16.2200 15.9287 15.3802 14.6821 13.7847 12.8802 

0.1167 

10.3447 11.9269 12.9329 13.5492 13.6722 13.3577 12.7720 12.0246 11.0858 10.1448 

0.1300 

7.3598 9.0347 10.0787 10.7117 10.8336 10.4962 9.8848 9.1019 8.1075 7.0811 

25 % Mix Ratio – 100 Neurons Resolution 25 
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Mixed Coding Analysis 

  0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300 

0.0100 

5.9559 9.3569 11.6592 13.1418 13.7382 13.4539 12.4842 11.1033 9.3595 7.3925 

0.0233 

9.3748 12.4588 14.6276 16.0676 16.6640 16.3889 15.4599 14.1340 12.4632 10.6018 

0.0367 

11.6915 14.6370 16.6958 18.0350 18.5846 18.3056 17.3790 16.0719 14.4299 12.6118 

0.0500 

13.2043 16.1116 18.0655 19.3526 19.8269 19.5149 18.5760 17.2657 15.6292 13.8334 

0.0633 

13.7856 16.6910 18.5976 19.8101 20.2609 19.9005 18.9433 17.6122 15.9676 14.1755 

0.0767 

13.4536 16.3713 18.2781 19.4541 19.8585 19.5014 18.4797 17.1280 15.4765 13.6671 

0.0900 

12.4401 15.3982 17.3068 18.4766 18.8544 18.4420 17.4234 16.0286 14.3491 12.4920 

0.1033 

11.1219 14.1357 16.0594 17.2220 17.5854 17.1463 16.0959 14.6821 12.9349 11.0349 

0.1167 

9.3309 12.4169 14.3747 15.5425 15.8929 15.4468 14.3649 12.8854 11.0858 9.1248 

0.1300 

7.3960 10.5853 12.5822 13.7701 14.1261 13.6693 12.5408 11.0121 9.1565 7.0811 

50 % Mix Ratio – 100 Neurons Resolution 25 
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Exploring Mix Ratio – 484 Neurons 

Normalized 

Information 

Content 

10% Mix Ratio 
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Exploring Mix Ratio – 484 Neurons 

15% Mix Ratio 

Normalized 

Information 

Content 
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Exploring Mix Ratio – 484 Neurons 

25% Mix Ratio 

Normalized 

Information 

Content 
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Exploring Mix Ratio – 484 Neurons 

50% Mix Ratio 

Normalized 

Information 

Content 
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Exploring Mix Ratio – 484 Neurons 
10% Mix Ratio 15% Mix Ratio 

25% Mix Ratio 50% Mix Ratio 
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Mixed Coding Analysis 

  0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300 

0.0100 

24.7271 27.5937 29.7587 31.0333 31.7189 31.6527 30.8426 29.5087 27.9684 26.4899 

0.0233 

48.3157 50.7268 52.5678 53.6935 54.3415 54.3270 53.5904 52.3700 50.9840 49.6600 

0.0367 

64.7123 66.9991 68.6563 69.6074 70.1204 70.0169 69.2703 68.0573 66.7081 65.4250 

0.0500 

73.2885 75.5451 77.1568 78.0082 78.3925 78.2533 77.4089 76.1769 74.7966 73.5111 

0.0633 

75.6715 77.9349 79.5517 80.3302 80.6391 80.4136 79.5419 78.2619 76.8588 75.5541 

0.0767 

71.4474 73.7647 75.3589 76.1539 76.4361 76.1251 75.2072 73.8830 72.4352 71.1277 

0.0900 

62.7983 65.1495 66.7879 67.5760 67.8494 67.5068 66.5221 65.1179 63.6374 62.2980 

0.1033 

49.5488 51.9744 53.6736 54.5051 54.7700 54.3910 53.3588 51.8963 50.3627 48.9569 

0.1167 

35.6726 38.2225 39.9848 40.8447 41.1327 40.7357 39.6699 38.1379 36.5082 35.0128 

0.1300 

21.5755 24.3206 26.2018 27.1111 27.4294 27.0303 25.8869 24.2483 22.4821 20.8459 

10 % Mix Ratio – 484 Neurons Resolution 25 
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Mixed Coding Analysis 

  0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300 

0.0100 

24.7271 28.9997 32.2323 34.0773 34.9177 34.6139 33.3283 31.2064 28.9312 26.5974 

0.0233 

47.0641 50.7268 53.5728 55.2817 56.1030 55.8571 54.6686 52.7286 50.6245 48.5331 

0.0367 

62.5691 66.0854 68.6563 70.1201 70.8087 70.5242 69.3409 67.4437 65.4304 63.3541 

0.0500 

70.7100 74.1744 76.6526 78.0082 78.5459 78.1698 76.9137 74.9837 72.9135 70.8730 

0.0633 

72.9808 76.4623 78.9623 80.2117 80.6391 80.1687 78.8497 76.8711 74.8011 72.7438 

0.0767 

69.0276 72.5547 75.0693 76.3061 76.6930 76.1251 74.7295 72.6969 70.5713 68.4836 

0.0900 

60.8861 64.4590 67.0105 68.2765 68.6041 67.9980 66.5221 64.3733 62.2082 60.0791 

0.1033 

48.3618 52.0545 54.6975 56.0036 56.3568 55.6866 54.1214 51.8963 49.6086 47.4228 

0.1167 

35.2164 39.0819 41.8100 43.1574 43.5407 42.8409 41.2489 38.9037 36.5082 34.1875 

0.1300 

21.9605 26.0982 29.0031 30.4049 30.8247 30.1114 28.4301 25.9556 23.3576 20.8459 

15 % Mix Ratio – 484 Neurons Resolution 25 
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Mixed Coding Analysis 

  0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300 

0.0100 

24.7271 31.7368 36.8724 39.6893 40.7778 39.8264 37.6824 34.0280 30.1728 26.3339 

0.0233 

44.5368 50.7268 55.4128 58.1081 59.1653 58.3251 56.3376 52.9223 49.3141 45.7866 

0.0367 

58.3806 64.3237 68.6563 71.0742 72.0338 71.1912 69.2337 65.8989 62.4102 58.9891 

0.0500 

65.6900 71.5939 75.7466 78.0082 78.7825 77.8214 75.7843 72.4592 68.9889 65.6344 

0.0633 

67.8657 73.7479 77.9029 80.0036 80.6391 79.5576 77.4699 74.1249 70.5982 67.2348 

0.0767 

64.5709 70.5259 74.7240 76.7942 77.3056 76.1251 73.9062 70.4589 66.8698 63.4313 

0.0900 

57.2889 63.3275 67.6050 69.6968 70.1507 68.8452 66.5221 62.9234 59.2795 55.7790 

0.1033 

46.2110 52.4426 56.7977 58.9415 59.4100 58.0482 55.6050 51.8963 48.1042 44.5011 

0.1167 

34.5898 41.0636 45.5762 47.7907 48.2760 46.8449 44.3474 40.4721 36.5082 32.7380 

0.1300 

22.8459 29.7092 34.4010 36.6907 37.2158 35.7634 33.1822 29.1253 24.8989 20.8459 

25 % Mix Ratio – 484 Neurons Resolution 25 
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Mixed Coding Analysis 

  0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300 

0.0100 

24.7271 38.2994 47.7917 52.8375 54.4835 52.6209 47.8873 40.4250 32.6637 24.7732 

0.0233 

38.1765 50.7268 59.8372 64.7800 66.4139 64.6544 60.0689 52.8868 45.4372 38.0028 

0.0367 

47.8492 59.9897 68.6563 73.3382 74.9612 73.1872 68.6782 61.6530 54.3595 47.1195 

0.0500 

53.0875 65.1212 73.5132 78.0082 79.3990 77.5691 73.0615 66.0600 58.8500 51.6989 

0.0633 

54.7567 66.7937 75.1582 79.3962 80.6391 78.6529 74.0863 67.0115 59.7912 52.6670 

0.0767 

52.4883 64.5940 72.9910 77.1642 78.2280 76.1251 71.3851 64.2156 56.9161 49.7470 

0.0900 

47.7477 60.0371 68.4981 72.6650 73.6748 71.3666 66.5221 59.1518 51.7985 44.5547 

0.1033 

40.5609 53.1048 61.7064 65.8989 66.8411 64.4409 59.4113 51.8963 44.3298 36.9263 

0.1167 

32.7405 45.6124 54.3573 58.6392 59.5748 57.1225 52.0016 44.2844 36.5082 28.8386 

0.1300 

24.9114 38.2521 47.1817 51.5281 52.5034 50.0495 44.8227 36.9468 28.8824 20.8459 

50 % Mix Ratio – 484 Neurons Resolution 25 
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Transform 

48 
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Neural Firing Across Resolutions 
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Resolutions 1-10 

Normalized 

Information 

Content 

Sampling Resolution 
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Exploring Place Cell Widths 

0.0136 0.25 
Place cell widths 

Normalized information 

content 
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Motivation 

 One of the differentiating 
capabilities of the brain is 
continuous learning 

 

 So the question becomes 
where are we with respect 
to machine learning? 
 Most data-driven algorithms 

in ML do not continuously 
adapt 
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Modulation Model  
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 EC has high level cortical 
representations 

 DG makes sparse, decorrelated mapping 
of EC 

 CA3 is static dynamical “soup” 
 Limited recurrent plasticity 

 Recurrent dynamics provide a number of 
path attractors 

 EC->CA3 inputs are weak and modulatory 
 shift dynamical manifold 

 CA3 Attractors are positioned in context-
dependent locations 

 DG inputs “seed” CA3 network which 
propagates to attractor basin 

 CA1 “learns” to read CA3 attractors  
 Context dependent readout 



Modulation Model  
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 Dynamics of ensembles of 
recurrently connected neurons  form 
attractor “cycles” 
 Cycles can be sequences of states that 

acts as a ring attractor 
 A fixed point can be thought of as a 

cycle of size 1 

 Temporal dynamical depth (e.g., 
spikes in flight) based representation 
would expand the number of 
possible states (2N*K), but restrict the 
possible transitions between those 
states  

 All stable points (either fixed points 
or points within a stable orbit) must 
be linearly independent 
 Effectively limited to less than N*K 

stable cycles, even though there are 
2N*K possible representations 

 



Modulation Model  
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 One model of modulation is 
that attractor “structure” is the 
same but locations can move 
to different locations (see 
image) 

 Modulation can be provided 
mechanistically by several 
sources 
 EC->CA3 inputs will bias some 

neurons more than others, thus 
shifting dynamical structure 

 Metabotrophic modulators (e.g., 
serotonin, acetylcholine) can 
bias neuronal timings and 
thresholds, which in turn shifts 
dynamics in a potentially 
reversable way 
 

 


