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Computational Modeling & Analysis
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What is Information? ) i

= |Information theory provides entropy of a discrete random
variable as a quantitative measure of information

1

H(X) = ;(pmlog(@

= The intuitive idea behind Shannon’s measure is that the more
surprising a message is, the more information it conveys.

= Ex:Ifl tell you that none of you will win the lottery
tomorrow, this is not very surprising. But if | say that one of
you will, this is very surprising indeed, and in some intuitive
sense more informative.

=  So what?



Applicability to Neuroscience ) i

= (Can be applied to neuroscience to quantitatively measure
the information content of firing neurons.

= And it has been with various methods such as:

= Plug-in Entropy, Jackknife debiased, Asymptotically debiased, Ma bound
: Bayesian/Dirichlet prior, Coverage-adjusted, Best upper bound, ...

=  But there are issues...

=  Entropy (and many other concepts from information theory)
calculations require knowledge of the firing behavior probability
distributions for the neurons - however
: Limitations to in vivo recording capabilities
: Neurons are somewhat deterministic
- Neural plasticity effectively creates non-static distributions
= Applicable to single neurons but not ensembles



Neural Transform
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Compression )

= Use complexity as a measure of compressibility in order to
estimate entropy to quantitatively assess the information
content of a signal.

= Szczepanski et al. applied the general Lempel-Ziv complexity (LZ-
Complexity) measure to estimate entropy of real and simulated neurons.

= LZ Compression is a dictionary technique that does not require a

probabilistic model.
= Rather dictionary compression techniques exploit redundancies in the data.

=  LZ compression has been used in applications such as UNIX compress
command and GIF compression.
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Compression

= | Z-Complexity is based upon measuring the rate of
generation of new patterns along a sequence of
characters in a string being compressed.

= Applied to neuron spike trains, this technique looks for
repeated spiking behavior over time.




Compression )

= Once the spike signal is converted into a binary signal,
where an action potential is encoded as a one and the
absence of activity by a zero, the normalized complexity

may then be computed as follows:

C.,(x"
e =

= Normalized complexity measures the generation rate of
new patterns along a word of length n with letters from an
alphabet of size a (in this case two).




Compression )

= But unlike the work of Szczepanski et al., rather than
applying LZ-Complexity analysis to individual neuron spike
trains, we have applied the approach to a neural
population as a whole.

= |t can be proven that as the string length goes to infinity,
the supremum of the normalized complexity approaches
the entropy of the signal S:

lim sup c,(x™) < H,(S)

n—>00
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Mixed Coding ) .

Immature and mature neurons encode * Dentate Gyrus pe_rforms sparse
information differently coding for episodic memories
A Immature neurons B Mature neurons « Mature neurons are tightly

 Not all events will activate

4 9 <> . .|.. A 9 <> . -I-l tuned to specific features
- T — A mature neurons

S S Immature neurons are broadly
L tuned
S N - All events will activate
some immature neurons

Tuning of immature neurons
Tuning of mature neurons

S S AVAY . ; * Neurons mature to be
Low information coding of all content High information coding of some content Specialized to those events Ia’ter

Aimone, Deng and Gage « Coding range of network
Neuron; 2011 gets more sophisticated
over time
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Results Exploring Mix Ratio ) .

Place Cell Widths
Neural Information

=1 0.01
Content o 00233
®3  0.0367
” ®4  0.05
=5 0.0633
20 =6 0.7067
=7 0.09
o =8 0.1033
9 0.1167
10 =10 0.13

More young neurons
(i.e. Increased
neurogenesis)

100 Neurons
10% Mix Ratio

More young neurons
(i.e.Increased
neurogenesis)




Implications for Computation ) .

= Neurogenic Deep Learning
" High Performance Computing

= Hippocampal Models

= Modulation Model { SERAHORSES
o e
Qe «

= SVM Model &> . A
ode §’ ri ’

SEAHORSES/EVERYWHERE




Neurogenic Deep Learning ) .

Store average top layer Use Cholesky
neuron activity and decomposition and
Cholesky decomposed mean feature vector to
covariance for each randomly generate top

class layer class sample

ZOM

=) e 0T Y 7

!‘770ld

Draelos et al. Deep Learning for Transfer Learning and Concept Drift through Adult Neurogenesis-inspired Adaptation (in preparation)



Neurogenic Deep Learning ) .
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High Performance Computing

Exascale-class supercomputers will require unprecedented
amounts of memory bandwidth and capacity - To satisfy
these requirements, vendors are proposing Multi-Level
Memory (MLM) combining different memory technologies in
a single system

Proposing to explore the ability of neural inspired dynamic

memory management strategies to learn application specific
memory management schemes for HPC architectures

Memory Analysis: Diverse Patterns
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Hippocampus Modeling

* Primary
Input to the
hippocampal
formation

« Grid cell
encoding

* Proposed to enhance the encoding of

n
S

ew memories by performing pattern
eparation

» Orthogonalization

Dentate
gyrus

cortex

Entorhinal ( -
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Comparator of the input from EC with

the output from CA3
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A New Modulation Model ) i,

= CA3is static dynamical “soup”

= EC->CA3 selects population of .
stable attractor paths (green) . N/
that are valid for a given context

= EC->DG induces a sparse and V.
unigue representation of EC in \3

DG

= DG->CA3 activates some
ensemble (~“uniquely) in CA3, Entorhinal X V4
which settles into one of the 9—"?‘*" S N

valid attractors /u—'

= EC->CA1 connections learns that DEntats Syus
this attractor (set of CA3
representations) is associated
with some EC representation £as

= CA1l “learns” to read CA3
attractors v

= Context dependent readout .c.q1

= |n future, partial EC input can
reactivate CA1 accordingly




Alternative Hippocampus Perspective @

Available at

www.ComputerScienceWeb.com
rowerep sy scimNcE ((DoiameT* NEUROCOMPUTING

Neurocomputing 52-54 (2003) 199-207

www.elsevier.com/locate/neucom

Is there a support vector machine hiding
in the dentate gyrus?
John L. Baker

School of Computational Sciences, George Mason University, 4400 University Drive,
Fairfax, VA 22030, USA

Abstract

The dentate gyrus has physiological and related behavioral properties suggesting that it im-
plements functions within the hippocampus partially associated with sensory pattern recognition.
A top-down dentate gyrus model is defined in terms of an idealized support vector machine
pattern recognizer constructed from spiking neurons. The resulting construction offers parallels
with dentate gyrus morphology and offers explanation of some of its unique properties, in parti-
cular, the mossy fiber pathway and its connection with CA3 pyramidal cells. Derived learning
rules suggest properties of the mossy fibers that might be tested experimentally.

(© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Hippocampus; Dentate gyrus: Mossy fiber: Support vector machine; Pattern recognition




SVM Hippocampus Perspective ) .

= ‘s there a support vector machine hiding in the
dentate gyrus?”

= John L. Baker - Neurocomputing 2003

= Qur conjecture — rather there is a support vector
machine hiding in the hippocampus (EC — DG — CA3)




SVM Hippocampus Perspective ) .

We hypothesize that the role of the hippocampus in information processing is ...

¢

/ e o @ / | e /o® .

@ © ® ® ®

@ ® 0 ¢ ®
Input Space Feature Space Input Space

to restructure and through a high and subsequent

refine the multimodal = dimensional adaptive compressive

associative encoding transformation in » encoding by the

provided by the

dentate gyrus (DG) CA3
entorhinal cortex (EC)
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SVM Hippocampus Perspective ) ..

= |mplications -

= However, unlike conventional SVM theory, the
existence of adult neurogenesis in DG confers an
adaptive high dimensional projection which impacts
the resulting CA3 encoding (or discriminant in a
canonical SVM)

= VC dimension (which SVM is based upon) describes
the ability of a set of functions to separate data in a

space




Summary ) i,

= Presented a metric & computational paradigm for quantifying
neural information content

= As a specific case study we have used this framework to study the
impact of hippocampal neurogenesis

= Experimentally shown benefit to mixed coding

= Quantifying Neural Information Content: A Case Study of the Impact
of Hippocampal Adult Neurogenesis (IJCNN 2016 submission)

= Several exciting implications for computation
= Computer design (conventional and neuromorphic)

= New perspectives on hippocampal function in information encoding &
transformation (potential implications for machine learning and
insights for neural computation)
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UQ & SA ) .

Repeat analysis with most
influential input parameters
if necessary

Characterize
run time & Bayesian UQ
number of Calculate output

open means/variances
parameters

Model

Characterization
Bayesian SA

Assign parameter sampling & Model - Create 1%t order model
ranges & Execution - Model comparison
distributions - Model checking

SA/UQ

Generate input Evaluate the model & Perform Qualitative
vectors through create output SA/UQ with

sampling procedure distribution Scatterplots



UQ & SA ) i,

Core SA methodology:

1. Estimate uncertaintyin each input Feedback to
(ranges, probability distributions). o Input Data
. —

2. Identify model outputs of interest
to be analyzed.

o

3.  Runthe model a number of times Inpﬁt Ur;certs;inty ¢
using appropriate choice of design l
of experiments.

4. Calculate sensitivity measures using Computational
model outputs. Neural Model

33%

08

50%

w Apportioned Source
Output Uncertainty Uncertainty
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Exploring Mix Ratio — 100 Neurons [
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Exploring Mix Ratio — 100 Neurons

10% Mix Ratio

1} 10 20 30 40 a0 80 70 a0 40 100

15% Mix Ratio

1} 10 20 30 40 50 &0 70 a0 80 100

25% Mix Ratio

50% Mix Ratio

1} 10 20 30 40 a0 80 70 a0 40 100

1} 10 20 30 40 50 60 70 a0 80 100
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Laboratories
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Mixed Coding Analysis

10 % Mix Ratio — 100 Neurons Resolution 25

Sandia
ﬂ'l National

Laboratories

0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300
0.0100

5.9559 6.7196 7.3064 7.7418 7.9513 7.9348 7.7806 7.5582 7.2862 6.9229
00238 11.8376 12.4588 12.9120 13.2711 13.4474 13.4236 13.2805 13.0811 12.8301 12.4988
00587 15.6965 16.2832 16.6958 16.9875 17.1077 17.0479 16.8820 16.6673 16.4103 16.0795
000 18.1140 18.6909  19.0770  19.3526  19.4350 19.3490  19.1633  18.9282  18.6609  18.3250
0:0688 18.9772 19.5544 19.9337 20.1879 20.2609 20.1569 19.9554 19.7095 19.4361 19.0946
00767 18.3350 18.9188 19.2982 19.5461 19.6036 19.5014 19.2722 19.0193 18.7362 18.3870
00900 16.4977 17.0915 17.4734 17.7200 17.7725 17.6462 17.4234 17.1551 16.8637 16.5047
01083 14.0290 14.6394 15.0306 15.2815 15.3323 15.1964 14,9572 14.6821 14.3740 14.0053
067 10.7681 11.4036 11.8135 12.0679 12.1104 11.9657 11.7076 11.4127 11.0858 10.6980
01300 7.1748 7.8600 8.2914 8.5696 8.6149 8.4560 8.1820 7.8634 7.5114 7.0811

#CCR 35



Mixed Coding Analysis

15 % Mix Ratio — 100 Neurons Resolution 25

Sandia
ﬂ'l National

Laboratories

0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033
0.0100

5.9559 7.0405 7.8437 8.4354 8.7266 8.7121 8.5028 8.1691 7.6834 7.1075
0.0233

11.5624 12.4588 13.1157 13.6348 13.8950 13.8826 13.6917 13.3867 12.9394 12.4123
0.0367

15.2479 16.0969 16.6958 17.1337 17.3307 17.2776 17.0668 16.7514 16.3050 15.7859
0.0500

17.5447 18.3829 18.9417 19.3526 19.5034 19.4160 19.1822 18.8454 18.3873 17.8680
0.0633

18.3570 19.1935 19.7425 20.1241 20.2609 20.1490 19.8968 19.5443 19.0741 18.5448
0.0767

17.7287 18.5722 19.1230 19.4951 19.6106 19.5014 19.2153 18.8484 18.3635 17.8239
0.0900

15.9521 16.8108 17.3668 17.7378 17.8420 17.7046 17.4234 17.0334 16.5403 15.9857
0.1033

13.5976 14.4818 15.0489 15.4271 15.5339 15.3840 15.0801 14.6821 14.1591 13.5857
0.1167

10.5665 11.4831 12.0751 12.4585 12.5544 12.3917 12.0633 11.6353 11.0858 10.4849
0.1300

7.1940 8.1769 8.7977 9.2045 9.3068 9.1294 8.7861 8.3323 7.7434 7.0811

%CCR 36



Mixed Coding Analysis

25 % Mix Ratio — 100 Neurons Resolution 25

Sandia
ﬂ'l National

Laboratories

0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033
0.0100

5.9559 7.7698 9.0473 9.9208 10.2719 10.1307 9.6809 9.0324 8.1598 7.2303
0.0233

10.9018 12.4588 13.5763 14.3866 14.7260 14.5934 14.1789 13.5779 12.7617 11.9020
0.0367

14.1832 15.6624 16.6958 17.4008 17.6734 17.5199 17.0895 16.4918 15.6912 14.8495
0.0500

16.2576 17.7151 18.6841 19.3526 19.5609 19.3625 18.9131 18.2983 17.4895 16.6558
0.0633

17.0444 18.5023 19.4561 20.0741 20.2609 20.0302 19.5528 18.9201 18.0997 17.2571
0.0767

16.5544 18.0202 18.9771 19.5768 19.7358 19.5014 18.9833 18.3260 17.4857 16.6299
0.0900

15.0314 16.5195 17.4778 18.0804 18.2181 17.9394 17.4234 16.7388 15.8836 15.0118
0.1033

12.9730 14.5038 15.4772 16.0816 16.2200 15.9287 15.3802 14.6821 13.7847 12.8802
0.1167

10.3447 11.9269 12.9329 13.5492 13.6722 13.3577 12.7720 12.0246 11.0858 10.1448
0.1300

7.3598 9.0347 10.0787 10.7117 10.8336 10.4962 9.8848 9.1019 8.1075 7.0811

%CCR 37



Mixed Coding Analysis

50 % Mix Ratio — 100 Neurons Resolution 25

Sandia
ﬂ'l National

Laboratories

0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033
0.0100

5.9559 9.3569 11.6592 13.1418 13.7382 13.4539 12.4842 11.1033 9.3595 7.3925
0.0233

9.3748 12.4588 14.6276 16.0676 16.6640 16.3889 15.4599 14.1340 12.4632 10.6018
0.0367

11.6915 14.6370 16.6958 18.0350 18.5846 18.3056 17.3790 16.0719 14.4299 12.6118
0.0500

13.2043 16.1116 18.0655 19.3526 19.8269 19.5149 18.5760 17.2657 15.6292 13.8334
0.0633

13.7856 16.6910 18.5976 19.8101 20.2609 19.9005 18.9433 17.6122 15.9676 14.1755
0.0767

13.4536 16.3713 18.2781 19.4541 19.8585 19.5014 18.4797 17.1280 15.4765 13.6671
0.0900

12.4401 15.3982 17.3068 18.4766 18.8544 18.4420 17.4234 16.0286 14.3491 12.4920
0.1033

11.1219 14.1357 16.0594 17.2220 17.5854 17.1463 16.0959 14.6821 12.9349 11.0349
0.1167

9.3309 12.4169 14.3747 15.5425 15.8929 15.4468 14.3649 12.8854 11.0858 9.1248
0.1300

7.3960 10.5853 12.5822 13.7701 14.1261 13.6693 12.5408 11.0121 9.1565 7.0811

%CCR 38
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Exploring Mix Ratio — 484 Neurons M.
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Exploring Mix Ratio — 484 Neurons

10% Mix Ratio

0 10 20 30 40 a0 80 70 a0 40 100

15% Mix Ratio

25% Mix Ratio

1} 10 20 30 40 50 60 70 a0 80 100

0 10 20 30 40 a0 80 70 a0 40 100

50% Mix Ratio

1} 10 20 30 40 50 60 70 a0 80 100
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Mixed Coding Analysis

10 % Mix Ratio — 484 Neurons Resolution 25

'11 Sandia

National
Laboratories

0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300
0.0100

24.7271 27.5937 29.7587 31.0333 31.7189 31.6527 30.8426 29.5087 27.9684 26.4899
0.0233

48.3157 50.7268 52.5678 53.6935 54.3415 54.3270 53.5904 52.3700 50.9840 49.6600
0.0367

64.7123 66.9991 68.6563 69.6074 70.1204 70.0169 69.2703 68.0573 66.7081 65.4250
0.0500

73.2885 75.5451 77.1568 78.0082 78.3925 78.2533 77.4089 76.1769 74.7966 73.5111
0.0633

75.6715 77.9349 79.5517 80.3302 80.6391 80.4136 79.5419 78.2619 76.8588 75.5541
0.0767

71.4474 73.7647 75.3589 76.1539 76.4361 76.1251 75.2072 73.8830 72.4352 71.1277
0.0900

62.7983 65.1495 66.7879 67.5760 67.8494 67.5068 66.5221 65.1179 63.6374 62.2980
0.1033

49.5488 51.9744 53.6736 54.5051 54.7700 54.3910 53.3588 51.8963 50.3627 48.9569
0.1167

35.6726 38.2225 39.9848 40.8447 41.1327 40.7357 39.6699 38.1379 36.5082 35.0128
0.1300

21.5755 24.3206 26.2018 27.1111 27.4294 27.0303 25.8869 24.2483 22.4821 20.8459

%CCR 44



Mixed Coding Analysis

15 % Mix Ratio — 484 Neurons Resolution 25

'11 Sandia

National
Laboratories

0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300

0.0100

24.7271 28.9997 32.2323 34.0773 34.9177 34.6139 33.3283 31.2064 28.9312 26.5974
0.0233

47.0641 50.7268 53.5728 55.2817 56.1030 55.8571 54.6686 52.7286 50.6245 48.5331
0.0367

62.5691 66.0854 68.6563 70.1201 70.8087 70.5242 69.3409 67.4437 65.4304 63.3541
0.0500

70.7100 74.1744 76.6526 78.0082 78.5459 78.1698 76.9137 74.9837 72.9135 70.8730
0.0633

72.9808 76.4623 78.9623 80.2117 80.6391 80.1687 78.8497 76.8711 74.8011 72.7438
0.0767

69.0276 72.5547 75.0693 76.3061 76.6930 76.1251 74.7295 72.6969 70.5713 68.4836
0.0900

60.8861 64.4590 67.0105 68.2765 68.6041 67.9980 66.5221 64.3733 62.2082 60.0791
0.1033

48.3618 52.0545 54.6975 56.0036 56.3568 55.6866 54.1214 51.8963 49.6086 47.4228
0.1167

35.2164 39.0819 41.8100 43.1574 43.5407 42.8409 41.2489 38.9037 36.5082 34.1875
0.1300

21.9605 26.0982 29.0031 30.4049 30.8247 30.1114 28.4301 25.9556 23.3576 20.8459
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Mixed Coding Analysis

25 % Mix Ratio — 484 Neurons Resolution 25

'11 Sandia

National
Laboratories

0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300
0.0100

24.7271 31.7368 36.8724 39.6893 40.7778 39.8264 37.6824 34.0280 30.1728 26.3339
0.0233

44.5368 50.7268 55.4128 58.1081 59.1653 58.3251 56.3376 52.9223 49.3141 45.7866
0.0367

58.3806 64.3237 68.6563 71.0742 72.0338 71.1912 69.2337 65.8989 62.4102 58.9891
0.0500

65.6900 71.5939 75.7466 78.0082 78.7825 77.8214 75.7843 72.4592 68.9889 65.6344
0.0633

67.8657 73.7479 77.9029 80.0036 80.6391 79.5576 77.4699 74.1249 70.5982 67.2348
0.0767

64.5709 70.5259 74.7240 76.7942 77.3056 76.1251 73.9062 70.4589 66.8698 63.4313
0.0900

57.2889 63.3275 67.6050 69.6968 70.1507 68.8452 66.5221 62.9234 59.2795 55.7790
0.1033

46.2110 52.4426 56.7977 58.9415 59.4100 58.0482 55.6050 51.8963 48.1042 44.5011
0.1167

34.5898 41.0636 45.5762 47.7907 48.2760 46.8449 44.3474 40.4721 36.5082 32.7380
0.1300

22.8459 29.7092 34.4010 36.6907 37.2158 35.7634 33.1822 29.1253 24.8989 20.8459
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Mixed Coding Analysis

50 % Mix Ratio — 484 Neurons Resolution 25

'11 Sandia

National
Laboratories

0.0100 0.0233 0.0367 0.0500 0.0633 0.0767 0.0900 0.1033 0.1167 0.1300
0.0100

24.7271 38.2994 47.7917 52.8375 54.4835 52.6209 47.8873 40.4250 32.6637 24.7732
0.0233

38.1765 50.7268 59.8372 64.7800 66.4139 64.6544 60.0689 52.8868 45.4372 38.0028
0.0367

47.8492 59.9897 68.6563 73.3382 74.9612 73.1872 68.6782 61.6530 54.3595 47.1195
0.0500

53.0875 65.1212 73.5132 78.0082 79.3990 77.5691 73.0615 66.0600 58.8500 51.6989
0.0633

54.7567 66.7937 75.1582 79.3962 80.6391 78.6529 74.0863 67.0115 59.7912 52.6670
0.0767

52.4883 64.5940 72.9910 77.1642 78.2280 76.1251 71.3851 64.2156 56.9161 49.7470
0.0900

47.7477 60.0371 68.4981 72.6650 73.6748 71.3666 66.5221 59.1518 51.7985 44.5547
0.1033

40.5609 53.1048 61.7064 65.8989 66.8411 64.4409 59.4113 51.8963 44.3298 36.9263
0.1167

32.7405 45.6124 54.3573 58.6392 59.5748 57.1225 52.0016 44.2844 36.5082 28.8386
0.1300

24.9114 38.2521 47.1817 51.5281 52.5034 50.0495 44.8227 36.9468 28.8824 20.8459
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Motivation ) pe

= One of the differentiating Brain

capabilities of the brain is " I‘ " " "‘ I‘

continuous Iearnlng

= So the question becomes
where are we with respect
to machine learning?

in ML do not continuously Wachine Learning
adapt




Modulation Model ) i

= EC has high level cortical

representations .. Entorhinal
. Cortex
= DG makes sparse, decorrelated mapping
of EC W

Ill

= CA3is static dynamical “soup” Dentate Gyrus

= Limited recurrent plasticity
= Recurrent dynamics provide a number of ll_
path attractors v
= EC->CA3 inputs are weak and modulatory CA3
= shift dynamical manifold
= CA3 Attractors are positioned in context-
dependent locations W
= DG inputs “seed” CA3 network which CA1
propagates to attractor basin

=  CA1l “learns” to read CA3 attractors
= Context dependent readout




Modulation Model

= Dynamics of ensembles of
recurrently connected neurons form
attractor “cycles”

= Cycles can be sequences of states that
acts as a ring attractor

= Afixed point can be thought of as a
cycle of size 1
=  Temporal dynamical depth (e.g.,
spikes in flight) based representation
would expand the number of
possible states (2NK), but restrict the
possible transitions between those
states

= All stable points (either fixed points
or points within a stable orbit) must
be linearly independent

= Effectively limited to less than N*K
stable cycles, even though there are
2N*K possible representations

OrRrPO0O0OO0OFrRr OO PO

Sandia
ﬂ" National
Laboratories




Modulation Model ) i

=  One model of modulation is
that attractor “structure” is the
same but locations can move \ \ /
to different locations (see 11 [

image) I\ /1

= Modulation can be provided .
mechanistically by several ‘
sources

= EC->CA3 inputs will bias some I
neurons more than others, thus -
shifting dynamical structure -

= Metabotrophic modulators (e.g.,
serotonin, acetylcholine) can
bias neuronal timings and
thresholds, which in turn shifts
dynamics in a potentially
reversable way




