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s Introduction Experimental: Laser photolysis — flow reactor coupled to a TOF-MS with synchrotron
/ photoionization

e We study Cl-atom initiated oxidation chemistry of neopentane and n-butane using a

e Autoignition chemistry plays crucial role in the development of modern, high-efficiency, High-Pressure (HP) reactor under 500 — 700 K and 1 — 7 atm conditions

low-emission engine technologies.

e Radical chemistry is initiated by excimer laser photolysis at 193 nm/CFCl, or 248

e Oxidation of fuel radicals R and especially reaction channels which lead to chain- nm/(COCI)
branching are essential for autoignition and ketohydroperoxides (KHP's) are a marker of
this chemistry. oH oH
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Results
e In n-butane oxidation, ketohydroperoxides (C,H,O;) are formed at m/z = 104 in Cl + e KHP decomposition via suggested Korcek decomposition of 7y-ketohydroperoxide*
CH;CH,CH,CH; + O, system. At constant T, P but varying [O,], RO, signal intensity and decay mechanism leads to aldehyde + acid products, not to reactive OH + oxy-radicals that are
rate are unchanged whereas intensity of KHP signal at m/z = 104 clearly increases with [O,] needed for chain-branching. In case of neopentane, lowest energy Korcek decomposition
but the time-behavior remains the same. NUI Galway new model agree well with products are formic acid and methylpropanal, which are both observed in this work.
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Discussion: Achievements thus far and Current & Future Challenges
e In neopentane oxidation, ketohydroperoxide Very recently we have performed the first direct time-resolved experiments where KHP

o formation is unambiguously observed. KHP formation has been measured as a function of
temperature, pressure, and [O,] to better understand kinetics and mechanism of KHP
e 0aRho0 formation and also to compare with and test models developed to simulate autoignition.
In case of n-butane oxidation, it is even possible to determine a single isomer of KHP that
is formed. We are also able to observe KHP decomposition and detect products of Korcek

(CcH,,0,) is formed at m/z = 118 in Cl + (CH,),C + O,
system. Similar to above, experiments performed at
constant T, P but varying [O,], RO, signal intensity
and decay rate are unchanged whereas intensity of
KHP signal at m/z = 118 clearly increases with [O,]

KHP formation and decay at 575 K, 1545 Torr
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but the time-behavior remains the same. NUI NYRE”  Caczeewient oew—am decomposition reaction.
Galway new model agree well with exp. results. Time ! ms
m/z = 118, KHP (9.8 eV) _ o . . . o (o .
miver o op s o © ® Still current and future challenges exist. Probably the most significant challenge is lack of

absolute photoionization cross section of any KHP, effectively preventing to determine
KHP product yields and branching ratios. KHPs also seem to be decomposed efficiently on
heated quartz or metal walls, resulting in difficulties to experimentally determine gas-
phase decomposition products of KHPs. Depending on a system, several KHP isomers are
56 000 possible which might be difficult to separate experimentally.

In experiments performed at constant [O,] and

total density while varying T and P, the KHP signal
intensity rapidly increases with T. Simulation
results agree well with exp. results.
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