

Exceptional service in the national interest

Treaty Verification without an Information Barrier

Chris MacGahan, Ph.D. Candidate at University of Arizona

Advisor: Dr. Matthew Kupinski

Mentors: Erik Brubaker & Nathan Hilton, Org: 8127

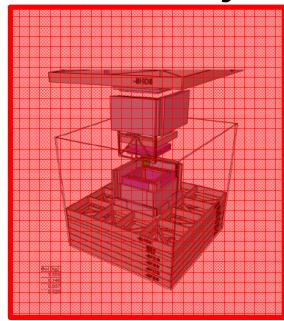
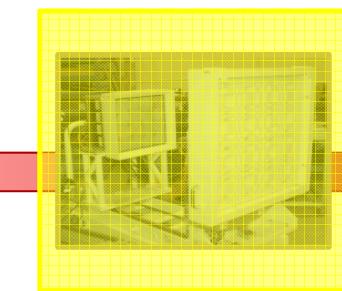
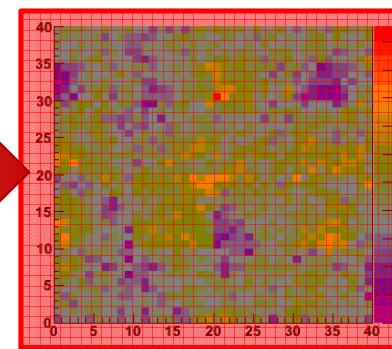
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

The problem

- Current treaty verification tests for delivery systems
- What if countries want to test if a warhead has been disarmed?
- Monitor wants to verify, host wants to preserve sensitive information on construction of objects.
- Many current proposed methods utilize an information barrier (IB)
 - IB: hardware or software

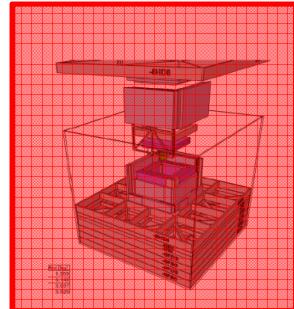
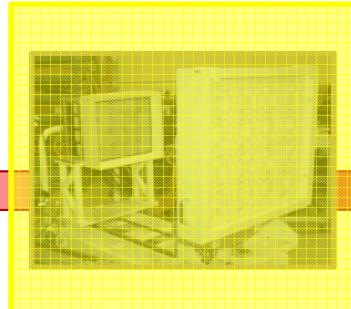
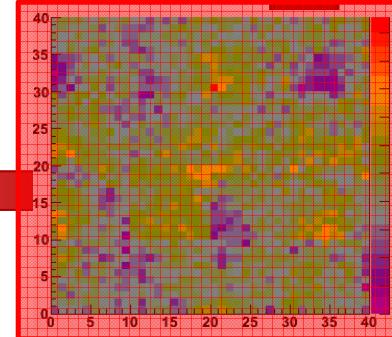
“Traditional” template matching

Trusted object

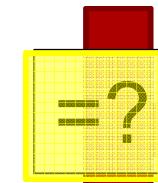
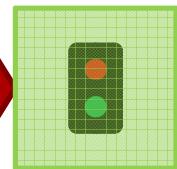


Calibration
data is
sensitive
IB required

Tested object

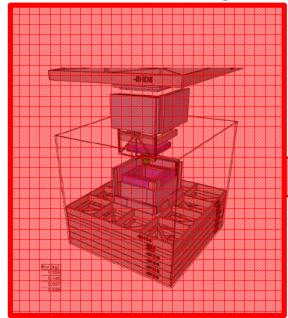
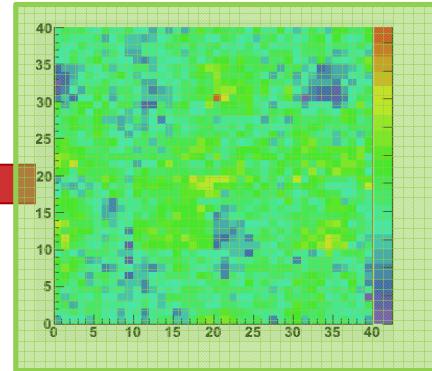


Tested
detector data
is sensitive
IB required



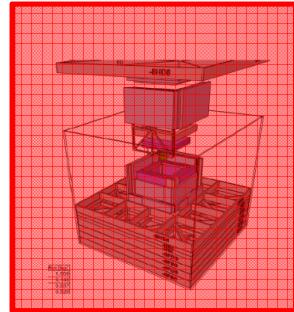
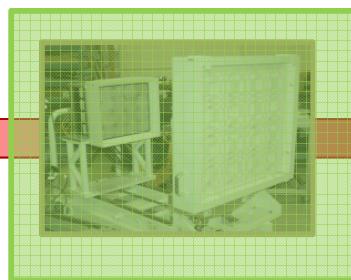
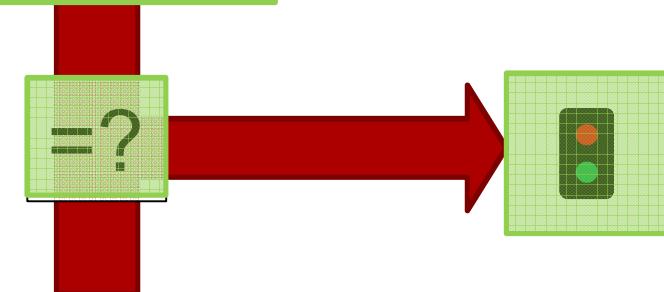
Our proposal

Trusted object



Hypothetical
observer stores
info sufficient for
confirmation but
not sensitive

Tested object



Testing data is processed
event by event, only
updating test statistic.

Data not aggregated

Definitions

- Detector data can be described by number of total detected counts N and list-mode data $\{A_n\}$.
- $\{A_n\}$ contains the n^{th} detected particle type, pixel #, energy bin.
- Randomness in the source - orientation, material age, construction, storage container. We call set of nuisance parameters that degrade performance γ

Linear template observers

- Testing and training event data $\{A_n\}$ binned into data vector g ($P \times 1$).

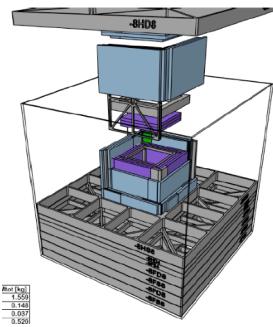
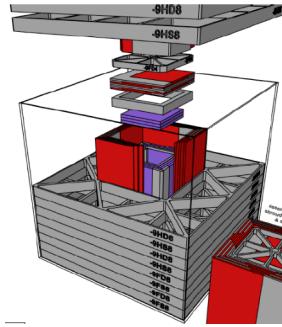
$$g_p = \sum_{n=1}^N f_p(A_n)$$

- Linear template W ($P \times 1$) acts on g_{test} , result is thresholded to make a decision

$$t_{test} = W^\dagger g_{test}, \quad t_{test} \leq t_{thresh}$$

Experiment (simulation)

- Binary discrimination using spectral information.
 - Distinguish objects 8 (Pu surrounded by DU) and 9 (Pu surrounded by HEU) developed by Idaho National Lab.
 - Fast-neutron coded-aperture detector with liquid scintillator.



- Rotational variability included (simulated grid of orientations)
- Models built into transport application using GEANT4 toolkit to acquire testing and training data.

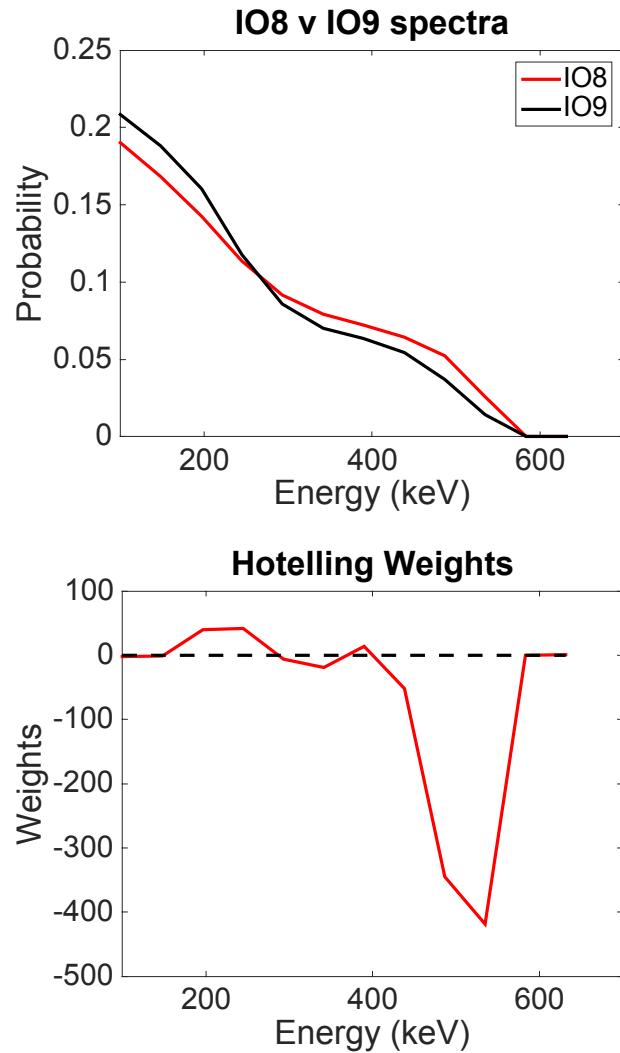
Hotelling observer

- Data on the inspection objects differ in their spectra and count rate.
- Hotelling observer is template W defined as:

$$W = K_g^{-1} \overline{\Delta g}$$

$$K_g^{-1} = \frac{K_1 + K_2}{2}$$

$$\overline{\Delta g} = \overline{g_2} - \overline{g_1}$$



Notes on nuisance parameters

- When incorporating source variability, data becomes doubly stochastic

$$\overline{\overline{g_1}} = \left\langle \langle g_1 \rangle_{g|\gamma} \right\rangle_{\gamma}$$

Averaged over Poisson variability (given known nuisance parameter), then source variability

$$K_1 = \left\langle \langle (g_1 - \overline{\overline{g_1}})(g_1 - \overline{\overline{g_1}})^{\dagger} \rangle_{g|\gamma} \right\rangle_{\gamma}$$

$$K_1 = \langle K_{1,n}(\gamma) \rangle_{\gamma} + K_{\gamma}$$

- On left is Poisson covariance (equal to number of observed counts) integrated over source randomness
- On right is covariance of data due to source variability
- Easy to invert via Matrix Inversion Lemma

Storage for Hotelling observer

- How sensitive is the stored information that our observer model uses?
- Template W contains product of first and second order statistics, but still (likely) constitutes sensitive information

Channelized Hotelling

- Channelize vector $g(P \times 1)$ with operator $T(Q \times P)$ into much smaller vector $v(Q \times 1)$ with Q values.

$$v = Tg$$

$$W_v = K_v^{-1} \overline{\Delta v}$$

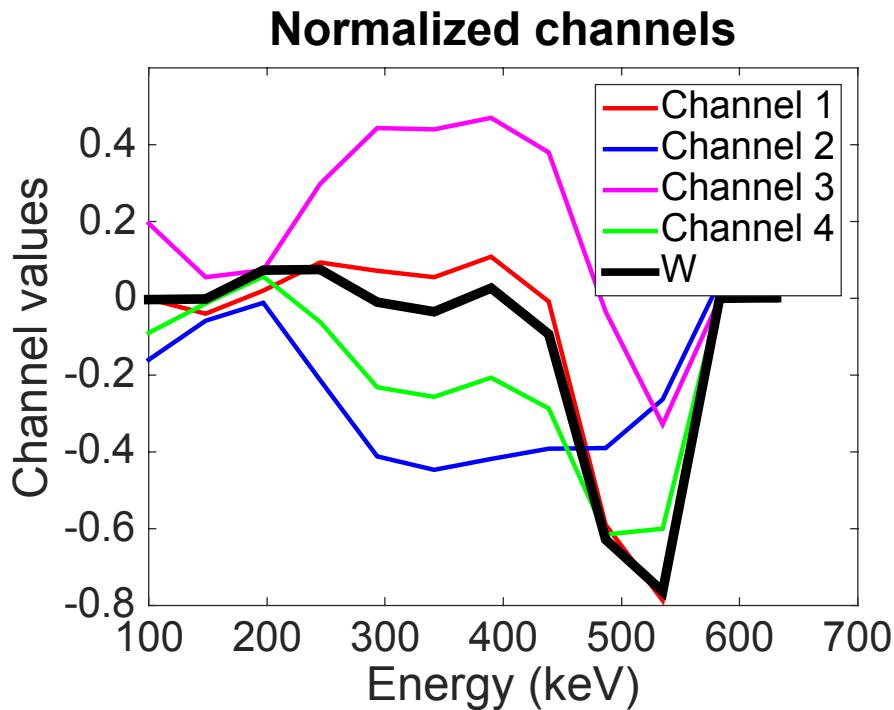
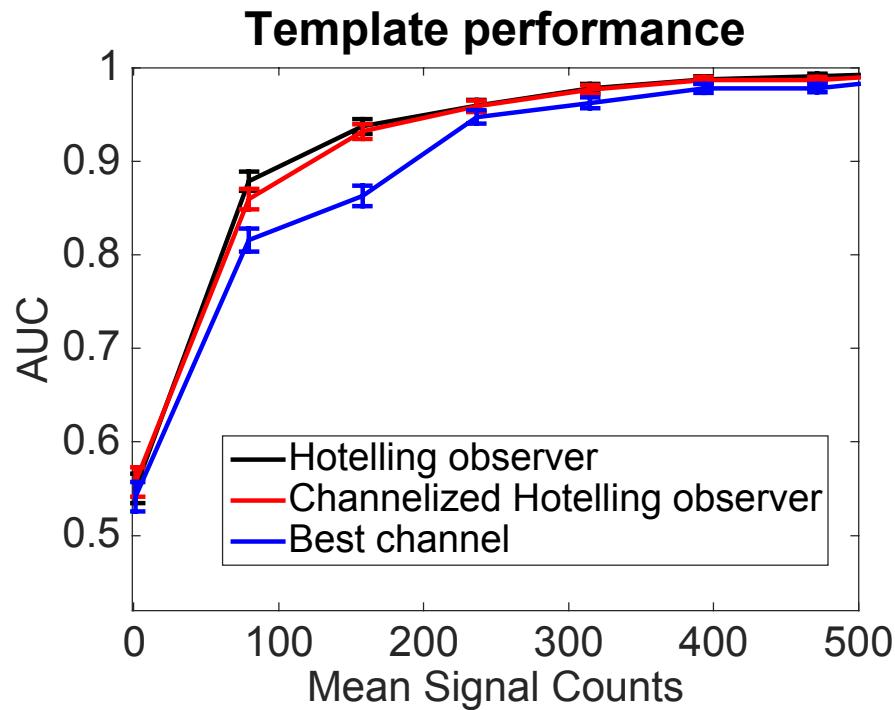
$$W_v^\dagger v_{test} \leq t_{thresh}$$

- T can be optimized to maximize SNR^2 of test statistic distributions for best performance.
 - Simple gradient descent algorithm

$$f_{obj} = \overline{\Delta v}^\dagger K_v^{-1} \overline{\Delta v} = (T \overline{\Delta g})^\dagger (T^\dagger K_g^{-1} T) (T \overline{\Delta g})$$

Channelized Hotelling regularizer

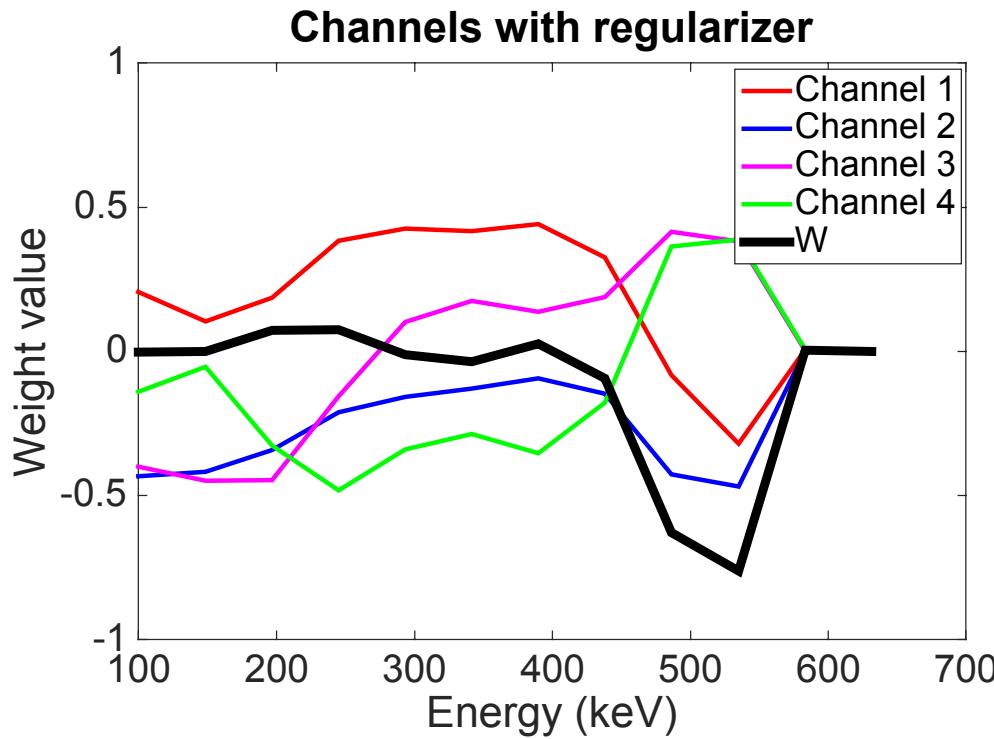
- However, standard optimization led to single or multiple strong performing channels. No point if channels are sensitive.



Channelized Hotelling regularizer

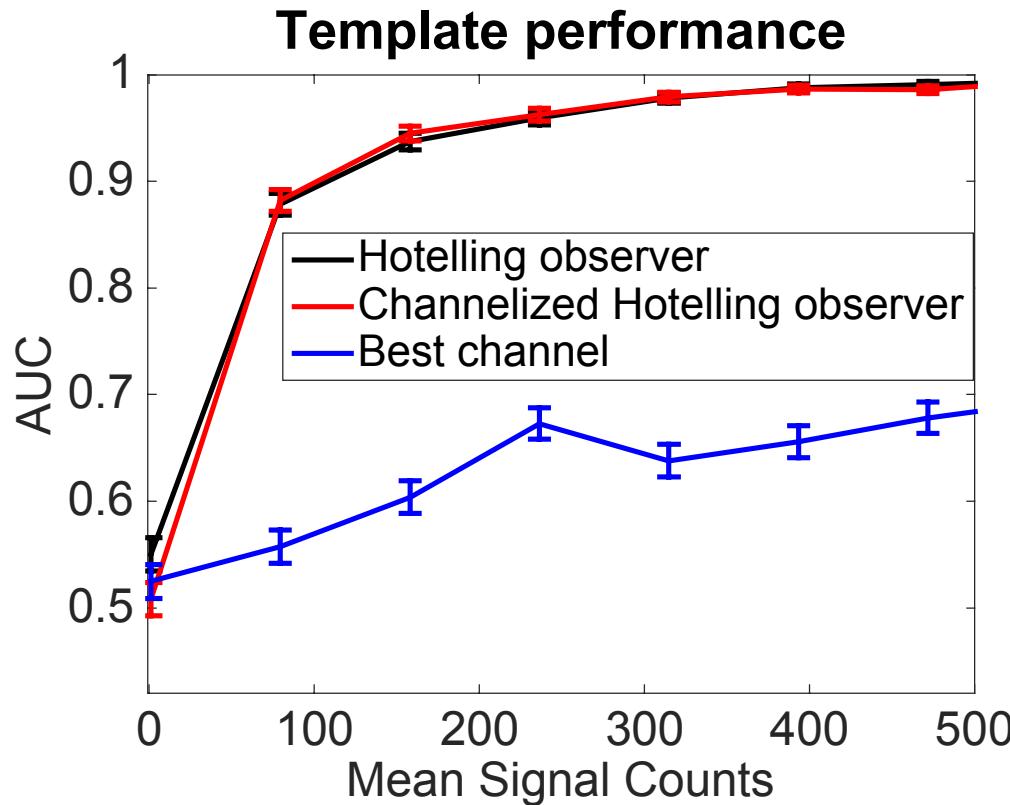
- Use regularizer in optimization to **limit channel performance**

$$f_{obj} = SNR_{Qchannels}^2 - \eta \sum_{q=1}^Q SNR_{channel\ q}^2$$



Channelized Hotelling regularizer

- Hotelling and channelized Hotelling perform well
- Individual channels perform poorly



Summary

- Taken **sensitive** Hotelling template W to T and W_v , neither are sensitive without other.
- There is one caveat:

$$W = W_v T$$

If monitor is able to obtain access to both T and W_v , they can find sensitive Hotelling weights.

Future work – null hypothesis test

- Binary classification is inherently spoofable.
- Need an observer to answer “Is this source A or not source A?”
- We developed a model based on likelihood expression, but it is spoofable.
- Standard tests based on distance metrics
- Is there a linear model similar to the Hotelling observer?

Future work – reducing sensitive info

- Example: Source A is a BeRP ball with 1" of poly shielding. The host country doesn't want the monitor to know what source A's poly thickness is down to a tolerance of Δt

$$f_{obj} = SNR_{(B-A)}^2 - \eta SNR_{(A_{(1''} + \Delta t) - A_{(1''}})}^2$$

- Will lead to drop in performance with benefit that host needn't worry.

Future work – reducing sensitive Info

$$f_{obj} = SNR_{(B-A)}^2 - \eta SNR_{(A_{(1'')} + \Delta t) - A_{(1'')}}^2$$

- A channelizing matrix that optimizes this objective function wouldn't be based on sensitive data
- Likewise, sensitive data could not be gained through the inverse problem
- List-mode requirement would no longer exist