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BRIEF INTRODUCTION

=  Peridynamic model of solid mechanics
=  Meshfree discretization scheme of Silling and Askari Collaborators

Stephen Bond

VARIABLE LENGTH SCALE IN A PERIDYNAMIC MEDIUM

Damon Burnett

= Reducing the peridynamic horizon in the vicinity of a local- Max Gunzburger
nonlocal boundary improves model compatibility John Mitchell
= Standard peridynamic models do not support a variable horizon Jacob Ostien

[ i i i : Michael Park
= The peridynamic partial stress formulation does support a variable ichael marks

. .. . Pablo Seleson
horizon and can be utilized for local-nonlocal coupling

Stewart Silling

Daniel Turner

OPTIMIZATION-BASED COUPLING

=  Model coupling can be cast as an optimization problem Pavel Bochev

= QObjective function: Difference between solutions in overlap region Marta D’Elia
Mauro Perego

= Constraints: Governing equations of the individual models
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Peridynamic Theory of Solid Mechanics ) i,

Peridynamics is a mathematical theory that unifies the mechanics of
continuous media, cracks, and discrete particles

= Peridynamics is a nonlocal extension of continuum mechanics
= Remains valid in presence of discontinuities, including cracks
= Balance of linear momentum is based on an integral equation

p(x)i(x,t) = /gg {Tx,t] (x' —x) - T'[x',t] (x —x') } dVi + b(x,1)

N 7

= Peridynamic bonds connect any two material points that interact directly

Divergence of stress replaced with
integral of nonlocal forces.

= Peridynamic forces are determined by force states acting on bonds
= A peridynamic body may be discretized by a finite number of elements

p(x)iiy (x, t) Z {T[x, 1] (x; — x) — T'[x;, ] (x — x;) } AVy, +b(x,1)

S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48:175-209, 2000.
S.A. Silling and E. Askari. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, 83:1526-1535, 2005.
Silling, S.A. and Lehoucq, R. B. Peridynamic Theory of Solid Mechanics. Advances in Applied Mechanics 44:73-168, 2010. 3
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Local-Nonlocal Coupling for Integrated Fracture Modeling

PERIDYNAMICS OFFERS PROMISE FOR MODELING PERVASIVE MATERIAL FAILURE

= Potential to enable rigorous simulation of failure and fracture
= Directly applicable to Sandia’s national security missions

WE SEEK INTEGRATION WITH CLASSICAL FINITE-ELEMENT APPROACHES

= |ntegration with existing FEM codes provides a delivery
mechanism to DOE and DoD analysts

= “Best of both worlds” through combined classical FEM and
peridynamic simulations

‘ Blast loading at surface

LA 2N

Earth:
Capture wave propagation
with classical FEM

Vision
Apply peridynamics in
regions susceptible to
material failure

Buried concrete structure:
Capture damage with
peridynamics

4
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U Impact simulation

Facilitate local-nonlocal coupling in

combined peridynamic / classical
FEM simulations

Increasing horizon ==p- <= Increasing horizon

L J \ ) | )
T | T

small horizon large horizon small horizon
(nonlocal model)

STANDARD PERIDYNAMIC MODELS DO NOT SUPPORT A VARIABLE LENGTH SCALE
= Limited support: peridynamic models can support a linearly varying horizon
" (Ghost forces are proportional to the second derivative of the horizon
= Difficulties persist at transition from a constant horizon to a varying horizon

PATH FORWARD
= Seek a formulation that mitigates difficulties associated with a variable horizon

= Target one-dimensional patch tests (expose spurious artifacts, if any)
= Linear displacement field must be equilibrated
= Quadratic displacement field must produce constant acceleration
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Peridynamic Stress Tensor
ALTERNATIVE EXPRESSION FOR INTERNAL FORCE, TIES TO LOCAL THEORY

Internal force density
L) = [ {Tila—x) - Tlal(x — )} Ve
Peridynamic stress tensor !
LPd = v . pPd
1 o0 oo
Pd(x) = 5// / (v+ w)*f(x + vm, x — wm) ® m dw dv dQm
SJO 0

where

f(q,p) = T[p/{a—p) — Tla](p — a)

1Lehoucq, R.B., and Silling, S.A. Force flux and the peridynamic stress tensor, Journal of the Mechanics and Physics of Solids, 56:1566-1577, 2008. 6
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Peridynamic Partial Stress Formulation
Under the assumption of a uniform displacement field
y(x+§&) —y(x)=F¢

The peridynamic stress tensor is greatly simplified

Pl = // / (zm) ® m dz dv d0m,
= // / (zm) ® m dv dz dm
_ // (2m) ® m dz d2p,
_ // © (2m) (22 dz )

The result is the peridynamic partial stress

V0 /H T(E) () © € dVe

S.A. Silling, D.J. Littlewood, and P.D. Seleson. Variable Horizon in a Peridynamic Medium. SAND Report 2014-19088. Sandia National Laboratories,
Albuquerque, NM and Livermore, CA, 2014. 7
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Peridynamic Partial Stress Formulation

Vo (X) = LI[X] <§>®§dvx’

= GOOD: Supports variable horizon
= Guaranteed to pass the linear patch test (even with a varying horizon)

= Provides a natural transition between the full peridynamic formulation and a classical
stress-strain formulation (hybrid approach)

= BAD: Is exact only for uniform displacement field
= Partial stress formulation is not a good candidate for modeling material failure

= Saving grace: we will apply the partial stress only at local-nonlocal coupling
interfaces, which are placed in relatively smooth regions

vPd — uPs = O(6)O(|VT,))

S.A. Silling, D.J. Littlewood, and P.D. Seleson. Variable Horizon in a Peridynamic Medium. SAND Report 2014-19088. Sandia National Laboratories,
Albuquerque, NM and Livermore, CA, 2014. 8
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Application of Partial Stress within Peridynamics Framework

INTERNAL FORCE CALCULATION REQUIRES DIVERGENCE OPERATOR

= Internal force evaluated as divergence of partial stress

LXx)=V-v(x)=Tr( Vv (x))

Vv (x) = f wEOPPE)-vX}QEdAVy K™!
H

= The partial stress can be applied within the meshless approach of Silling and
Askari !

N
V-v(x) = Tr( (Zg(fn){v(xn) —v(X)}®&" AV”] K™! )
n=1

* The partial stress can also be applied within a standard finite-element scheme

1S.A. Silling and E. Askari. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, 83:1526-1535, 2005.

9




National

Sandia
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ALTER THE PERIDYNAMIC HORIZON WITHIN A BODY TO APPLY NONLOCALITY
ONLY WHERE NEEDED

Local region Transition region Nonlocal region
d d
L(x) =§ L(x) =% L(x) = f{T[x](f)—T[x+f]<—f)} d¢

N

Full peridynamic (PD)

Uo(x) = f ET[x)(E) dE

A

vo(x) = o(F(x))

Partial stress
(PS)

Horizon &(x)

Good old-fashioned
local stress
1

Position x

[Courtesy Stewart Silling] 10
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SUBJECT RECTANGULAR BAR TO PRESCRIBED DISPLACEMENT FIELDS

= Examine response under linear and quadratic Elastic Correspondence
displacement fields Material Model
. . . Density 7.8 g/cm?®
" |nvestigate standard formulation with both constant and breats || Zmpem
varying peridynamic horizon Poisson's Ratio 0.0
. . . . Stability Coefficient 0.0
= |nvestigate partial stress formulation with both constant —
and varying peridynamic horizon
Constant Horizon Varying Horizon

ooooooo
g
03 foz
Zon
025 Core
wos b

£ Horizon Value

0.15

T 0.1

Number of Neighbors Number of Neighbors

11
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Patch Test: Prescribed Linear Displacement ) e

Test set-up Can the standard model and the
partial-stress model recover the
Prescribe linear | - expected zero acceleration?
displacement field 2
R Both models produce the
5 expected result when the
Constant horizon . . .
throughout bar 1 * horizon is constant

A 0 1
Location (m)

Test Results: Acceleration over the length of the bar

Standard material model Partial-stress formulation

150 150

Acceleration (km/s?)
(=]
Acceleration (km/s?)
(=]

Note: nodes near
ends of bar excluded
-150 -150

3 2 -1 0 1 2 3 3 2 -1 0 1 2 3 from plots
Location (m) Location (m)

12
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Patch Test: Prescribed Linear Displacement )t

Test set-up Can the standard model and the
partial-stress model recover the
- expected zero acceleration?
Prescribe linear I,

displacement field

Only the partial stress
formulation produce the

ﬂ expected result when the
Variable horizon .

horizon is varying

Test Results: Acceleration over the length of the bar

Standard material model Partial-stress formulation
150 150
[ )

“ . >
2 .o 2
g o & g

g o o ovnee ’ g o
g o wee g
Spurious “ghost forces” /f;// e P §
present in standard < ° <

formulation ¢
-150 -150
-3 2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Location (m) Location (m)

13




Patch Test: Prescribed Quadratic Displacement

Test set-up Can the standard model and the
xj partial-stress model recover the
Prescribe quadratic / expected constant acceleration profile?
displacement field 2
T e Both models produce the
expected result when the

Constant horizon

throughout bar horizon is constant

El o 1
Location (m)

Test Results: Acceleration over the length of the bar

Standard material model Partial-stress formulation

Acceleration (km/s?)
(=]
Acceleration (km/s?)
(=]

3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
Location (m) Location (m)

Sandia
National
Laboratories
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Patch Test: Prescribed Quadratic Displacement )t

Test set-up Can the standard model and the
partial-stress model recover the
/ expected constant acceleration?
Prescribe quadratic £ -
displacement field & / ]
e — Only the partial stress

formulation produce the

. _ ﬂ expected result when the
Variable horizon  §

horizon is varying

Test Results: Acceleration over the length of the bar

Standard material model Partial-stress formulation
40 . 40
..

i % o 2
g o nald ta‘/
= .. =]

L o w @ S 0
g / ° =
Spurious “ghost forces” /3/ 5
. 3 3
present in standard < <

formulation
-40 -40
-3 2 1 0 1 2 3 -3 -2 -1 0 1 2 3
Location (m) Location (m)

15
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Wave Propagation through Region of Varying Horizon

Partial-stress approach

Greatly reduces artifacts, enables smooth
transition between large and small horizons

Standard peridynamic model

Numerical artifacts present at transition from
large horizon to small horizon

strain strain
V‘,O T T T T T T T = T T T T T T T v':O_ T T T T T T T II T T T T T T T
< 9 large ! small _ < large : small ]
horizon - horizon horizon : horizon
a r : //_d'_ a : //
-2 | / . -2 : i 1
1 / i /
! / 1 /
—4 . —4 ‘ |
: / : /
-6 : i . -6 ! / .
| / : /
-8 ! / . -8 : // .
SO : & . =10 | : / .
\ L \ L
= 128 A A il e 12 M : = 7
: :
=14 1 A -14 r | -
1 1
_16 L L Il 1 1 1 L ' Il 1 1 1 L Il —16 1 Il 1 1 Il 1 | I 1 Il 1 1 1 1
-20 =18 =10 =5 0 5 10 15 20 =20 =15 =10 =5 0 o 10 L= 20

1Silling, S., and Seleson, P., Variable Length Scale in a Peridynamic Body, SIAM Conference on Mathematical Aspects of Materials Science, Philadelphia, PA, June

12, 2013.

16
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What about Performance?

USE OF A VARIABLE HORIZON IMPACTS PERFORMANCE IN SEVERAL WAYS

= Use of a variable horizon can reduce neighborhood size
= Less computational cost per internal force evaluation
= Reduces number of unknowns in stiffness matrix for implicit time integration

= Use of a variable horizon can reduce the critical time step

= (Critical time step is strongly dependent on the horizon 1.2
= Smaller time step results in more total steps to solution for explicit transient dynamic simulations

= Important note: the critical time step for analyses combining peridynamics and classical finite
analysis is generally determine by the classical finite elements

Total Number of Bonds Stable Time Step -2
(equal to number of nonzeros in stiffness matrix) (explicit transient dynamics)
Constant Horizon 92.6 million Constant Horizon 2.03e-5 sec.
Varying Horizon 46.5 million Varying Horizon 7.15e-6 sec.

1S.A. Silling and E. Askari. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, 83:1526-1535, 2005.

2 Littlewood, D.J, Thomas, J.D., and Shelton, T.R. Estimation of the Critical Time Step for Peridynamic Models. SIAM Conference on the Mathematical
Aspects of Material Science, Philadelphia, Pennsylvania, June 9-12, 2013.

17
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A Prototype of the Partial Stress Formulation has been i)

National

Implemented in Coupled Albany-Peridigm Code e

= Software infrastructure in place for strongly coupled simulations

= Meshfree peridynamic models, peridynamic partial stress, and classical
continuum mechanics (FEM) within single executable

Partial stress utilized for transition between classical continuum mechanics
(local model) and peridynamics (nonlocal model)

Peridynamic partial stress

|
I 1

\_'_I \_'_J

Classical continuum mechanics Classical continuum mechanics

Nonlocal peridynamic
interactions (bonds) occur across
multiple FEM elements

Peridynamic (Peridigm) material points located at
FEM (Albany) quadrature points

18
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LINEAR PATCH TEST

=  Coupling of classical continuum mechanics and peridynamic partial stress
= Local boundary conditions applied to areas at ends of bar (prescribed displacement)
= |mplicit Albany solver (statics)

Peridynamic partial stress

A
[ 1

\_'_I \_'_I

Classical continuum mechanics Classical continuum mechanics

Tensile Bar Coupled CCM-PS-CCM

. (]
..
0.035 o**’
o®
— «®
Disp.X g 00 ....0
0'04} = 0025 o®°
= o
3 Q o®°
0 = 0015 o®°
73 «*®
A ool o
( J
0.005 o*’
..
(J
0e®
4 3 2 1 0 1 2 3 4
Position (m
(m) 19
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Demonstration Calculation i)t

LINEAR PATCH TEST

=  Coupling of classical continuum mechanics, peridynamic partial stress, and standard
meshfree peridynamics

= Local boundary conditions applied to areas at ends of bar (prescribed displacement)
= |Implicit Albany solver (statics)

= Interface between partial stress and meshfree peridynamics is a work in progress

Peridynamic partial Meshfree Peridynamic partial
stress peridynamics stress
| 1 |

* *
Classical continuum mechanics Classical continuum mechanics

Tensile Bar Coupled CCM-PS-PD-PS-CCM

Disp. X
0.008 fl

-0.008 *I

Displacement (m)
<

Position (m)

20
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CURRENT EFFORT OF D’ELIA, PEREGO, AND BOCHEV

=  Model coupling can be cast as an optimization problem
= QObjective function: Difference between solutions in overlap region
= Constraints: Governing equations of the individual models

APPLICATION OF OPTIMIZATION-BASED COUPLING TO COMPUTATIONAL SOLID MECHANICS

Appropriate for static and quasi-static problems involving disparate models
= Rigorous mathematical foundation, error bounds, etc.

Can be applied as a “black box” to couple dissimilar computational domains

= Computational expense is a concern, mitigation strategies being
investigated

21
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Minimize the mismatch between the nonlocal and local models
subject to the two models acting independently in Q, and Q,

1
: 2
min  J(up,u)= =|u, — u; s.t.
unaulaenael ( " ) 2 H " | O,Qb
Nonlocal Local
—Lu, = x €
Uy = xecl,
un _= T c Fi.
Key result of mathematical analysis:
Coupling error is bounded by the modeling error on the local subdomain
Slide material courtesy of
D’Elia, Perego, and Bochev 22
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PROBLEM SETTING IN 1D

~ Q /
an, U an, .............................................................................
— e i
— 0 0.75 1 1+¢ 1.75
A A A A
homogen-eous Dirichlet él Hn homogeneoué Dirichlet
Virtual
controls

Slide material courtesy of
D’Elia, Perego, and Bochev 23




Optimization-Based Coupling: Numerical Examples L

1D PATCH TEST

1
2z — gy~

(z —&,2+¢)

Kernel: 7(z,y) =

Exact solution:

® U, =U =T

® un|§z =T
o w(1.75) = 1.75

0.2/ 05 1 15

Slide material courtesy of
D’Elia, Perego, and Bochev

Sandia
National
Laboratories
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SMOOTH GLOBAL SOLUTION IN 1D

3.5r= ! ™ ;
Example 1 A ] :
02 ===ty
o un — Ul =X 2.5¢ u*
= Uhn : : :
, R T S ST 2.36e-03 2.62¢-03
21 | e : :
o uplg =7 ton | Initial guess 7.54e-04 7.126-04

- O‘
0."

o u;(1.75) = 1.752 A 4.67¢-05 4.44e-05
1.14e-05 1.10e-05
0.5r
o fn — fl = =2 o
Optimization
-0.5
approach merges the
Example 2 ) models seamlessly!
0
o Uyl =% —at L€ | h [e(u,) | rate | e(u) | rate |
niQ; R 9.70e03 295e02
0 o E 2.68¢-03 7.54e-03
e u;(1.75) =175 —-1. 7.02¢-04 1.90¢-03
: 1.78e-04 4.76e-04
o f=—24+1222 42 R 4.48e-05 1.19¢-04
o fi=—2+1222 O s, |
0 05 1 15

Slide material courtesy of
D’Elia, Perego, and Bochev 25
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ROUGH NONLOCAL SOLUTION

Point force Discontinuous nonlocal state

1.6 x
- 0
1.4¢ R To g, ===l
o’ 0 0
1.2f PR "EEUnp | === Upp |7
" —u* *
i R lh w—Uh
* *
0.8} Kt . Uk : : z e —Upp |1
' Re Initial guess : : ; L ;
o : : : .o :
I e * IR VA p——
0.4k K Teel ] Initial guess:
’ : : : Co 5
02l S A= 1 T D S e ]
4 . : . . :
_/ : _ i L :
o ’ z T ~ ;
_0.2 i i 1 l : l : l
0 0.5

Optimization
approach merges the
models seamlessly!

Slide material courtesy of
D’Elia, Perego, and Bochev 26
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Optimization-Based Coupling: Path Forward

Programmatically

Research & proof- -
exercised software

of-principle

Utilize agile components approach for development of computational algorithms
* Provide access to adjoints, sensitivites, etc. for adjoint-based fast optimization
« Enable effective transitioning of research ideas into production software

l —Lu, = fn e,
. U, = 0 x €
R —> min  J(un,u;) s.t.
U Ui,0n,01 —Au; = fi el
{ w = 60, xzel,
T u, = 0 T c ]._‘Z I

Slide material courtesy of
D’Elia, Perego, and Bochev 27
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PROOF-OF-CONCEPT SIMULATION COUPLING PERIDIGM AND ALBANY

Initial guess

dXx
0 0.01 QP2

IHH"\I\IHH |

-0.005 0.03

LtN solution

dXx
0

w\ [} \Q'PJ\ [N \O\Pm

-0.005 0.03
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David Littlewood

djlittl@sandia.gov

http://peridigm.sandia.gov
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Extra Slides
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The Peridigm Computational Peridynamics Code

WHAT IS PERIDIGM?

= QOpen-source software developed at Sandia National
Laboratories

= C++ code based on Sandia’s Trilinos project
= Platform for multi-physics peridynamic simulations
= Capabilities:
= State-based constitutive models
= |mplicit and explicit time integration
= Contact for transient dynamics
= Large-scale parallel simulations
= Compatible with pre- and post-processing tools
= Cubit mesh generation
= Paraview visualization tools
= SEACAS utilities
= Designed for extensibility

M.L. Parks, D.J. Littlewood, J.A. Mitchell, and S.A. Silling, Peridigm Users’ Guide v1.0.0. Sandia Report SAND2012-7800, 2012.

Tlinos

Sandia
National
Laboratories
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Constitutive Models for Peridynamics

MATERIAL MODEL FORMULATION STRONGLY AFFECTS CRITICAL TIME STEP

= Presence of multiple length scales differs from the classical (local) approach
= Complex deformation modes possible within a nonlocal neighborhood

Sandia
"1 National
Laboratories

= Material failure through the breaking of bonds may alter the stable time step

Microelastic Material 1

. Bond-based constitutive model

. Pairwise forces are a function
of bond stretch

y—x
i

S =

=  Magnitude of pairwise force
density given by

18k

t=—s
- mot

Linear Peridynamic Solid 2

State-based constitutive model

Deformation decomposed into deviatoric and
dilatational components

3 0 x
= — i d_ —_—
0 /H( z)-edV e'=e—

Magnitude of pairwise force density given by

€

3k0 15
= oxt Eyel
m m

|4

o v e 8 R

":??'04%5;’:\<:\EI®&

I~

Definitions
bond vector

initial bond length

deformed bond length

bond stretch

bond extension

deviatoric bond
extension

influence function

volume
neighborhod
weighted volume
dilatation
horizon
bulk modulus
shear modulus

pairwise force
density

S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48:175-209, 2000.

S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88, 2007.

32
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WRAPPER APPROACH RESULTS IN A NON-ORDINARY STATE-BASED MATERIAL MODEL 1

= Approximate deformation gradient based on initial and current locations of
material points in family

i ' i Definiti
Approximate Deformation Gradient Shape Tensor enniions

F=(Y+xX)K! K=XxX

reference position
vector state

deformation
vector state

NN

shape tensor
= Kinematic data passed to classical material model approximate

deformation gradient

= (Classical material model computes stress bond

& o =

influence function

= Stress converted to pairwise force density

Piola stress

Q

T (&) =w(€) oK™'¢

Suppression of zero-energy modes (optional) 2

1. S.A.Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88, 2007.

2. Littlewood, D. A Nonlocal Approach to Modeling Crack Nucleation in AA 7075-T651. Proceedings of the ASME 2011 International Mechanical Engineering
Congress and Exposition, Denver, Colorado, 2011. 33
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LOCAL AND NONLOCAL DIFFUSION MODELS

The nonlocal problem The nonlocal diffusion operator
Lu, = fo weS Luf@) = [ (uly) - u(@) v(.y) dy
Unp, = Op T < Q,

acting on u(z): R* — R

The local problem

local diffusion model given by the Poisson equation

—Au; = fi xe€)
u = 0y ZBE@Q,

where o; € H2(9) and f; € L2(Q)

D’Elia, M. and Bochev, P. Materials Research Society. Cambridge University Press, 2015.
D’Elia, M. and Bocheyv, P., Submitted 2015.
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