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Goal	
  is	
  to	
  understand	
  properEes	
  of	
  a	
  wide	
  variety	
  of	
  materials	
  
under	
  pressure	
  

§  Van	
  der	
  Waals	
  interacEons	
  
§  LocalizaEon	
  vs	
  delocalizaEon	
  
§  Kondo	
  physics	
  
§  Charge	
  transfer	
  
§  Chemical	
  ReacEons	
  

Cerium Phase diagram 

Elkin et al. PRB 84, 094120 (2011) 

Xe isosurfaces 

Tkatchenko et al PRB 78, 045116 (2008) 
 

y 

x 

z 

eg orbital with surrounding 
oxygen ions 

Localized d-orbital in FeO 



Techniques to probe materials at extreme conditions 
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Marx 
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The Sandia Z Machine 

22 MJ stored energy 
~26 MA peak current 
~100-700 ns rise time 

Experiment 

16.5 m 



DMC	
  may	
  allow	
  required	
  accuracy	
  

6	
  
• from Nemec et al, JCP. 132, 034111 (2010) 
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QMCPACK	
  –	
  Massively	
  Parallel	
  QMC	
  

§  Quantum	
  Monte	
  Carlo	
  code	
  designed	
  for	
  massive	
  parallelism	
  
§  Developed	
  by	
  J.	
  Kim	
  et	
  al	
  at	
  Oak	
  Ridge	
  NaEonal	
  Laboratory	
  
§  Hybrid	
  MPI	
  /	
  OpenMP	
  parallelism	
  

§  Shared	
  Memory	
  on	
  Nodes,	
  Distributed	
  between	
  

§  Can	
  efficiently	
  scale	
  to	
  more	
  than	
  1,000,000	
  CPU	
  cores	
  
§  CUDA	
  port	
  to	
  GPUs	
  with	
  15X	
  speedup	
  

Scaling on Jaguar_pf Scaling on Sequoia 



DMC	
  is	
  not	
  as	
  mature	
  as	
  DFT	
  
§ CalculaEons	
  of	
  condensed	
  phases	
  involve	
  a	
  variety	
  of	
  approximaEons	
  

§ Most	
  approximaEons	
  may	
  be	
  made	
  arbitrarily	
  small,	
  but	
  approaches	
  to	
  this	
  are	
  not	
  
standardized	
  

§ Finite	
  size	
  effects	
  
§  One	
  body	
  effects	
  	
  -­‐>	
  DFT	
  comparison	
  or	
  twist	
  averaging	
  
§  Two	
  body	
  effects	
  -­‐>	
  ExtrapolaEon,	
  KZK	
  funcEonal	
  or	
  	
  MPC	
  /	
  Chiesa	
  combina5on	
  

§ Fixed	
  node	
  errors	
  
§  Slater	
  jastrow	
  wavefunc5on,	
  self	
  healing,	
  backflow,	
  geminals,	
  pfaffians,	
  mulEdeterminants	
  

§ PseudopotenEals	
  
§  Only	
  valence	
  electrons	
  simulated	
  because	
  of	
  computaEonal	
  cost	
  
§  In	
  which	
  approximaEon	
  should	
  core	
  and	
  valence	
  be	
  separated	
  
§  CorrecEon	
  via	
  all	
  electron	
  calculaEon	
  or	
  comparison	
  with	
  all	
  electron	
  DFT	
  

	
  



ApproximaEon	
  methods	
  can	
  greatly	
  affect	
  results	
  

§ Case	
  study	
  on	
  Si	
  
§ Total	
  energies	
  of	
  diamond	
  and	
  beta-­‐Sn	
  phases	
  calculated	
  with	
  DMC	
  /	
  LRDMC	
  
§ Quasiharmonic	
  phonon	
  correcEons	
  included	
  

Sorella et al.  PRB 83, 075119 
(2011) 



Test	
  approximaEons	
  on	
  a	
  suite	
  of	
  solids	
  
§  Binding	
  is	
  different	
  

§  Far	
  less	
  effect	
  from	
  degenerate	
  energy	
  levels	
  at	
  highest	
  energy	
  states	
  
§  More	
  effect	
  from	
  relaEve	
  energy	
  levels	
  

§  Test	
  should	
  compare	
  to	
  easily	
  measured	
  experimental	
  data	
  
§  high	
  pressure	
  calculaEons	
  to	
  derive	
  properEes	
  of	
  ambient	
  phase	
  

§  Previous	
  calculaEons	
  have	
  required	
  1	
  year	
  of	
  Eme	
  on	
  NSF	
  
machines	
  for	
  a	
  single	
  solid	
  

§  CalculaEons	
  performed	
  on	
  Cielo	
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PseudopotenEal	
  Details	
  
§ LDA	
  pseudopoten5als	
  constructed	
  with	
  OPIUM	
  
§ Compared	
  to	
  either	
  LAPW	
  calcula5ons	
  with	
  elk	
  or	
  LMTO	
  calcula5ons	
  with	
  
RSPT	
  (MaHsson	
  et	
  al.	
  JCP	
  128,	
  084714	
  (2008))	
  

§ Bulk	
  modulus	
  and	
  equilibrium	
  volume	
  nearly	
  same	
  to	
  minimize	
  
correc5ons	
  such	
  as	
  applied	
  in	
  Maezono	
  et	
  al.	
  PRB	
  82,	
  184108	
  (2010)	
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Convergence	
  of	
  technical	
  parameters	
  
§ Tests	
  performed	
  for	
  moderate	
  size	
  supercell	
  at	
  2	
  volumes	
  
§ Time	
  step,	
  b-­‐spline	
  spacing	
  and	
  twist	
  averaging	
  converged	
  to	
  within	
  meV	
  
§ Finite	
  size	
  convergence	
  achieved	
  when	
  change	
  to	
  larger	
  supercell	
  
produced	
  same	
  energy	
  shiZ	
  in	
  ambient	
  and	
  high	
  pressure	
  calcula5ons	
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Convergence	
  of	
  technical	
  parameters	
  
§ Tests	
  performed	
  for	
  moderate	
  size	
  supercell	
  at	
  2	
  volumes	
  
§ Time	
  step,	
  b-­‐spline	
  spacing	
  and	
  twist	
  averaging	
  converged	
  to	
  within	
  meV	
  
§ Finite	
  size	
  convergence	
  achieved	
  when	
  change	
  to	
  larger	
  supercell	
  
produced	
  same	
  energy	
  shiZ	
  in	
  ambient	
  and	
  high	
  pressure	
  calcula5ons	
  

-18.0775

-18.077

-18.0765

-18.076

-18.0755

-18.075

-18.0745

-18.074

-18.0735

 0  0.005  0.01  0.015  0.02

en
er

gy
 (H

a)

timestep

timestep convergence of DMC



Convergence	
  of	
  technical	
  parameters	
  
§ Tests	
  performed	
  for	
  moderate	
  size	
  supercell	
  at	
  2	
  volumes	
  
§ Time	
  step,	
  b-­‐spline	
  spacing	
  and	
  twist	
  averaging	
  converged	
  to	
  within	
  meV	
  
§ Finite	
  size	
  convergence	
  achieved	
  when	
  change	
  to	
  larger	
  supercell	
  
produced	
  same	
  energy	
  shiZ	
  in	
  ambient	
  and	
  high	
  pressure	
  calcula5ons	
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First	
  ever	
  extensive	
  benchmarks	
  of	
  Quantum	
  
Monte	
  Carlo	
  for	
  condensed	
  ma<er	
  
§ Fit	
  Vinet	
  form	
  to	
  E(V)	
  and	
  compare	
  equilibrium	
  volume	
  (density)	
  and	
  bulk	
  
modulus	
  (compressibility)	
  to	
  experiment	
  

Mean error: -0.38 +/- 0.15 
Mean absolute error: 2.28 +/- 0.15    
RMS error:  -0.697 +/- 0.066% 
Mean absolute relative error: 1.79 +/- 0.07% 
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§  Materials span a factor of 10 in 
equilibrium volume 

§  Four types of bonding are included 
§  Ionic 
§  Covalent 
§  Metallic 
§  Van der Waals 

§  Lattice Constants within ~0.9%  
§  This provides a new baseline 

procedure for a QMC calculations 



First	
  ever	
  extensive	
  benchmarks	
  of	
  Quantum	
  
Monte	
  Carlo	
  for	
  condensed	
  ma<er	
  
§ Fit	
  Vinet	
  form	
  to	
  E(V)	
  and	
  compare	
  equilibrium	
  volume	
  (density)	
  and	
  bulk	
  
modulus	
  (compressibility)	
  to	
  experiment	
  

Mean error: -0.07 +/- 0.42  
Mean absolute error: 3.53 +/- 0.42 
RMS error:  0.62 +/- 0.44% 
Mean absolute relative error: 4.49 +/- 0.44% 
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§  Bulk modulus spans over 3 orders 
of magnitude 

§  This provides a new baseline 
procedure for a QMC calculations 



Compare	
  to	
  DFT	
  funcEonals	
  
§ Compare	
  to	
  various	
  
“good”	
  DFT	
  
func5onals	
  
§  LDA	
  
§  PBE	
  
§  AM05	
  
§  HSEsol	
  
§  vdW-­‐DF2	
  
§  vdW-­‐optB86b	
  

§ Non	
  van	
  der	
  Waals	
  
func5onals	
  yield	
  
high	
  quality	
  results	
  
on	
  many	
  materials	
  
§  But	
  not	
  noble	
  gases	
  

§ van	
  der	
  Waals	
  
func5onals	
  are	
  
improving	
  to	
  wide	
  
applicability	
  

Error in Calculated Equilibrium Volume
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LNS and TRM, PRB 88, 245117 (2013) 



Compare	
  to	
  DFT	
  funcEonals	
  
§ Compare	
  to	
  various	
  
“good”	
  DFT	
  
func5onals	
  
§  LDA	
  
§  PBE	
  
§  AM05	
  
§  HSEsol	
  
§  vdW-­‐DF2	
  
§  vdW-­‐optB86b	
  

§ Non	
  van	
  der	
  Waals	
  
func5onals	
  yield	
  
high	
  quality	
  results	
  
on	
  many	
  materials	
  
§  But	
  not	
  noble	
  gases	
  

§ van	
  der	
  Waals	
  
func5onals	
  are	
  
improving	
  to	
  wide	
  
applicability	
  

Error in Calculated Equilibrium Bulk Modulus
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Si	
  Phase	
  transiEon	
  revisited:	
  
U"lizing	
  methodology	
  from	
  benchmark	
  fares	
  li7le	
  be7er	
  

§ Use	
  DFT	
  based	
  pseudopoten5al	
  
§ Extensive	
  twist	
  averaging	
  for	
  
Fermi	
  surface	
  

§ Chiesa	
  correc5on	
  for	
  kine5c	
  
energy	
  and	
  MPC	
  for	
  poten5al	
  

§ Equilibrium	
  proper5es	
  are	
  worse	
  
than	
  reported	
  by	
  other	
  groups	
  
§  Equilibrium	
  density	
  2%	
  too	
  small	
  
§  Bulk	
  Modulus	
  5%	
  too	
  large	
  

§ Phase	
  Transi5on	
  pressure	
  
§  	
  17.8	
  GPa	
  (5-­‐7.8	
  GPa	
  too	
  large!)	
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Study	
  simpler	
  system	
  to	
  isolate	
  errors:	
  
Be	
  HCP	
  -­‐>	
  BCC	
  phase	
  transi"on	
  

§  Solid	
  Be	
  used	
  in	
  ICF	
  	
  
§  High	
  strength,	
  low	
  Z	
  material,	
  Low	
  x-­‐ray	
  

absorpEon	
  

§  HCP	
  at	
  ambient	
  temperature	
  and	
  pressure	
  
§  Phase	
  transiEon	
  to	
  BCC	
  at	
  high	
  pressure	
  
§  Simple	
  but	
  demanding	
  computaEonally	
  

Benedict et al. PRB 79, 064106 (2009) 



Study	
  simpler	
  system	
  to	
  isolate	
  errors:	
  
Be	
  HCP	
  -­‐>	
  BCC	
  phase	
  transi"on	
  

§  Solid	
  Be	
  used	
  in	
  ICF	
  	
  
§  High	
  strength,	
  low	
  Z	
  material,	
  Low	
  x-­‐ray	
  

absorpEon	
  

§  HCP	
  at	
  ambient	
  temperature	
  and	
  pressure	
  
§  Phase	
  transiEon	
  to	
  BCC	
  at	
  high	
  pressure	
  
§  Simple	
  but	
  demanding	
  computaEonally	
  

Rober and Sollier. J. Phys. IV France 134, 257 (2006) 



22	
  

Extreme	
  sensiEvity	
  to	
  errors	
  

§  Calculate	
  beryllium	
  	
  
HCP-­‐>	
  BCC	
  phase	
  transiEon	
  
pressure	
  with	
  LDA+QHA	
  

§  What	
  is	
  sensiEvity	
  of	
  
transiEon?	
  
§  Make	
  constant	
  shih	
  of	
  EBCC(V)	
  

•  TransiEon	
  pressure	
  changes	
  from	
  
~400	
  GPa	
  to	
  550	
  GPa	
  with	
  a	
  0.3	
  
kcal/mol	
  shih	
  

§  “Chemical	
  Accuracy”	
  is	
  not	
  
good	
  enough!	
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Study	
  simpler	
  system	
  to	
  isolate	
  errors:	
  
Be	
  HCP	
  -­‐>	
  BCC	
  phase	
  transi"on	
  
§ Equa5on	
  of	
  state	
  is	
  fit	
  using	
  Vinet	
  form	
  

§ More	
  crucial	
  because	
  values	
  have	
  sta5s5cal	
  errors	
  

§ Casula	
  t-­‐move	
  formalism	
  employed	
  for	
  	
  
pseudopoten5als	
  

§ Phase	
  transi5on	
  occurs	
  at	
  >	
  635	
  GPa	
  	
  
§  Significantly	
  higher	
  than	
  DFT	
  result	
  ~	
  410	
  GPa	
  

HCP Equilibrium Parameters 
QMC Exp 

c/a 1.569 +/- 0.004 1.568 

V0  (angstrom^3) 7.746 +/- 0.078 8.117 

Bulk Modulus (GPa) 124 +/- 2 116.8 



Perform	
  all	
  electron	
  calculaEon	
  to	
  
eliminate	
  pseudopotenEal	
  errors	
  

§ U5lize	
  hard	
  pseudopoten5al	
  with	
  4	
  
electrons	
  in	
  valence	
  for	
  calcula5on	
  
of	
  trial	
  wavefunc5on	
  

§ Replace	
  with	
  4/r	
  for	
  QMC	
  	
  	
  
§ All	
  proper5es	
  of	
  HCP	
  (ambient)	
  
phase	
  agree	
  with	
  experiment	
  

§ Phase	
  transi5on	
  pressure	
  shiZs	
  to	
  
418	
  GPa,	
  more	
  in	
  line	
  with	
  that	
  
inferred	
  by	
  shock	
  experiments	
  

HCP Equilibrium Parameters 
QMC All Electron QMC Exp 

c/a 1.569 +/- 0.004 1.569 +/- 0.004 1.568 

V0  (angstrom^3) 7.746 +/- 0.078 8.123 +/- 0.006 8.117 

Bulk Modulus (GPa) 124 +/- 2 115.7 +/- 1.5 116.8 
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BFD	
  Hartree-­‐Fock	
  based	
  pseudopotenEals	
  
improve	
  agreement	
  but	
  have	
  limitaEons	
  

•  Hatree-Fock based PPs have previously been 
shown to perform better in quantum chemical 
calculations 

•  BFD HF pseudopotentials improve agreement 
with all electron results 

•  Large core overlap suggests an optimization of 
BFD potentials for high pressure could be 
worthwhile 

HCP Equilibrium Parameters 

  LDA PP QMC BFD PP 
QMC 

All Electron 
QMC Exp 

V0  
(bohr^3) 52.27 +/- 0.02 55.19 +/- 0.01 54.87 +/- 0.03 54.776 

Bulk 
Modulus 

(Gpa) 
124.21 +/- 0.74 112.99 +/- 0.43 115.69 +/- 1.04 116.8 



Accuracy	
  of	
  all	
  electron	
  methodology	
  holds	
  
for	
  another	
  light	
  nuclei	
  phase	
  transiEon	
  
§ Calculate	
  LiH	
  transi5on	
  from	
  B1	
  to	
  B2	
  phase	
  
§ Ambient	
  (B1)	
  phase	
  in	
  excellent	
  
agreement	
  with	
  experiment	
  

§ Phase	
  transi5on	
  pressure	
  337	
  GPa	
  
§ DFT	
  (LDA)	
  calcula5ons	
  308	
  Gpa	
  
§ Complements	
  DAC	
  experiments	
  
which	
  top	
  out	
  near	
  250	
  GPa	
  

B1 Equilibrium Parameters 
QMC Exp 

Lattice Constant  
(angstrom) 4.074 +/- 0.002 4.08 

Bulk Modulus 
(GPa) 32.2 +/- 0.4 33.1 +/- 0.3 

B’ 3.64 +/- 0.05 3.64 +/- 0.05 

B1 B2 
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TABLE I. Equation-of-state fitting parameters and proposed B1-B2 phase transition pressure (probably coincident with metallization)
compared with previous experimental and theoretical results. Abbreviations used are as follows: LDA, local-density approximation;
GGA, generalized gradient approximation; ZP, zero-point motion; Debye, Debye approximation for zero-point motion; QH, quasiharmonic
approximation for zero-point motion.

a0 (Å) K0 (GPa) K ′
0 B1-B2 transition (GPa)

Experiments
This work (300 K) 4.080 (fixed) 33.1(3) 3.64(5) >254 GPa (0.32V0)
This work (10-15 K) 4.07(4) 35(3) 3.6(3)
High-pressure diffractiona (Ref. 1) 4.080 31.9(1) 3.62(2)
Ambient diffraction (Ref. 30) 4.084 33.6 4 (fixed)
Ultrasonic pulse echo method (Ref. 31) 4.084 (fixed) 32.35 3.78
Calculations
LDA + ZP (Debye), 0 K (Refs. 7 and 8) 4.000 36.6 3.40 226 GPa (0.37V0)
LDA + ZP (QH) (Ref. 9) 4.038 31 3.5 450–500 GPa (0.25V0)
LDA + ZP (QH) (0 K) (Ref. 13) 3.992 35.8 3.51 308 GPa (0.33V0)
LDA + ZP (QH) (300 K) (Ref. 13) 4.009 33.2 3.76
GGA + ZP(QH) (0 K) (Ref. 13) 4.094 31.6 3.59
GGA + ZP(QH) (300 K) (Ref. 13) 4.118 28.1 4.18
GGA + ZP (QH from Ref. 10) (Ref. 12) 4.08 33.9 329 GPa (0.29V0)

aPressures corrected for updated ruby scale.20

IV. DISCUSSION

Equation-of-state fitting parameters for LiH are shown in
Table I, compared with published experimental and theoretical
data. Our results are consistent with or slightly softer than
other experimental results. Models most accurately predicting
lattice parameters of LiH are those using the generalized
gradient approximation (GGA) and including the quasihar-
monic approximation for zero-point motion, such as those
of Yu et al.13 Experimental results for the bulk modulus
and its pressure derivative at low and ambient temperatures
seem more consistent with the local-density approximation
(LDA) calculations (shown for comparison in Fig. 3). As
expected, our low-temperate data are shifted relative to the
ambient-temperature data sets, but the error bars on the
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FIG. 4. (Color online) Equation of state of the eight experimental
runs, including diffraction from LiH in hydrogen and previous data
from Ref. 1. For all data sets except run 6, V0 is fixed at the best value
found in Ref. 1 of 16.9827 Å3. The V0 value for run 6 was allowed to
vary in the equation-of-state fitting procedure, resulting in a value of
16.9(5) Å3. Error bars do not exceed the size of the data points.

equation-of-state fitting parameters are sufficiently large due
to sparse data that a strong comparison is not possible.

We do not observe evidence for the theoretically predicted
B1-B2 phase transition at the volume compression predicted
(0.33V0). The maximum pressure achieved in our study
was within the range of compression at which the transition
has been expected, but it is too low to strictly rule out the
predictions listed in Table I, with the exception of the
Debye-model calculations of Hama et al.8 However, although
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LiH

FIG. 5. (Color online) Pressure dependence of two-phonon
modes measured from four different samples of LiH, compared with
previous results. The modes are assigned following the results of Ho
et al.32 Solid lines are from curve fits to pressure as a function of fre-
quency, assuming our Vinet equation of state for pressure as a function
of volume and a constant Gruneisen model for frequency as a function
of volume: ωi = ω0i(V/V0)−γi . This yields the following functional
form: P = 3B0(1 − x)x−2exp[ 3

2 (B ′
0 − 1)(1 − x)]; x = (ω/ω0)−1/3γ .
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Minimizing	
  the	
  pseudopotenEal	
  approximaEon	
  will	
  
have	
  the	
  largest	
  impact	
  on	
  DMC	
  calculaEons	
  of	
  solids	
  

§ Phase	
  transi5ons	
  under	
  pressure	
  provide	
  sensi5ve	
  test	
  of	
  DMC	
  
§ Calcula5ons	
  using	
  high	
  quality	
  DFT	
  pseudopoten5als	
  have	
  mediocre	
  
accuracy	
  

§ All	
  electron	
  calcula5ons	
  of	
  Be	
  and	
  LiH	
  give	
  extremely	
  accurate	
  proper5es	
  
for	
  equilibrium	
  phases	
  

§ All	
  electron	
  phase	
  transi5on	
  pressures	
  agree	
  with	
  available	
  experiments	
  
and	
  are	
  comparable	
  to	
  best	
  DFT	
  based	
  answers	
  

§ All	
  electron	
  calcula5ons	
  are	
  not	
  a	
  feasible	
  proposi5on	
  for	
  many	
  
applica5ons	
  

§ Reducing	
  the	
  pseudopoten5al	
  approxima5on	
  should	
  be	
  the	
  highest	
  
priority	
  for	
  the	
  calcula5on	
  of	
  solids	
  with	
  DMC	
  



Revise	
  pseudopotenEal	
  generaEon	
  scheme	
  
and	
  apply	
  to	
  heavier	
  elements	
  
§ SEll	
  require	
  DFT	
  based	
  
pseudopotenEals	
  to	
  accurately	
  
reproduce	
  all	
  electron	
  results	
  

§ A<empt	
  to	
  reduce	
  size	
  of	
  locality	
  
error	
  by	
  making	
  nonlocal	
  channels	
  
similar	
  to	
  local	
  

§ Preserve	
  Kleinman-­‐Bylander	
  form	
  
for	
  DFT,	
  but	
  allow	
  change	
  of	
  local	
  
channel	
  for	
  DMC	
  

§ Choose	
  core-­‐valence	
  separaEon	
  
based	
  on	
  separaEon	
  in	
  energy	
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ρ0 = 21.097 +/-  0.025 g/cc (QMC)
ρ0 = 21.450 g/cc (expt)
K0 = 282.32 +/-   4.13 GPa (QMC)
K0 = 277 GPa (PRB 78, 024304 (2008))

binding energy =  5.66 +/-  0.01 eV (QMC)
binding energy = 5.84 eV (expt)

Application to FCC platinum yields 
encouraging results for ambient density, 
bulk modulus and cohesive energy 



Unfortunately	
  this	
  method	
  does	
  not	
  appear	
  
to	
  be	
  a	
  silver	
  bullet	
  
§ ElasEc	
  properEes	
  well	
  reproduced	
  
§ Ambient	
  density	
  off	
  by	
  ~7%	
  
§ Variance	
  of	
  energy	
  and	
  Emestep	
  
error	
  are	
  small	
  
§ WavefuncEon	
  appears	
  to	
  be	
  well	
  
matched	
  to	
  pseudopotenEal	
  

§ Consider	
  strong	
  spaEal	
  overlap	
  of	
  
4d	
  with	
  5s	
  and	
  5p	
  wavefuncEons	
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ρ0 = 11.237 +/-  0.024 g/cc (QMC)
ρ0 = 10.490 g/cc (expt)

K0 = 101.12 +/-   2.72 GPa (QMC)
K0 = 103 GPa (Phys Rev 111, 707 (1958))

binding energy =  3.64 +/-  0.03 eV (QMC)
binding energy = 2.966 eV (PRB 37, 790 (1988))



Moving	
  to	
  higher	
  temperatures	
  
§ High	
  pressure	
  low	
  temperature	
  condi5ons	
  are	
  quite	
  rare	
  in	
  
the	
  universe	
  

§ Zero	
  temperature	
  behavior	
  sets	
  the	
  founda5on,	
  but	
  does	
  not	
  
constrain	
  all	
  of	
  an	
  equa5on	
  of	
  state	
  

§ Melt	
  boundaries,	
  isentropes,	
  adiabats,	
  cri5cal	
  points	
  etc	
  are	
  
all	
  of	
  interest	
  experimentally	
  

§ No	
  general	
  path	
  for	
  high	
  temperature	
  proper5es	
  from	
  DMC	
  
§  Combine	
  with	
  another	
  method	
  
§  Free	
  energy	
  decomposi5on:	
  F(V,T)	
  =	
  Fc(V)	
  +	
  Fi(V,T)	
  +	
  Fe(V,T)	
  
§  Thermodynamic	
  integra5on	
  



Melt	
  boundaries	
  are	
  parEcularly	
  challenging	
  
§ Target	
  recent	
  discrepancies	
  in	
  melt	
  curves	
  under	
  pressure	
  
§ Early	
  DAC	
  experiments	
  may	
  have	
  encountered	
  a	
  variety	
  of	
  difficulEes	
  

§ Where	
  available,	
  shock	
  determinaEons	
  of	
  melEng	
  ohen	
  suggest	
  a	
  much	
  steeper	
  melt	
  curve	
  
§  Increased	
  reacEvity	
  at	
  high	
  temperature	
  and	
  pressure	
  can	
  lead	
  to	
  chemical	
  reacEons	
  that	
  
lower	
  melt	
  curve	
  

§  Fast	
  recrystallizaEon	
  caused	
  by	
  different	
  absorpEon	
  profiles	
  of	
  the	
  solid	
  and	
  liquid	
  can	
  also	
  
lead	
  to	
  lowered	
  determinaEon	
  of	
  melEng	
  profile	
  	
  	
  

Old Ta DAC Melt curve New Ta DAC Melt curve 
Klug, Physics. 3, 52 (2010)  

Ta melt curve Fe melt curve 

Old Fe DAC Melt curve 
New Fe DAC Melt curve 



Case	
  Study:	
  xenon	
  melt	
  transiEon	
  

§  Closed	
  shell	
  insulator	
  at	
  ambient	
  condiEons	
  
§  Under	
  staEc	
  compression	
  	
  

§  FCC	
  -­‐>	
  HCP	
  Phase	
  transiEon	
  
§  Isostructural	
  insulator	
  to	
  metal	
  transiEon	
  

§  	
  Hugoniot	
  well	
  characterized	
  
§  Liquid	
  phase	
  may	
  exhibit	
  anomalous	
  behavior	
  

§  Very	
  narrow	
  temperature	
  range	
  at	
  ambient	
  pressure	
  
§  PotenEally	
  flat	
  melt	
  curve	
  at	
  moderate	
  pressures	
  

	
  

Klug, Physics. 3, 52 (2010)  

Root et al. PRL 105, 085501 (2010)  



PseudopotenEal	
  poses	
  a	
  parEcular	
  challenge	
  for	
  
accurate	
  DMC	
  calculaEons	
  
§ Validated	
  norm	
  conserving	
  Xe	
  pseudopoten5als	
  not	
  widely	
  available	
  
§ D-­‐states	
  well	
  removed	
  from	
  valence,	
  but	
  d-­‐projector	
  is	
  crucial	
  

§  Increasing	
  d-­‐hybridiza5on	
  suggested	
  as	
  cause	
  of	
  flat	
  melt	
  line	
  
§  Ross	
  et	
  al.	
  PRL	
  95.	
  257801	
  (2005)	
  

~0.5 eV / Xe 
difference at 
70GPa 



Fixed	
  node	
  approximaEon	
  and	
  DFT	
  FuncEonal	
  

§  	
  FCC	
  equa5on	
  of	
  state	
  
§  LDA	
  à	
  no	
  long	
  range	
  correla5on,	
  but	
  self	
  interac5on	
  in	
  low	
  density	
  regions	
  
§  AM05	
  à	
  subsystem	
  based	
  func5onal,	
  van	
  der	
  Waals	
  is	
  completely	
  absent 	
  	
  



Fixed	
  node	
  approximaEon	
  and	
  DFT	
  FuncEonal	
  

§  	
  FCC	
  equa5on	
  of	
  state	
  
§  LDA	
  à	
  no	
  long	
  range	
  correla5on,	
  but	
  self	
  interac5on	
  in	
  low	
  density	
  regions	
  
§  AM05	
  à	
  subsystem	
  based	
  func5onal,	
  van	
  der	
  Waals	
  is	
  completely	
  absent 	
  	
  
§  DMC	
  with	
  nodes	
  and	
  pseudopoten5als	
  taken	
  from	
  above	
  calcula5ons	
  
§  Very	
  small	
  dependence	
  on	
  DFT	
  trial	
  wavefunc"on	
  	
  



Difficult	
  to	
  determine	
  free	
  energy	
  directly:	
  
Determine	
  rela"ve	
  free	
  energy	
  of	
  phases	
  within	
  QMD	
  

§  Place	
  solid	
  and	
  liquid	
  in	
  contact	
  with	
  each	
  other	
  
§  Run	
  at	
  different	
  temperatures	
  or	
  starEng	
  energies	
  and	
  watch	
  phase	
  boundary	
  
§  RelaEve	
  heat	
  capaciEes	
  and	
  enthalpy	
  of	
  melEng	
  determine	
  range	
  of	
  phase	
  

coexistence	
  

•  Melt at 5800 K 
•  Freeze at 5400 K 



Thermodynamic	
  integraEon	
  to	
  map	
  to	
  DMC	
  free	
  energies	
  

§  Calculate	
  the	
  change	
  in	
  free	
  energy	
  between	
  different	
  ensembles	
  
§  There	
  are	
  two	
  approaches,	
  a	
  one	
  shot	
  formula	
  or	
  a	
  perturbaEon	
  series	
  

§  Comparison	
  of	
  the	
  two	
  approaches	
  provides	
  a	
  rough	
  idea	
  of	
  the	
  rate	
  of	
  
convergence	
  of	
  the	
  series	
  

§  Need	
  to	
  calculate	
  energy	
  differences	
  from	
  snapshots	
  

37	
  

ΔF = F2 −F1
= −kBT lnZ2 + kBT lnZ1
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Trial	
  wavefuncEons	
  used	
  for	
  QMC	
  
§ Use	
  a	
  real	
  space	
  representa5on	
  of	
  the	
  wavefunc5on	
  

§  Plane	
  waves	
  require	
  evalua5on	
  of	
  each	
  basis	
  	
  
element	
  for	
  every	
  move	
  

§  3D	
  b-­‐splines	
  require	
  only	
  64	
  evalua5ons	
  
	
  at	
  each	
  point	
  

§  Very	
  large	
  amounts	
  of	
  memory	
  required	
  :	
  	
  
96	
  GB	
  /	
  wavefunc5on	
  

§ Hybrid	
  Representa5on	
  
§  Use	
  coarse	
  b-­‐spline	
  mesh	
  in	
  real	
  space	
  	
  
§  Radial	
  spline	
  near	
  atoms	
  
§ Wavefunc5ons	
  reduced	
  to	
  24	
  GB	
  
§  Conversion	
  is	
  expensive	
  for	
  large	
  systems	
  

§ GPU	
  port	
  of	
  wavefunc5on	
  conversions	
  
§ Massive	
  parallelism	
  available	
  	
  
§  Conversion	
  Time	
  reduced	
  from	
  10	
  days	
  on	
  16	
  
	
  CPU	
  cores	
  to	
  6	
  hours	
  on	
  4	
  GPUs	
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(a)Uniform B-spline (b)Mixed basis

FIG. 4: Schematic of uniform B-spline and mixed-basis representation
for orbitals. With a uniform B-spline representation, a dense Cartesian
mesh is required. In a mixed-basis representation, a much coarser mesh is
sufcient between the atoms.

to the bulk properties of perfect crystals. Addressing defects and
disordered materials requires the ability to simulate larger systems
and achieve higher statistical accuracy. At present, a number of
factors limit the size of the systems to which our GPU implemen-
tation can be applied.
While computationally efcient, the 3D B-spline basis for the

orbitals requires a large amounts of memory, which grows quadrat-
ically with system size. Currently, the largest GPU memory buffer
available is 4 GB on the Tesla C1060 card, which limits the size of
the system we can address. For larger systems, a number of meth-
ods can be used to reduce the required storage. In a perfect crystal,
symmetry can be used to allow the memory usage to grow only
linearly with the number of atoms, allowing simulations with over
500 electrons. In disordered systems, such as liquid water, this
type of reduction is not possible and system size is more limited.
To go further, we implement a mixed-basis approach. The mesh

spacing required to accurately represent the orbitals is determined
by their smallest feature size. The shortest wavelength features
are concentrated around the atomic cores, while in the area be-
tween the atoms, the functions are smooth. For this reason, we
divide space into spherical regions called mufn tins surrounding
the atoms, and an interstitial region between them. Inside the muf-
n tins, the orbitals are atomic-like, and can thus be represented
accurately and compactly by spherical harmonics, as

φn,j
MT(r) =

ℓmax∑

ℓ=0

ℓ
∑

m=−ℓ

unj
ℓm(|r − Ij |)Y

ℓ
m

(
r − Ij

|r − Ij |

)

. (11)

Since the high-frequency components in the mufn tins have been
removed, we can represent the orbitals in the interstitial region by
3D B-splines on a much coarser grid. This is represented schemat-
ically in Figure 4. The radial functions, unj

ℓm(r) are represented as
1D Hermite splines. We did not use B-splines as elsewhere, since
in single precision, truncation error leads to a poor estimate for the
second derivative. Utilizing this dual basis in place of 3D B-splines
alone typically allows the same accuracy to be achieved with 5×
to 10× less memory, with about the same performance.

Final thoughts

QuantumMonte Carlo simulations have long been, and continue
to be, a major consumer of supercomputing power, from vector
machines such as the Cray XMP[11], to superclusters such as the
Cray XT-5. The accuracy they afford in predicting the properties of
a diverse set of real materials justies this consumption. Nonethe-
less, we have seen that through the use of GPUs, the same scien-
tic results may be achieved at considerably less expense. Further-
more, as the processors develop, the software is rened, and larger
GPU clusters are built, this technology will allow us to progress
from perfectly periodic systems to those systems with defects, dis-
ordered systems, etc. The speedups afforded by the GPUs may
also allow us to proceed from simulations with the atoms frozen in
a single conguration to those which couple the dynamics of the
electronswith those of the atomic cores[12]. With further progress,
perhaps in a few years QMC simulations will be as ubiquitous as
DFT calculations are at present.
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Thermodynamic	
  integraEon	
  in	
  pracEce	
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•  10 snapshots taken from a solid QMD 
calculations with LDA functional 

•  Free energy shift from exponential: 
•  -0.05947 +/- 0.00085 eV / Xe 

•  Terms from the perturbation series 
•  1st order: -0.05818 +/- 0.00067 eV/Xe 
•  2nd order: -0.00158 +/- 0.00023 eV/Xe 
•  3rd order: -0.00030 +/- 0.00012 eV/Xe 

•  Fast convergence leads to confidence in 
closeness of ensembles 



Two	
  approaches	
  to	
  determine	
  the	
  shih	
  of	
  the	
  melt	
  line	
  

§  Determine	
  the	
  change	
  in	
  Gibbs	
  free	
  energy	
  directly	
  

§  Approach	
  from	
  Sola	
  and	
  Alfe	
  PRL	
  130,	
  078501	
  (2009)	
  
§  Some	
  uncertainEes	
  in	
  how	
  to	
  evaluate	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  Δp	
  

§  AlternaEve	
  is	
  to	
  work	
  with	
  Helmholtz	
  free	
  energy	
  
§  Calculate	
  isotherm	
  with	
  DFT	
  in	
  each	
  phase	
  

§  Use	
  pressure	
  from	
  two	
  phase	
  calculaEons	
  to	
  set	
  relaEve	
  shih	
  between	
  
phases	
  within	
  DFT	
  

§  Thermodynamic	
  integraEon	
  at	
  mulEple	
  volumes	
  allows	
  for	
  changes	
  in	
  
slope	
  of	
  free	
  energy	
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QMC	
  correcEon	
  on	
  DFT	
  melt	
  line	
  

41	
  

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  10  20  30  40  50  60  70  80  90

Te
m

pe
ra

tu
re

 (K
)

Pressure (GPa)

Melt line from various sources

Boehler et al. 2001 (DAC)
Ross et al. 2005 (DAC)

Saija et al., 2005 (Calculation)
Belonoshko et al. 2006 (Calculation)

(QMC) T-shift
(QMC) P-shift

•  No evidence for low melt line found 
by experiment 

•  Shifts from DMC are a similar 
magnitude as those found in the iron 
paper 

LNS, MP Desjarlais, TR Mattsson 
PRB 90, 140104(R)   



ValidaEon	
  of	
  method:	
  MelEng	
  of	
  aluminum	
  
§ Shock	
  and	
  DAC	
  melt	
  exhibit	
  a	
  consistent	
  trend	
  
§ DFT	
  (2	
  phase	
  approximaEon)	
  accurately	
  reproduces	
  melt	
  curve	
  
§ Thermodynamic	
  integraEon	
  from	
  DFT	
  to	
  QMC	
  gives	
  a	
  shih	
  of	
  only	
  18	
  K	
  !	
  



Conclusions	
  
§ Diffusion	
  Monte	
  Carlo	
  can	
  accurately	
  treat	
  Xe	
  under	
  pressure	
  

§  Pseudopoten5al	
  Approxima5on	
  is	
  small	
  
§  Fixed	
  node	
  approxima5on	
  is	
  likely	
  a	
  small	
  error	
  

§ Accurate	
  treatment	
  of	
  d-­‐hybridiza5on	
  does	
  not	
  cause	
  melt	
  curve	
  to	
  flaHen	
  
§ Rela5ve	
  energies	
  from	
  DFT	
  within	
  LDA	
  appear	
  to	
  be	
  accurate	
  near	
  1	
  Mbar	
  
§ Errors	
  in	
  total	
  energies	
  from	
  quantum	
  MD	
  calcula5ons	
  will	
  increase	
  
mel5ng	
  temperature	
  

§ Flat	
  mel5ng	
  curve	
  from	
  DAC	
  should	
  be	
  revisited	
  


