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Abstract

In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is
similar to that of an entangled polymer solution with a characteristic, nanometer-scale
entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS)
and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute
solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride
(CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to
tune the entanglement mesh size over a range that spans from approximately equal to the
nanorod diameter to larger than the nanorod length. The NaSal concentration is varied along
with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl
concentration. On short time scales the nanorods are localized on a length scale matching that
expected from the high-frequency elastic modulus of the solutions as long as the mesh size is
smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the
highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on
the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration
more rapidly than expected from the macroscopic viscosity. A recent model by Cai ef al. [Cali,
L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle
“hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced

diffusivity.



I. Introduction

The mobility of nanoparticles within viscoelastic complex fluids impacts a wide range of
technologies. For example, in the design and fabrication of nanocomposites, control over the
dispersion and partitioning of nanoparticles in polymer melts is crucial for achieving desired
material performance.'™ Also, in advanced approaches to drug delivery, the efficacy of
nanoparticles as carriers of medicinal cargo relies on their ability to diffuse through biological
gels.> ® Nanoparticle dynamics in complex fluids also raises scientific questions that go to the
heart of the relationship between the hierarchical microscopic properties of the fluids and their

macroscopic rheological response. The significance of these issues has motivated numerous
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recent experimenta theoretica and simulation studies to investigate nanoparticle
dynamics within polymer melts and solutions and related materials. Polymers are characterized
by several microscopic length scales, including the correlation length and radius of gyration, and
in the case of entangled solutions, the tube diameter and entanglement mesh size. When
nanoparticles are sufficiently large compared to these intrinsic scales, their mobility reflects the
solution’s macroscopic viscoelasticity, and under appropriate conditions the particle mean
squared displacement <Ar’(2)> is related to the creep compliance J(#) of through a generalized
Stokes-Einstein relation,40’ 4

J()=C<A¥ (t)>/6ksT (1)

where ( is the particle’s geometric drag coefficient. However, when the size of the nanoparticles
approaches the solution’s intrinsic microscopic length scales, this correspondence breaks down,
as numerous recent studies have illustrated. For example, nanoparticles in entangled polymers

can display mobilities that are orders of magnitude larger than those expected from macroscopic

rheology when their size is near or below the entanglement mesh size. Further, in both entangled



and unentangled solutions, nanoparticles can exhibit a regime of anomalous, subdiffusive motion
over short distances that reverts to simple diffusion only on scales large compared to the relevant
polymer microstructure.'® %%

In order to obtain an expanded perspective on the relationship between complex-fluid
microstructure and nanoparticle mobility, we have conducted experiments employing x-ray
photon correlation spectroscopy (XPCS) to interrogate the nanoscale dynamics of rod-shaped
nanoparticles within entangled wormlike micelle solutions. Wormlike micelles (WLM) are long,
thin, cylindrical aggregates of surfactant molecules that self assemble in aqueous solution under
appropriate conditions. Due to the morphology of the assemblies, WLM solutions exhibit
structure and rheology similar to polymer solutions, and at sufficient concentration the micelles
can entangle, giving the solutions significant viscoelasticity. However, because they are
supramolecular assemblies, WLMs grow, break, and reform at rates set by equilibrium
thermodynamics, making them “living” polymers and leading to characteristic features in the
rheology of the solutions. For instance, over a broad range of conditions, the linear response of
WLM solutions approximates that of a Maxwell liquid with a single stress relaxation time, and
this behavior is understood to be a consequence of a coupling of micelle reptation to scission and
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recombination events.

Such distinctive features make WLM solutions an interesting point of
comparison with polymer solutions for considering nanoparticle mobility, where the deviations
from macroscopic expectations can depend on structural dynamics at the nanoscale.

XPCS provides a unique opportunity to probe nanoparticle mobility over distances

spanning the characteristic lengths in nanostructured complex fluids.* **

Like dynamic light
scattering, XPCS tracks temporal fluctuations in coherent scattering intensity; however, the

much shorter wavelengths of x-rays compared with visible light enables the technique to access



dynamics on smaller length scales. Here, we employed XPCS to study the Brownian motion of
gold nanorods in entangled WLM solutions formed by the surfactant cetylpyridinium chloride
(CPyCl) with the counter-ion sodium salicylate (NaSal). CPyCl/NaSal is a model WLM system
whose macroscopic rheology has been well characterized.” By varying the surfactant
concentration, we tuned the entanglement mesh size from values smaller than the nanorod
diameter to values larger than the nanorod length. This investigation of nanorod dynamics
complements studies of nanosphere mobility in entangled polymer solutions. As previous work
exploring nanorod dynamics in entangled polymers has illustrated,'" '*? the rods’ anisotropic
shape provides an insightful perspective on the relationship between particle dimension and
solution microstructure in dictating mobility.

As described below, we find that the nanorods remain elastically coupled to the WLM
entangled network on short times provided the length L of the rods is larger than the
entanglement mesh size & However, the diffusivity of the rods on longer time exceeds that
expected from the solutions’ macroscopic viscosity over a range of mesh sizes extending to sizes
as small as & = L/4. A recent model of nanoparticle mobility in entangled polymer solutions
introduced by Cai et al.® that considers a hopping mechanism that acts in parallel with
entanglement relaxation to promote particle diffusion in this size regime accounts accurately for

the enhanced diffusivity of the nanorods.

I1. Materials and Methods
A. Nanorod Synthesis
Gold nanorods were synthesized using seed-mediated growth in solutions of

cetyltrimethylammonium bromide (CTAB; TCI America) following procedures reported by Ye



et al.”® The nanorods had radius R = 7.7 = 0.8 nm and length L = 47.0 + 4.4 nm, as determined
by transmission electron microscopy (TEM). (See Figure S1 in the Supporting Information for
an example TEM image.) As synthesized, the nanorods were stabilized by excess CTAB that
coats the particle surfaces. When mixed into CPyCl/NaSal solutions, these nanorods aggregated,
likely because CTAB loses affinity to the gold surfaces and forms micelles in the presence of the
salicylate ions. To avoid this problem, the surfaces of the nanorods were functionalized with
methoxy polyethyleneglycol thiol (mPEG-SH; Creative PEGWorks) with molecular weight of
2000 g/mol prior to their introduction into the CPyCl/NaSal solutions. The as-synthesized
nanorods were centrifuged at 8500 rpm for 25 min twice to remove excess CTAB and then were
mixed with 2 mM mPEG-SH aqueous solution for 24 hours. Any remaining CTAB and

unreacted mPEG-SH were then removed by multiple centrifugations.

B. WLM Solution fabrication

Desired quantities of CPyCl (Alfa Aesar) and NaSal (Alfa Aesar) were added to dilute
stock solutions of the mPEG-functionalized nanorods to prepare WLM solutions with varying
concentration. Small angle x-ray scattering (SAXS) profiles from the solutions followed closely
the form factor of isolated rods, with no signs of aggregation. (See Figures S2 and S3 in the
Supporting Information for example SAXS profiles.) From the absolute scattering intensity, the
volume fraction of rods was estimated to be 0.003%, which is sufficiently dilute to ignore rod-
rod interactions and below a value where the rods affect the viscoelastic properties of the
solutions. (Due to the large atomic number of gold, the nanorods dominate the scattering
intensity in the SAXS range even at such dilute volume fractions.) At CPyCl concentrations of

600 mM, SAXS patterns showed an intensity increase in low ¢, which indicated aggregation of



the rods, and at 800 mM and above, the SAXS patterns revealed macroscopic alignment of the
rods, indicating the WLMs formed a nematic phase, consistent with other studies of high-
concentration CPyCl/NaSal solutions.”®  Studies of the nanoparticle dynamics were restricted to
isotropic WLM solutions below these concentrations. In addition, from measurements of the
densities of the solutions’ constituents we found the relation between CPyCl concentration ¢ and

micelle volume fraction ¢ to be ¢ = 0.00052x(c/mM).

C. Rheometry

Measurements of the frequency-dependent complex shear modulus, G*(w) = G'(w) +
iG" (w), were performed using a stress-controlled rheometer (Anton Paar Physica MCR 301) in
a cone-plate geometry with a Peltier temperature-control system. The strain amplitude was kept

at or below 1%, which was found to be well within the linear regime of stress response.

D. XPCS

XPCS experiments were performed at Sector 8-ID of the Advanced Photon Source.
Solutions were contained in glass capillaries with diameter 1.5 mm for transmission scattering.
A partially coherent 11 keV x-ray beam of size 20x20 wm” was incident on the sample. The
scattering intensity was recorded at 100 frames per second with a direct-illuminated CCD area
detector (LBL-ANL Fast CCD)*" with 30x30 um? pixel size. The sample-to-detector distance
was set at 4.91 m to cover scattering wave vectors ¢ from 0.03 to 0.3 nm”. Under these
conditions, the Siegert factor was 0.103, as measured using a static sample (aerogel). However,
above ¢ ~ 0.11 nm™, the scattering was too weak for reliable determination of the intensity

autocorrelation function g>(g,f), hence we restricted analysis to smaller wave vectors.



II1. Results
A. WLM Solution Rheology

We focused on the regime of semidilute WLM solutions with CPyCl concentration in the
range 50 < ¢ < 500 mM that form isotropic, entangled solutions. At fixed ¢, the viscosity of
CPyCl/NaSal solutions displays two maxima as a function of NaSal concentration c,.***** The
first maximum is thought to be due to a transition from linear to branched micelles, while the
second maximum has been associated with a transition to a nematic phase.*® In the solutions
under study, we varied ¢ to tune the entanglement mesh size, and we varied ¢, along with ¢ so
that the viscosity was always near the first maximum. To maintain this condition, we followed
the relation between ¢ and ¢; at the first viscosity maximum identified by Rehage and Hoffmann:
log(c/mM) = 0.23 + 0.8log(c/mM).* Additional rtheometry measurements on solutions at fixed
¢ and varying ¢, confirmed that this relation is valid over the full range, 50 < ¢ < 500 mM.

Figure 1 displays the frequency-dependent complex shear modulus, G*(w) = G'(w) +
iG" (w), of a solution with ¢ = 300 mM (and ¢; =168 mM). The modulus follows a form that is
characteristic of entangled solutions. At high frequencies, G' > G", and G’ is approximately
constant. This plateau is associated with a transient rubbery response due to the mesh of
entanglements. At low frequencies, the solutions are fluid, G"” > G', with G"~ w and with zero-

shear-rate viscosity n, = lirr(l) G"(w)/w.
w-—

The solid lines in the figure display the results of a fit using an empirical Cole-Davidson
form* to capture entanglement relaxation, plus a viscous response that accounts for local (Rouse
and breathing) motions and becomes appreciable at high frequency,™

G (w) = z T ione (2)

Goo
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Figure 1. Frequency dependent storage (squares) and loss (circles) moduli of a wormlike
micelle solution with CPyCl concentration ¢ = 300 mM and NaSal concentration ¢; = 168 mM.
The solid lines display the results of fits using an empirical Cole-Davidson form plus a viscous
contribution to account for short-time-scale dissipation, as described in the text.
where 7 is the characteristic relaxation time of the entanglement mesh, G. is the plateau
modulus, the exponent « characterizes the shape of the response, and 7. is the high-frequency
viscosity, which falls in the range 0.02 — 0.1 Pa-s, depending on CPyCl concentration. Equation
(2) describes accurately the form of G*(w) over the full range of CPyCl concentrations studied.
When « is close to 1, which is the case for the CPyCl/NaSal solutions under study, the Cole-
Davidson form approximates the Fourier transform of a stretched exponential response function,
— —t/0)P
where the exponents o and f8 are related approximately through 8 = 0.683a+ 0.316.°" In the
limit a = 1, the Cole-Davidson form reduces to that of a Maxwell model (i.e., an exponential
stress relaxation, 8 = 1, in time domain). The values of f obtained from the results for a from
fits to G*(w) at various CPyCl concentrations are shown in Figure 2(a). The exponents are

slightly less than one, indicating slight broadening of the relaxation compared to a Maxwell fluid



at frequencies above the peak in G”. According to the model by Cates and coworkers, > stress
relaxation of WLM solutions displays Maxwell behavior when the average micelle scission time
Tpreak 18 Much less than the reptation time 7,,, in which case the entanglement relaxation time is
the geometric mean, T, = \/TrepThrear- In CPyCl/NaSal solutions, the stress relaxation is
highly stretched at low c;, indicating reptation-dominated behavior and crosses over to Maxwell
behavior at salt concentrations slightly above the first viscosity maximum,*® suggesting that Trep
= Threak N€AT the first viscosity maximum, which is the condition in our experiments.42

Figure 2(b) displays the results for G-, which describes the transient elastic response of
the entangled solutions, at 7 = 25 °C as a function of CPyCl concentration. Similar to other
entangled WLM solutions,*® G, ~ ¢'”°. (Application of scaling theories of polymer physics to

WLM solutions predicts slightly stronger concentration dependence, G, ~ ¢**°

.) In analogy with
rubber elasticity, the characteristic mesh size & for the entangled micelles, shown in Figure 2(c),

can be obtained from G, through & = (k7/G.)". Figure 2(d) displays the zero-shear-rate

viscosity, ny = lirr(l) G'"(w)/w, which characterizes the long-time flow behavior of the solutions.
w-—

As the dashed line in Figure 2(d) indicates, 1y ~ ¢'°. This dependence on surfactant
concentration differs strongly from the theoretically expected relation 1y ~ ¢>;*® however, such
strong deviations from theory are commonly observed in the viscosity of entangled WLM
solutions and have been attributed either to the existence of micelle branching® or to a

concentration-dependent average micelle length that differs from expectations.*
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Figure 2. Parameters characterizing solution rheology (circles) and nanorod dynamics
(triangles) as a function of CPyCl concentration c. (a) stretching exponent /5 extracted from
fits to the shear modulus and from fits to the XPCS intensity autocorrelation function, (b)
plateau modulus G, determined from rheology and G, inferred from the short-time
localization of the nanorods, (¢) entanglement mesh size & obtained from G, and (d)
macroscopic zero-shear-rate viscosity 779 and microscopic viscosity <17,> obtained from the
nanorod diffusivity. The green dashed line denotes the CPyCl concentration at which the mesh
size equals the nanorod length.
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B. Nanorod Dynamics

In order to gain a microscopic perspective on the structural dynamics in the WLM
solutions, we investigated the dynamical behavior of dilute suspensions of nanorods using
XPCS. Figure 3 displays the XPCS intensity autocorrelation function g»(g,f) measured at several
wave vectors g on a nanorod dispersion in a WLM solution with ¢ =300 mM (and ¢, = 168  mM).
In principle, the correlation function reflects both translational and rotational dynamics of the
nanorods. However, rotational motion makes appreciable contributions to g(g,f) only at large
wavevectors, gL > 5,”® and over the wavevector range in which g(¢,7) is determined, 0.03 < g <
0.11 nm™ (1.45 < gL < 5), the correlation function is dictated almost exclusively by translational
motion.  The solid lines in Figure 3 show the results of fits to g:(g.,f) using a stretched
exponential form,

g:(q.1) = 1+ Alexp[-2(/0)]]. @)

Such stretched exponential line shapes describe the autocorrelation functions at all wave vectors
and CPyCl concentrations. The results for the stretching exponent f are included in Figure 2(a)
as a function of CPyCl concentration.

For dilute, noninteracting particles undergoing translational motion in a homogeneous
environment, g»(¢.?) is related to the mean-squared displacement, <Ar*(z)> through the relation®’

g2(q.1) = 1+bexp[~<Ar’(1)>¢/3] (5)

where b is the Siegert factor. Hence, one interpretation for the stretched exponential shape of
@:(¢.0) is that it implies subdiffusive motion of the rods, (Ar?(t)) ~tf and B < 1. Indeed,
subdiffusive nanoparticle motion has been observed in polymer solutions, including in XPCS
measurements on spherical particles in entangled solutions.'” However, we can discount this

interpretation for the nanorods in WLM solutions. Another signature of subdiffusive motion is a
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Figure 3. XPCS intensity autocorrelation function gx(gq,f) characterizing the dynamics of gold
nanorods in a CPyCl/NaSal 300/168 mM wormlike micelle solution at various wave vectors.
The solid lines are the results of fits using a stretched exponential function to the

autocorrelation functions.

power-law dependence of the correlation time on wavevector, T ~ g~%/f. In contrast, the
correlation times obtained from fits using Eq. (4) follow a significantly weaker ¢ dependence
that is consistent with simple diffusion T ~ g2, as illustrated in Figure 4(a), which shows the

inverse of the mean correlation time, <t>"', determined through <z> = tT'(1/8)/f, where T is the

" From the observed wavevector dependence, <z>"' ~ ¢* which we see at all

gamma function.’
surfactant concentrations, we conclude that the nanorods in the WLM solutions undergo simple
diffusion and that the stretched-exponential form of gx(¢,f) hence results from spatial
heterogeneity in the diffusivity. From the signal-to-noise in g»(g,f) and the accuracy of the fits
over the measurement wavevectors, we estimate that this diffusive motion extends to at least

root-mean-squared displacements of 70 nm. That is, this diffusion extends over length scales

from 7y, to at least several times the entanglement mesh size & This behavior contrasts with that
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Figure 4. Results characterizing the nanorod dynamics obtained from the XPCS intensity
autocorrelation function gx(¢,f) with varying CPyCl concentration ¢: (a) inverse correlation time
1/<t> and (b) logarithm of the short-time plateau value normalized by the Siegert factor, In(A/b),

as functions of wave vector squared. In both cases, the solid lines show the results of linear fits.

observed with spherical nanoparticles in entangled polymer solutions, where pronounced

subdiffusive motion is observed over similar distances.'® *>

From the fit results shown in Figure 4(a) one can obtain a mean microscopic drag
viscosity <7,,> that the WLM solutions impose on the rods through the relation <n,> =
kpTe q2<r>/Zj, where & is the geometric translational drag coefficient of a rod. Because the
measurements average over an isotropic ensemble of rod orientations, we take & to be the
average of the coefficients parallel () and perpendicular (&) to the rod axis, =(§+281)/3=294

nm, where §=2nL/[In(L/2R)—0.20]=300 nm and &r=4nL/[In(L/2R)+0.84]=291 nm.”®  The
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resulting values of <n,,> are shown in Figure 2(d) along with the macroscopic viscosities 79 as a
function of CPyCl concentration. The two viscosities are in approximate agreement at the highest
concentration, but they diverge from one another with decreasing concentration, signaling a
decoupling of the nanorod diffusivity from the macroscopic solution rheology and hence a
breakdown of the Stokes-Einstein relation.

A second feature of the nanorod dynamics is captured in the XPCS measurements by the
short-time plateau values of g:(¢q,f), which fall below the Siegert factor b and have a strong
dependence on g, as illustrated in Figure 3. These plateau values are captured in Eq. (4) by the
parameter 4, which is plotted in Figure 4(b) normalized by the Siegert factor b. The observation
that 4 is less than b implies the nanorods undergo fast localized motion, creating a partial decay
of gi(¢q.f) at inaccessibly short times.”  Specifically, from Eq. (5), one has A/b =
exp(—15.q?/3) where 15, is the mean squared displacement of the nanorods at short times.
Depending on CPyCl concentration, 11 nm < 7, < 36 nm. For particles in a Maxwell-like
viscoelastic fluid, one can relate 75, to the high-frequency shear modulus by considering, for
example, the short-time limit of Eq. (1) to find %, = 6kgT/{G,,, where G,, is the microscopic

transient elasticity. Hence,

2kpT o

In(A/b) = - 7~ q

(6)

The solid lines in Figure 4(b) show the results of fits using this form. The resulting values of G,
are shown in Figure 2(b) along with the macroscopic high-frequency shear modulus G, as a
function of CPyCl concentration. The two quantities agree closely over nearly the full range of
surfactant concentrations, but separate below approximately ¢ = 150 mM. The onset of this
decoupling occurs near the concentration at which the entanglement mesh size § becomes larger

than the rod length L.
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In summary, taking into account both the short-time plateau value and the terminal decay
of gx(q,t), the XPCS measurements provide the following characterization of the nanorod
dynamics in the WLM solutions. At short times (¢ < 0.01 s), which are inaccessible to the
measurements, the rods experience a limited range of mobility during which their motion is
presumably dictated by Rouse dynamics and other local degrees of freedom of the micelles that
control the short-time stress relaxation of the entangled solution. The length scale of this
mobility is restricted by caging within the entanglement mesh provided L > &, such that <Ar*(2)>
reaches a temporary plateau at a value i, that is consistent with expectations based on the
solution rheology. On longer times, the rods escape this caging and undergo free diffusion, but
they do so on a time scale that is faster than that set by relaxation of the entanglement mesh,
hence their diffusivity is larger (effective viscosity is smaller) than that expected from

macroscopic rheology.

C. Temperature Dependence of Rheology and Nanorod Dynamics

Further insight into the coupling of the nanorod dynamics to the entanglement mesh and
its relaxation comes from comparing the temperature dependence of the nanorod diffusivity with
that of the macroscopic viscosity. Figure 5 displays the frequency-dependent shear modulus of
the WLM solution with ¢ = 200 mM (and ¢; = 118 mM) at several temperatures over the range
19 °C < T <40 °C. Below 19 °C, the rheology undergoes an abrupt change, which we associate
with a structural transformation in the micelles induced by a change in miscibility of the CPyCl
at low temperature. Above this change, the form of G (w) is essentially temperature-independent
such that the modulus at different temperatures can be superimposed by scaling the angular

frequency with a temperature-dependent shift factor ar with respect to the data at 40 °C, as
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Figure 5. Storage (squares) and loss (circles) moduli of a CPyCl/NaSal solution with ¢ = 200 mM
and NaSal concentration ¢; = 118 mM measured at different temperatures as a function of angular

frequency w scaled with temperature-dependent shift factor ar.

illustrated in Figure 5. This time-temperature superimposition works equally well for all
surfactant concentrations studied. Figure 6(a) shows ar along with the macroscopic and
microscopic viscosities normalized by their respective values at 40 °C for ¢ = 200 mM. Figure
6(b) shows the same quantities for ¢ = 500 mM. Also plotted in the figures is the viscosity of
water 1, normalized to its value at 40 °C.°° At both high and low surfactant concentration, ar
and 7 track one another, as expected, and show a strong temperature dependence that results
primarily from exponential increases in 7., and in the average micelle length with decreasing
temperature that lead to slower entanglement relaxation.’’ At ¢ = 500 mM, <n,> follows a
temperature dependence that is nearly as strong as that of 1, indicating that the nanorod
diffusivity in the concentrated solution is influenced significantly by entanglement relaxation. In

contrast, at ¢c= 200 mM, <n,,> displays a weaker temperature dependence that is only slightly
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Figure 6. Parameters characterizing WLM solution rheology and nanoparticle dynamics
normalized by their values at to their values at 40°C for (a) CPyCl/NaSal (200/118 mM) and
(b) CPyCl/NaSal (500/245 mM). Included are the shift factors ar obtained from scaling the
shear moduli, the viscosities obtained from rheology and from the nanorod diffusivity XPCS,

and the viscosity of water obtained from Ref. 59.

stronger than that of the solvent viscosity, 7,,. Thus, at the lower concentration where <7),,> <<

1o, the nanorod mobility is less sensitive to factors that affect entanglement relaxation.

IV. Discussion
A. Review of Recent Theory

The comparison between the rheological parameters obtained via rheometry and those
inferred from the nanorod dynamics in Figures 2(b) and 2(d) reveals how the nanoscale structural

dynamics that control rod mobility deviate from those dictating macroscopic stress relaxation
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when the dimensions of the rods are comparable to the entanglement mesh size. Recent theories
of nanoparticle motion in entangled polymers that explain such deviations have taken different
approaches to describe the coupling of the size-dependent polymer dynamics to particle
dynamics. Addressing the problem of a nanoparticle in an entangled polymer melt, Brochard-
Wyart and de Gennes developed a scaling theory for the particle’s terminal diffusivity based on
the idea that the particle mobility decouples from the macroscopic viscosity when the particle
size d is smaller than the tube diameter, which is approximately equivalent to the entanglement
mesh size 2’ When d < &, the motion instead becomes dependent on the local relaxation of
chain segments of size comparable to the particle. A consequence of this prediction is a sharp
discontinuity in diffusivity as the particle size and the entanglement mesh size cross, d = &.
Brochard-Wyart and de Gennes further considered both spherical particles and needle-like
colloids, for which they predicted a regime of anisotropic diffusion when the needle diameter
was smaller than the tube diameter but the length was larger.”’

Recently, Cai et al. expanded these scaling ideas to address not only the terminal
diffusivity but also shorter-time particle dynamics and to describe nanoparticle mobility in
entangled solutions.”® They also developed a model of “hopping” diffusion relevant for the
regime in which the particle size is slightly larger than the mesh size.” In this model, activated
motion in which the particle overcomes the free energy barrier imposed by the cage of chains in
the local entanglement mesh provides a channel for diffusion in parallel with relaxation of the
mesh. This process removes the discontinuity in diffusivity at d = § in the Brochard-Wyart and
de Gennes model and leads to particle mobilities in excess of macroscopic expectations for

particle sizes up to several times that of the entanglement mesh size.
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In an alternative approach to understanding nanoparticle motion in entangled polymer
melts, Yamamoto and Schweizer developed a microscopic force-level theory based on a self-

consistent generalized Langevin equation.’” **

For small particles, the theory reproduces the
scaling results of Brochard-Wyart and de Gennes, but it also captures the gradual nature of the
coupling between a particle and the full entanglement network constraints as the particle size
increases past d = &. As a result, the theory predicts significantly enhanced diffusion for particles
somewhat larger than the mesh size, with Stokes-Einstein behavior recovered only at d = 10&.
Such enhanced diffusivity over macroscopic expectations by particles in the range § <d < 10§
has been confirmed in experiments and simulations.* *> In the context of the theory, Dell and

Schweizer further considered activated hopping but concluded that it contributed negligibly to

particle mobility except for a narrow range of conditions.’’

B. Possible Role of Anisotropic Diffusion in Nanorod Dynamics

As mentioned above, Brochard-Wyart and de Gennes predicted highly anisotropic
mobility of a needle-shaped colloid in an entangled polymer when the colloid size is in the range
2R < E< L In this regime, the colloid experiences only a local nanoviscosity when diffusing
parallel to its axis, but diffusion perpendicular to the axis requires full relaxation of the entangled
chains. As shown in Figure 2(c), the range of & covered in the experiments matches this
condition. Therefore, within the Brochard-Wyart and de Gennes model we can potentially
interpret the deviations between <7,,> and 1y with the enhanced diffusivity of the rods in the
direction parallel to their axes. This idea is supported by the weak temperature dependence of
low-concentration <7,,> in Figure 5(a), since the nanoviscosity is determined by the relaxation

of chain segments up to size 2R through Rouse dynamics and hence is independent of the factors
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causing the strong temperature dependence of 1y, specifically 7p..x and micelle length.
However, other aspects of this model of anisotropic diffusion appear at odds with the observed
mobility of the nanorods and lead us to doubt its relevance. First, if the diffusivity is indeed set
by the relaxation of chain segments of size comparable to 2R, then scaling theory predicts <m,,>
~ ¢"°” which is in strong contrast with the trend in Figure 2(d). Second, the model of
anisotropic diffusion, as developed by Brochard-Wyart and de Gennes, predicts a discontinuity
in diffusivity as & crosses 2R. Since <n,,> approaches 779 smoothly at the highest concentrations
in Figure 2(d) where & approaches 2R, the results appear to be inconsistent with such a
discontinuity.

Another concern regarding the suitability of an anisotropic diffusion model to explain the
rod mobility is the similarity between G, and G,, above ¢ = 100 mM, which implies that the rods
remain elastically coupled to the entanglement mesh as long as & is smaller than the rod length L.
This agreement suggests that the rod length rather than the diameter is the relevant dimension in
dictating the rods’ entrainment in the mesh. This conclusion is also supported by the recent work
of Cai et al*® and of Yamamoto and Schweizer” described above that, through different
theoretical approaches, predict that nanoparticle diffusivity converges to the value expected
macroscopically from the Stokes-Einstein relation only when the particle size is several times
larger than the entanglement mesh size. As the results in Figure 2 show, <n),,> approaches 7 as
L approaches 3§, and hence the nanorod dynamics are consistent with the conclusions of Cai et
al. and of Yamamoto and Schweizer provided the rod length is the relevant scale to compare
with the entanglement mesh size. Thus, while significantly anisotropic diffusion might play a
role in dictating mobility of nanorods of higher aspect ratio in entangled polymers,'' for the

nanorods in this study with a modest aspect ratio near 3, it appears not to be important.
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C. Possible Role of Hopping Diffusion in Nanorod Dynamics

As mentioned above, both the recent theories of Cai et al®® and of Yamamoto and
Schweizer” provide predictions for nanoparticle diffusivity in entangled polymers when the
particle size is somewhat larger than the entanglement mesh. Here we focus on that of Cai et
al”®, whose work includes predictions for nanoparticles in entangled solutions that we can
compare with the results for the diffusivity of the nanorods in the WLM solutions. (This focus
does not discount the possibility that the predictions of Yamamoto and Schweizer” properly
recast might not successfully describe the results.) As described above, Cai ef al. have proposed
a mechanism for particle motion through the entanglement mesh based on “hopping” diffusion
that can contribute to particle mobility as long as the particle size is not too much larger than the
mesh.” Based on this idea and scaling arguments from polymer physics, they have derived an

expression for particle diffusivity as function of polymer concentration D(¢). (See Eq. (F.4) in

Ref. °.) Modifying the dependence on ¢ in their expression to account for the scaling behavior

1.75

we have obtained empirically for the CPyCl/NaSal solutions (specifically, G ~ ¢ "~ and 1y ~ ¢

19) and taking the characteristic size of a nanorod to be its length L, we find:

kT

L —
T $*SBexp [__d)o.se] +Bp! 7)

D(¢) = e
where B is a constant described below, &, is the “monomeric friction coefficient”, and a.(1) and
N((1) are the tube diameter and the number of Kuhn lengths in an entanglement segment,
respectively, that one would have in the melt. (The theory neglects numerical factors of order
unity in the prefactor and in the exponential of the first term.) This diffusivity can be related to

the effective viscosity felt by a nanorod, and hence this prediction can be compared directly to

the XPCS results, through D(¢) = kT/E<n,>. The first term in Eq. (7) is the contribution from
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Figure 7. The ratio of macroscopic viscosity 77 to the viscosity obtained from the nanorod
diffusivity <1,,> minus one versus ¢">°, where ¢ is the micelle volume fraction. The solid line
shows the result of a fit using the form predicted by a model of “hopping” diffusion (Eq. 8), as
described in the text.
“hopping”. The second is the contribution from entanglement relaxation and is simply the
expected diffusivity based on the macroscopic viscosity through the Stokes-Einstein relation, B¢

"'= kT/En_. From the results for n_ in Figure 2(d), we obtain B = 9.5x10"® m?/s, where we
convert from CPyCl concentration ¢ to micelle concentration ¢ using the measured relation, ¢ =
0.00052(c¢/mM).

To highlight the enhanced mobility of the rods over macroscopic expectations, we rewrite

Eq. (7) in terms of the ratio of the macroscopic and microscopic viscosities,

Mo __ 1= __ kT
Mm) "~ B{mN2(1)

P 58exp [_ L 4)0.58]_ (8)

ae(1)

Figure 7 displays the results for 1_/<#,,> - 1 plotted against ¢”*, and the solid line in the figure
shows the result of a fit to the data using Eq. (8), which gives the fit parameters {,, N2(1) =
1.51(x£0.6)x10” N-s/m and a.(1) = 2.2+0.2 nm. As the figure indicates, the agreement between

the fit and the data is good, supporting the applicability of the “hopping” diffusion model in
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explaining the enhanced mobility of the nanorods in the entangled WLM solutions. The values
obtained for the fit parameters reinforce this support. Specifically, the result for a.(1) is the same

order of magnitude as the micelle diameter, a, ~ 4 nm,”

as one would expect for the tube
diameter if one could create a “melt” of wormlike micelles. Also, if one approximates the
monomeric friction factor as &, = 3ma,n., then for a, = 4 nm and the aqueous solvent of
viscosity 7,, = 10° Pa‘s one obtains &, = 3.8x10"" N-s/m. Combined with the fit result for
{mNZ2(1) above, this approximation gives N(1) = 6, which is again a reasonable order-of-
magnitude estimate. Indeed, given that the expression derived by Cai ef al. for D(¢) relies on the
scaling behavior of solutions of flexible polymers and neglects numerical factors of order unity,

we find the agreement in Figure 7 between the predicted diffusivity and that of the nanorods in

the WLM solutions to be remarkable.

V. Conclusions

In conclusion, the results presented in this paper on the mobility of nanorods in entangled
WLM solutions illustrate the effectiveness of XPCS in interrogating the nanometer-scale motion
of nanoparticles within complex-fluid environments. Figure 8 depicts schematically the
relationship between the XPCS correlation function measured on the nanorods in the WLM
solutions and the corresponding nanorod mean squared displacement. A key aspect of the XPCS
results is the g-dependent apparent amplitude of g»(g.f) that is smaller than the Siegert factor
(4(g) < b), implying two temporally separated regimes of nanorod motion. In the first regime,
which occurs on time scales that are too small for the measurement to capture, the nanorod
motion is restricted to a localization length set by the transient elasticity of the entangled

micelles in agreement with a generalized Stokes-Einstein relation, provided the entanglement
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Figure 8. Schematic representations of (a) the XPCS intensity correlation function and (b) the
corresponding nanorod mean-squared displacement over an extended time range. The data in
(a) are the results from Figure 3 for gx(g,f) at ¢ = 0.074 nm™'. The solid line in (a) is the result
of a fit to the data at large 7 using a stretched exponential lineshape with a second, partial decay
at shorter ¢ incorporated to account for the difference between the amplitude of g(g.?) in the
measured range and the Siegert factor 5. As depicted in (b), the observed terminal decay in
22(q,t) corresponds to diffusion of the nanorods, which occurs at a rate set by the hopping
diffusion time 7,,,. In the absence of hopping diffusion, the diffusivity would be smaller and
would be set by the entanglement relaxation time 7. The first partial decay of g»(g.f)
corresponds to motion of the nanorods localized to a range (Ar2(t)) ~ é3/L. We infer that
these short-time dynamics are dictated by their coupling of the nanorods to Rouse dynamics and

that extend to the relaxation time of an entanglement strand ., as discussed in Reference 29.

mesh size is smaller than the nanorod length. As mentioned above, these short-time dynamics
are presumably dictated by Rouse dynamics that lead to subdiffusive motion at short times.** >*

3 The second regime, which controls the terminal decay of g,(¢.f), is characterized by a long-
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time diffusivity of the nanorods that exceeds the diffusivity expected from the Stokes-Einstein
relation by an amount that agrees remarkably with the predictions of “hopping” nanoparticle
diffusion in entangled polymer solutions. This agreement is perhaps surprising given the
microscopic differences between WLM solutions and polymer solutions. Further studies on
other types of nanoparticle/entangled-polymer systems would help clarify whether this
agreement is fortuitous or whether the theory indeed has broad applicability.

Interesting future XPCS experiments would extend such measurements to smaller 7 to
capture the initial, partial decay of g2(¢,f) and hence to characterize the nanorod dynamics at
times and distances before the effects of entanglement confinement develop, when the motion
should be affected by micelle segments below the entanglement length.”® **  While such
measurements would be challenging for XPCS today, they should become more feasible
following anticipated improvements in the technique, for example through the advent of high-
frame-rate x-ray area detectors” and through the proposed upgrades of the Advanced Photon
Source and other synchrotron sources to diffraction-limited storage rings whose greatly
improved x-ray brightness promises to revolutionize the dynamic range of XPCS.**

Another interesting future direction would be XPCS experiments involving nanorods
with larger aspect ratio in entangled polymer and WLM solutions. Large aspect ratio should lead
to clearer evidence of anisotropic diffusivity expected when 2R < § < L. Further, such
measurements that access dynamics at high wave vector (gL > 5) should probe the rotational
diffusion of the rods™® and thus explore the coupling of rotational and translational mobility.*® In
particular, since free rotation of a rod involves motion over a length scale of L/2, the degree to
which rotational diffusion is constrained by entanglements should vary with & as long as § < L/2.

Finally, nanoparticles with the requisite surface properties have been shown to act as end points

25



for wormlike micelles and thereby to serve as junctions in the formation of micellar networks.®>
5 While focused potentially in different scientific questions than we have addressed here, XPCS
experiments probing the nanoparticle dynamics in such materials could provide further insight

into the nanoscale structural dynamics of these interesting composite materials.
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