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Abstract 

In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is 

similar to that of an entangled polymer solution with a characteristic, nanometer-scale 

entanglement mesh size.  We report a combined x-ray photon correlation spectroscopy (XPCS) 

and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute 

solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride 

(CPyCl) and the counter-ion sodium salicylate (NaSal).  The CPyCl concentration is varied to 

tune the entanglement mesh size over a range that spans from approximately equal to the 

nanorod diameter to larger than the nanorod length.  The NaSal concentration is varied along 

with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl 

concentration.   On short time scales the nanorods are localized on a length scale matching that 

expected from the high-frequency elastic modulus of the solutions as long as the mesh size is 

smaller than the rod length.  On longer time scales, the nanorods undergo free diffusion.  At the 

highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on 

the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration 

more rapidly than expected from the macroscopic viscosity.  A recent model by Cai et al. [Cai, 

L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle 

“hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced 

diffusivity. 
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I. Introduction 

The mobility of nanoparticles within viscoelastic complex fluids impacts a wide range of 

technologies.  For example, in the design and fabrication of nanocomposites, control over the 

dispersion and partitioning of nanoparticles in polymer melts is crucial for achieving desired 

material performance.1-4 Also, in advanced approaches to drug delivery, the efficacy of 

nanoparticles as carriers of medicinal cargo relies on their ability to diffuse through biological 

gels.5, 6  Nanoparticle dynamics in complex fluids also raises scientific questions that go to the 

heart of the relationship between the hierarchical microscopic properties of the fluids and their 

macroscopic rheological response.  The significance of these issues has motivated numerous 

recent experimental,7-26 theoretical,27-34 and simulation studies 35-39 to investigate nanoparticle 

dynamics within polymer melts and solutions and related materials.  Polymers are characterized 

by several microscopic length scales, including the correlation length and radius of gyration, and 

in the case of entangled solutions, the tube diameter and entanglement mesh size.  When 

nanoparticles are sufficiently large compared to these intrinsic scales, their mobility reflects the 

solution’s macroscopic viscoelasticity, and under appropriate conditions the particle mean 

squared displacement <∆r2(t)> is related to the creep compliance J(t) of through a generalized 

Stokes-Einstein relation,40, 41  

J(t)=ζ<∆r2(t)>/6kBT     (1) 

where ζ is the particle’s geometric drag coefficient.  However, when the size of the nanoparticles 

approaches the solution’s intrinsic microscopic length scales, this correspondence breaks down, 

as numerous recent studies have illustrated.  For example, nanoparticles in entangled polymers 

can display mobilities that are orders of magnitude larger than those expected from macroscopic 

rheology when their size is near or below the entanglement mesh size.  Further, in both entangled 
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and unentangled solutions, nanoparticles can exhibit a regime of anomalous, subdiffusive motion 

over short distances that reverts to simple diffusion only on scales large compared to the relevant 

polymer microstructure.10, 12, 35   

In order to obtain an expanded perspective on the relationship between complex-fluid 

microstructure and nanoparticle mobility, we have conducted experiments employing x-ray 

photon correlation spectroscopy (XPCS) to interrogate the nanoscale dynamics of rod-shaped 

nanoparticles within entangled wormlike micelle solutions.  Wormlike micelles (WLM) are long, 

thin, cylindrical aggregates of surfactant molecules that self assemble in aqueous solution under 

appropriate conditions.  Due to the morphology of the assemblies, WLM solutions exhibit 

structure and rheology similar to polymer solutions, and at sufficient concentration the micelles 

can entangle, giving the solutions significant viscoelasticity.  However, because they are 

supramolecular assemblies, WLMs grow, break, and reform at rates set by equilibrium 

thermodynamics, making them “living” polymers and leading to characteristic features in the 

rheology of the solutions.  For instance, over a broad range of conditions, the linear response of 

WLM solutions approximates that of a Maxwell liquid with a single stress relaxation time, and 

this behavior is understood to be a consequence of a coupling of micelle reptation to scission and 

recombination events.42  Such distinctive features make WLM solutions an interesting point of 

comparison with polymer solutions for considering nanoparticle mobility, where the deviations 

from macroscopic expectations can depend on structural dynamics at the nanoscale.  

XPCS provides a unique opportunity to probe nanoparticle mobility over distances 

spanning the characteristic lengths in nanostructured complex fluids.43, 44  Like dynamic light 

scattering, XPCS tracks temporal fluctuations in coherent scattering intensity; however, the 

much shorter wavelengths of x-rays compared with visible light enables the technique to access 
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dynamics on smaller length scales.  Here, we employed XPCS to study the Brownian motion of 

gold nanorods in entangled WLM solutions formed by the surfactant cetylpyridinium chloride 

(CPyCl) with the counter-ion sodium salicylate (NaSal).  CPyCl/NaSal is a model WLM system 

whose macroscopic rheology has been well characterized.42  By varying the surfactant 

concentration, we tuned the entanglement mesh size from values smaller than the nanorod 

diameter to values larger than the nanorod length.  This investigation of nanorod dynamics 

complements studies of nanosphere mobility in entangled polymer solutions.  As previous work 

exploring nanorod dynamics in entangled polymers has illustrated,11, 14, 27 the rods’ anisotropic 

shape provides an insightful perspective on the relationship between particle dimension and 

solution microstructure in dictating mobility.  

As described below, we find that the nanorods remain elastically coupled to the WLM 

entangled network on short times provided the length L of the rods is larger than the 

entanglement mesh size ξ.  However, the diffusivity of the rods on longer time exceeds that 

expected from the solutions’ macroscopic viscosity over a range of mesh sizes extending to sizes 

as small as ξ ≈ L/4.  A recent model of nanoparticle mobility in entangled polymer solutions 

introduced by Cai et al.29 that considers a hopping mechanism that acts in parallel with 

entanglement relaxation to promote particle diffusion in this size regime accounts accurately for 

the enhanced diffusivity of the nanorods. 

 

II. Materials and Methods 

A. Nanorod Synthesis 

Gold nanorods were synthesized using seed-mediated growth in solutions of 

cetyltrimethylammonium bromide (CTAB; TCI America) following procedures reported by Ye 
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et al.45  The nanorods had radius R = 7.7 ± 0.8 nm and length L = 47.0 ± 4.4 nm, as determined 

by transmission electron microscopy (TEM).  (See Figure S1 in the Supporting Information for 

an example TEM image.)  As synthesized, the nanorods were stabilized by excess CTAB that 

coats the particle surfaces.  When mixed into CPyCl/NaSal solutions, these nanorods aggregated, 

likely because CTAB loses affinity to the gold surfaces and forms micelles in the presence of the 

salicylate ions.  To avoid this problem, the surfaces of the nanorods were functionalized with 

methoxy polyethyleneglycol thiol (mPEG-SH; Creative PEGWorks) with molecular weight of 

2000 g/mol prior to their introduction into the CPyCl/NaSal solutions.  The as-synthesized 

nanorods were centrifuged at 8500 rpm for 25 min twice to remove excess CTAB and then were 

mixed with 2 mM mPEG-SH aqueous solution for 24 hours.  Any remaining CTAB and 

unreacted mPEG-SH were then removed by multiple centrifugations.  

 

B. WLM Solution fabrication 

Desired quantities of CPyCl (Alfa Aesar) and NaSal (Alfa Aesar) were added to dilute 

stock solutions of the mPEG-functionalized nanorods to prepare WLM solutions with varying 

concentration.  Small angle x-ray scattering (SAXS) profiles from the solutions followed closely 

the form factor of isolated rods, with no signs of aggregation.  (See Figures S2 and S3 in the 

Supporting Information for example SAXS profiles.)  From the absolute scattering intensity, the 

volume fraction of rods was estimated to be 0.003%, which is sufficiently dilute to ignore rod-

rod interactions and below a value where the rods affect the viscoelastic properties of the 

solutions.  (Due to the large atomic number of gold, the nanorods dominate the scattering 

intensity in the SAXS range even at such dilute volume fractions.)  At CPyCl concentrations of 

600 mM, SAXS patterns showed an intensity increase in low q, which indicated aggregation of 
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the rods, and at 800 mM and above, the SAXS patterns revealed macroscopic alignment of the 

rods, indicating the WLMs formed a nematic phase, consistent with other studies of high-

concentration CPyCl/NaSal solutions.46   Studies of the nanoparticle dynamics were restricted to 

isotropic WLM solutions below these concentrations.   In addition, from measurements of the 

densities of the solutions’ constituents we found the relation between CPyCl concentration c and 

micelle volume fraction φ to be φ = 0.00052×(c/mM). 

 

C. Rheometry 

Measurements of the frequency-dependent complex shear modulus, 𝐺∗ 𝜔 = 	𝐺& 𝜔 +

𝑖𝐺&& 𝜔 , were performed using a stress-controlled rheometer (Anton Paar Physica MCR 301) in 

a cone-plate geometry with a Peltier temperature-control system.  The strain amplitude was kept 

at or below 1%, which was found to be well within the linear regime of stress response. 

 

D. XPCS 

XPCS experiments were performed at Sector 8-ID of the Advanced Photon Source. 

Solutions were contained in glass capillaries with diameter 1.5 mm for transmission scattering.  

A partially coherent 11 keV x-ray beam of size 20×20 µm2 was incident on the sample.  The 

scattering intensity was recorded at 100 frames per second with a direct-illuminated CCD area 

detector (LBL-ANL Fast CCD)47 with 30×30 µm2 pixel size.  The sample-to-detector distance 

was set at 4.91 m to cover scattering wave vectors q from 0.03 to 0.3 nm-1.  Under these 

conditions, the Siegert factor was 0.103, as measured using a static sample (aerogel).  However, 

above q ≈ 0.11 nm-1, the scattering was too weak for reliable determination of the intensity 

autocorrelation function g2(q,t), hence we restricted analysis to smaller wave vectors. 
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III. Results 

A. WLM Solution Rheology 

We focused on the regime of semidilute WLM solutions with CPyCl concentration in the 

range 50 < c < 500 mM that form isotropic, entangled solutions.  At fixed c, the viscosity of 

CPyCl/NaSal solutions displays two maxima as a function of NaSal concentration cs.42, 46, 48  The 

first maximum is thought to be due to a transition from linear to branched micelles, while the 

second maximum has been associated with a transition to a nematic phase.46  In the solutions 

under study, we varied c to tune the entanglement mesh size, and we varied cs along with c so 

that the viscosity was always near the first maximum.  To maintain this condition, we followed 

the relation between c and cs at the first viscosity maximum identified by Rehage and Hoffmann: 

log(cs/mM) = 0.23 + 0.8log(c/mM).42  Additional rheometry measurements on solutions at fixed 

c and varying cs confirmed that this relation is valid over the full range, 50 < c < 500 mM. 

Figure 1 displays the frequency-dependent complex shear modulus, 𝐺∗ 𝜔 = 	𝐺′ 𝜔 +

𝑖𝐺&& 𝜔 , of a solution with c = 300 mM (and cs =168 mM).  The modulus follows a form that is 

characteristic of entangled solutions.  At high frequencies, G'  > G'', and G' is approximately 

constant.  This plateau is associated with a transient rubbery response due to the mesh of 

entanglements.   At low frequencies, the solutions are fluid, G'' > G', with G''~ ω and with zero-

shear-rate viscosity 𝜂+ = lim
/→+

𝐺′′(𝜔)/𝜔. 

 

The solid lines in the figure display the results of a fit using an empirical Cole-Davidson 

form49 to capture entanglement relaxation, plus a viscous response that accounts for local (Rouse 

and breathing) motions and becomes appreciable at high frequency,50 

𝐺∗ 𝜔 = 45
678 /9 : + 𝑖𝜔𝜂;                     (2) 
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where τ is the characteristic relaxation time of the entanglement mesh, G∞ is the plateau 

modulus, the exponent α characterizes the shape of the response, and η∞ is the high-frequency 

viscosity, which falls in the range 0.02 – 0.1 Pa∙s, depending on CPyCl concentration.  Equation 

(2) describes accurately the form of 𝐺∗(𝜔) over the full range of CPyCl concentrations studied.  

When α is close to 1, which is the case for the CPyCl/NaSal solutions under study, the Cole-

Davidson form approximates the Fourier transform of a stretched exponential response function, 

𝐺 𝑡 = 	𝐺;𝑒7(? 9)@,   (3) 

where the exponents α and β are related approximately through β = 0.683α + 0.316.51  In the 

limit α = 1, the Cole-Davidson form reduces to that of a Maxwell model (i.e., an exponential 

stress relaxation, β = 1, in time domain).  The values of β obtained from the results for α from 

fits to 𝐺∗(𝜔) at various CPyCl concentrations are shown in Figure 2(a).  The exponents are 

slightly less than one, indicating slight broadening of the relaxation compared to a Maxwell fluid 

 

Figure 1. Frequency dependent storage (squares) and loss (circles) moduli of a wormlike 

micelle solution with CPyCl concentration c = 300 mM and NaSal concentration cs = 168 mM.  

The solid lines display the results of fits using an empirical Cole-Davidson form plus a viscous 

contribution to account for short-time-scale dissipation, as described in the text. 
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at frequencies above the peak in G''.  According to the model by Cates and coworkers,52-54 stress 

relaxation of WLM solutions displays Maxwell behavior when the average micelle scission time 

τbreak is much less than the reptation time τrep, in which case the entanglement relaxation time is 

the geometric mean, 𝜏BC = 𝜏CBD𝜏ECBFG .  In CPyCl/NaSal solutions, the stress relaxation is 

highly stretched at low cs, indicating reptation-dominated behavior and crosses over to Maxwell 

behavior at salt concentrations slightly above the first viscosity maximum,48 suggesting that τrep 

≳ τbreak near the first viscosity maximum, which is the condition in our experiments.42  

Figure 2(b) displays the results for G∞, which describes the transient elastic response of 

the entangled solutions, at T = 25 ºC as a function of CPyCl concentration.  Similar to other 

entangled WLM solutions,46 G∞ ~ c1.75.  (Application of scaling theories of polymer physics to 

WLM solutions predicts slightly stronger concentration dependence, G∞ ~ c2.25.)  In analogy with 

rubber elasticity, the characteristic mesh size ξ for the entangled micelles, shown in Figure 2(c), 

can be obtained from G∞ through ξ = (kbT/G∞)1/3.  Figure 2(d) displays the zero-shear-rate 

viscosity, 𝜂+ = lim
/→+

𝐺′′(𝜔)/𝜔, which characterizes the long-time flow behavior of the solutions.  

As the dashed line in Figure 2(d) indicates, η0 ~ c1.0.  This dependence on surfactant 

concentration differs strongly from the theoretically expected relation η0 ~ c3.5;46 however, such 

strong deviations from theory are commonly observed in the viscosity of entangled WLM                      

solutions and have been attributed either to the existence of micelle branching55 or to a 

concentration-dependent average micelle length that differs from expectations.46 
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Figure 2. Parameters characterizing solution rheology (circles) and nanorod dynamics 
(triangles) as a function of CPyCl concentration c.  (a) stretching exponent β extracted from 
fits to the shear modulus and from fits to the XPCS intensity autocorrelation function, (b) 
plateau modulus G∞  determined from rheology and Gm inferred from the short-time 
localization of the nanorods, (c) entanglement mesh size ξ obtained from G∞,  and (d) 
macroscopic zero-shear-rate viscosity η0 and microscopic viscosity <ηm> obtained from the 
nanorod diffusivity.  The green dashed line denotes the CPyCl concentration at which the mesh 
size equals the nanorod length.  
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B. Nanorod Dynamics 

In order to gain a microscopic perspective on the structural dynamics in the WLM 

solutions, we investigated the dynamical behavior of dilute suspensions of nanorods using 

XPCS.  Figure 3 displays the XPCS intensity autocorrelation function g2(q,t) measured at several 

wave vectors q on a nanorod dispersion in a WLM solution with c = 300 mM (and cs = 168 mM).  

In principle, the correlation function reflects both translational and rotational dynamics of the 

nanorods.  However, rotational motion makes appreciable contributions to g2(q,t) only at large 

wavevectors, qL > 5,56 and over the wavevector range in which g2(q,t) is determined, 0.03 < q < 

0.11 nm-1 (1.45 < qL < 5), the correlation function is dictated almost exclusively by translational 

motion.   The solid lines in Figure 3 show the results of fits to g2(q,t) using a stretched 

exponential form,  

g2(q,t) = 1 + A[exp[−2(t/τ)β]].   (4) 

Such stretched exponential line shapes describe the autocorrelation functions at all wave vectors 

and CPyCl concentrations.  The results for the stretching exponent β are included in Figure 2(a) 

as a function of CPyCl concentration. 

For dilute, noninteracting particles undergoing translational motion in a homogeneous 

environment, g2(q,t) is related to the mean-squared displacement, <∆r2(t)> through the relation57 

g2(q,t) = 1+bexp[−<∆r2(t)>q2/3]  (5) 

where b is the Siegert factor.  Hence, one interpretation for the stretched exponential shape of 

g2(q,t) is that it implies subdiffusive motion of the rods,  ∆𝑟K(𝑡) 	~	𝑡M  and β < 1.  Indeed, 

subdiffusive nanoparticle motion has been observed in polymer solutions, including in XPCS 

measurements on spherical particles in entangled solutions.10  However, we can discount this 

interpretation for the nanorods in WLM solutions.  Another signature of subdiffusive motion is a 
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power-law dependence of the correlation time on wavevector, 𝜏	~	𝑞7K/M.		 In contrast, the 

correlation times obtained from fits using Eq. (4) follow a significantly weaker q dependence 

that is consistent with simple diffusion 𝜏	~	𝑞7K, as illustrated in Figure 4(a), which shows the 

inverse of the mean correlation time, <τ>-1, determined through <τ> = τΓ(1/β)/β, where Γ is the 

gamma function.51  From the observed wavevector dependence, <τ>-1 ~ q2, which we see at all 

surfactant concentrations, we conclude that the nanorods in the WLM solutions undergo simple 

diffusion and that the stretched-exponential form of g2(q,t) hence results from spatial 

heterogeneity in the diffusivity.  From the signal-to-noise in g2(q,t) and the accuracy of the fits 

over the measurement wavevectors, we estimate that this diffusive motion extends to at least 

root-mean-squared displacements of 70 nm.  That is, this diffusion extends over length scales 

from rloc to at least several times the entanglement mesh size ξ.  This behavior contrasts with that 

 

Figure 3. XPCS intensity autocorrelation function g2(q,t) characterizing the dynamics of gold 

nanorods in a CPyCl/NaSal 300/168 mM wormlike micelle solution at various wave vectors. 

The solid lines are the results of fits using a stretched exponential function to the 

autocorrelation functions. 
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observed with spherical nanoparticles in entangled polymer solutions, where pronounced 

subdiffusive motion is observed over similar distances.10, 35   

 From the fit results shown in Figure 4(a) one can obtain a mean microscopic drag 

viscosity <ηm> that the WLM solutions impose on the rods through the relation <ηm> = 

kbTq2<τ>/ζ, where ζ is the geometric translational drag coefficient of a rod.  Because the 

measurements average over an isotropic ensemble of rod orientations, we take ζ to be the 

average of the coefficients parallel (ζ||) and perpendicular (ζ⊥) to the rod axis, ζ=(ζ||+2ζ⊥)/3=294 

nm, where ζ||≅2πL/[ln(L/2R)−0.20]=300 nm and ζ⊥≅4πL/[ln(L/2R)+0.84]=291 nm.58  The 

 

Figure 4. Results characterizing the nanorod dynamics obtained from the XPCS intensity 

autocorrelation function g2(q,t) with varying CPyCl concentration c:  (a) inverse correlation time 

1/<τ>  and (b) logarithm of the short-time plateau value normalized by the Siegert factor, ln(A/b), 

as functions of wave vector squared.  In both cases, the solid lines show the results of linear fits. 
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resulting values of <ηm> are shown in Figure 2(d) along with the macroscopic viscosities η0 as a 

function of CPyCl concentration. The two viscosities are in approximate agreement at the highest 

concentration, but they diverge from one another with decreasing concentration, signaling a 

decoupling of the nanorod diffusivity from the macroscopic solution rheology and hence a 

breakdown of the Stokes-Einstein relation. 

A second feature of the nanorod dynamics is captured in the XPCS measurements by the 

short-time plateau values of g2(q,t), which fall below the Siegert factor b and have a strong 

dependence on q, as illustrated in Figure 3.   These plateau values are captured in Eq. (4) by the 

parameter A, which is plotted in Figure 4(b) normalized by the Siegert factor b.   The observation 

that A is less than b implies the nanorods undergo fast localized motion, creating a partial decay 

of g2(q,t) at inaccessibly short times.59  Specifically, from Eq. (5), one has 𝐴 𝑏 =

exp −𝑟VWXK 𝑞K 3  where 𝑟VWXK  is the mean squared displacement of the nanorods at short times.  

Depending on CPyCl concentration, 11 nm < rloc < 36 nm.  For particles in a Maxwell-like 

viscoelastic fluid, one can relate 𝑟VWXK  to the high-frequency shear modulus by considering, for 

example, the short-time limit of Eq. (1) to find 𝑟VWXK = 6𝑘\𝑇 𝜁𝐺_, where Gm is the microscopic 

transient elasticity.  Hence,  

𝑙𝑛 𝐴/𝑏 = −	KGbc
d4e

	𝑞K     (6) 

The solid lines in Figure 4(b) show the results of fits using this form.  The resulting values of Gm 

are shown in Figure 2(b) along with the macroscopic high-frequency shear modulus G∞ as a 

function of CPyCl concentration. The two quantities agree closely over nearly the full range of 

surfactant concentrations, but separate below approximately c = 150 mM.  The onset of this 

decoupling occurs near the concentration at which the entanglement mesh size ξ becomes larger 

than the rod length L. 
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 In summary, taking into account both the short-time plateau value and the terminal decay 

of g2(q,t), the XPCS measurements provide the following characterization of the nanorod 

dynamics in the WLM solutions.  At short times (t < 0.01 s), which are inaccessible to the 

measurements, the rods experience a limited range of mobility during which their motion is 

presumably dictated by Rouse dynamics and other local degrees of freedom of the micelles that 

control the short-time stress relaxation of the entangled solution.  The length scale of this 

mobility is restricted by caging within the entanglement mesh provided L > ξ, such that <∆r2(t)> 

reaches a temporary plateau at a value 𝑟VWXK  that is consistent with expectations based on the 

solution rheology.  On longer times, the rods escape this caging and undergo free diffusion, but 

they do so on a time scale that is faster than that set by relaxation of the entanglement mesh, 

hence their diffusivity is larger (effective viscosity is smaller) than that expected from 

macroscopic rheology.     

 

C. Temperature Dependence of Rheology and Nanorod Dynamics 

Further insight into the coupling of the nanorod dynamics to the entanglement mesh and 

its relaxation comes from comparing the temperature dependence of the nanorod diffusivity with 

that of the macroscopic viscosity.  Figure 5 displays the frequency-dependent shear modulus of 

the WLM solution with c = 200 mM (and cs = 118 mM) at several temperatures over the range 

19 ºC < T < 40 ºC.  Below 19 ºC, the rheology undergoes an abrupt change, which we associate 

with a structural transformation in the micelles induced by a change in miscibility of the CPyCl 

at low temperature.  Above this change, the form of G*(ω) is essentially temperature-independent 

such that the modulus at different temperatures can be superimposed by scaling the angular 

frequency with a temperature-dependent shift factor aT with respect to the data at 40 ºC, as 
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illustrated in Figure 5.  This time-temperature superimposition works equally well for all 

surfactant concentrations studied.  Figure 6(a) shows aT along with the macroscopic and 

microscopic viscosities normalized by their respective values at 40 ºC for c = 200 mM.  Figure 

6(b) shows the same quantities for c = 500 mM.  Also plotted in the figures is the viscosity of 

water ηw normalized to its value at 40 ºC.60  At both high and low surfactant concentration, aT 

and η0 track one another, as expected, and show a strong temperature dependence that results 

primarily from exponential increases in τbreak and in the average micelle length with decreasing 

temperature that lead to slower entanglement relaxation.61  At c = 500 mM, <ηm> follows a 

temperature dependence that is nearly as strong as that of η0, indicating that the nanorod 

diffusivity in the concentrated solution is influenced significantly by entanglement relaxation.  In 

contrast, at c = 200 mM, <ηm> displays a weaker temperature dependence that is only slightly 

 

Figure 5. Storage (squares) and loss (circles) moduli of a CPyCl/NaSal solution with c = 200 mM 

and NaSal concentration cs = 118 mM measured at different temperatures as a function of angular 

frequency ω scaled with temperature-dependent shift factor aT.  
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stronger than that of the solvent viscosity, ηw.  Thus, at the lower concentration where <ηm> << 

η0, the nanorod mobility is less sensitive to factors that affect entanglement relaxation.   

 

IV. Discussion 

A. Review of Recent Theory 

The comparison between the rheological parameters obtained via rheometry and those 

inferred from the nanorod dynamics in Figures 2(b) and 2(d) reveals how the nanoscale structural 

dynamics that control rod mobility deviate from those dictating macroscopic stress relaxation 

 

Figure 6. Parameters characterizing WLM solution rheology and nanoparticle dynamics 

normalized by their values at to their values at 40ºC for (a) CPyCl/NaSal (200/118 mM) and 

(b) CPyCl/NaSal (500/245 mM).  Included are the shift factors aT obtained from scaling the 

shear moduli, the viscosities obtained from rheology and from the nanorod diffusivity XPCS, 

and the viscosity of water obtained from Ref. 59. 
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when the dimensions of the rods are comparable to the entanglement mesh size.  Recent theories 

of nanoparticle motion in entangled polymers that explain such deviations have taken different 

approaches to describe the coupling of the size-dependent polymer dynamics to particle 

dynamics.  Addressing the problem of a nanoparticle in an entangled polymer melt, Brochard-

Wyart and de Gennes developed a scaling theory for the particle’s terminal diffusivity based on 

the idea that the particle mobility decouples from the macroscopic viscosity when the particle 

size d is smaller than the tube diameter, which is approximately equivalent to the entanglement 

mesh size ξ.27  When d < ξ, the motion instead becomes dependent on the local relaxation of 

chain segments of size comparable to the particle.   A consequence of this prediction is a sharp 

discontinuity in diffusivity as the particle size and the entanglement mesh size cross, d = ξ.  

Brochard-Wyart and de Gennes further considered both spherical particles and needle-like 

colloids, for which they predicted a regime of anisotropic diffusion when the needle diameter 

was smaller than the tube diameter but the length was larger.27   

Recently, Cai et al. expanded these scaling ideas to address not only the terminal 

diffusivity but also shorter-time particle dynamics and to describe nanoparticle mobility in 

entangled solutions.28  They also developed a model of “hopping” diffusion relevant for the 

regime in which the particle size is slightly larger than the mesh size.29  In this model, activated 

motion in which the particle overcomes the free energy barrier imposed by the cage of chains in 

the local entanglement mesh provides a channel for diffusion in parallel with relaxation of the 

mesh.  This process removes the discontinuity in diffusivity at d = ξ in the Brochard-Wyart and 

de Gennes model and leads to particle mobilities in excess of macroscopic expectations for 

particle sizes up to several times that of the entanglement mesh size.  
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In an alternative approach to understanding nanoparticle motion in entangled polymer 

melts, Yamamoto and Schweizer developed a microscopic force-level theory based on a self-

consistent generalized Langevin equation.30, 33  For small particles, the theory reproduces the 

scaling results of Brochard-Wyart and de Gennes, but it also captures the gradual nature of the 

coupling between a particle and the full entanglement network constraints as the particle size 

increases past d = ξ. As a result, the theory predicts significantly enhanced diffusion for particles 

somewhat larger than the mesh size, with Stokes-Einstein behavior recovered only at d ≈ 10ξ.  

Such enhanced diffusivity over macroscopic expectations by particles in the range ξ  < d < 10ξ 

has been confirmed in experiments and simulations.8, 35  In the context of the theory, Dell and 

Schweizer further considered activated hopping but concluded that it contributed negligibly to 

particle mobility except for a narrow range of conditions.31 

 

B. Possible Role of Anisotropic Diffusion in Nanorod Dynamics 

As mentioned above, Brochard-Wyart and de Gennes predicted highly anisotropic 

mobility of a needle-shaped colloid in an entangled polymer when the colloid size is in the range 

2R < ξ < L.27  In this regime, the colloid experiences only a local nanoviscosity when diffusing 

parallel to its axis, but diffusion perpendicular to the axis requires full relaxation of the entangled 

chains.  As shown in Figure 2(c), the range of ξ covered in the experiments matches this 

condition.  Therefore, within the Brochard-Wyart and de Gennes model we can potentially 

interpret the deviations between <ηm> and η0 with the enhanced diffusivity of the rods in the 

direction parallel to their axes.  This idea is supported by the weak temperature dependence of 

low-concentration <ηm> in Figure 5(a), since the nanoviscosity is determined by the relaxation 

of chain segments up to size 2R through Rouse dynamics and hence is independent of the factors 
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causing the strong temperature dependence of η0, specifically τbreak and micelle length.  

However, other aspects of this model of anisotropic diffusion appear at odds with the observed 

mobility of the nanorods and lead us to doubt its relevance.  First, if the diffusivity is indeed set 

by the relaxation of chain segments of size comparable to 2R, then scaling theory predicts <ηm> 

~ c1.5,28 which is in strong contrast with the trend in Figure 2(d).  Second, the model of 

anisotropic diffusion, as developed by Brochard-Wyart and de Gennes, predicts a discontinuity 

in diffusivity as ξ crosses 2R.  Since <ηm> approaches η0 smoothly at the highest concentrations 

in Figure 2(d) where ξ approaches 2R, the results appear to be inconsistent with such a 

discontinuity. 

Another concern regarding the suitability of an anisotropic diffusion model to explain the 

rod mobility is the similarity between G∞ and Gm above c = 100 mM, which implies that the rods 

remain elastically coupled to the entanglement mesh as long as ξ is smaller than the rod length L.  

This agreement suggests that the rod length rather than the diameter is the relevant dimension in 

dictating the rods’ entrainment in the mesh.  This conclusion is also supported by the recent work 

of Cai et al.29 and of Yamamoto and Schweizer33 described above that, through different 

theoretical approaches, predict that nanoparticle diffusivity converges to the value expected 

macroscopically from the Stokes-Einstein relation only when the particle size is several times 

larger than the entanglement mesh size.  As the results in Figure 2 show, <ηm> approaches η0 as 

L approaches 3ξ, and hence the nanorod dynamics are consistent with the conclusions of Cai et 

al. and of Yamamoto and Schweizer provided the rod length is the relevant scale to compare 

with the entanglement mesh size.  Thus, while significantly anisotropic diffusion might play a 

role in dictating mobility of nanorods of higher aspect ratio in entangled polymers,11 for the 

nanorods in this study with a modest aspect ratio near 3, it appears not to be important.  
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C. Possible Role of Hopping Diffusion in Nanorod Dynamics 

As mentioned above, both the recent theories of Cai et al.29 and of Yamamoto and 

Schweizer33 provide predictions for nanoparticle diffusivity in entangled polymers when the 

particle size is somewhat larger than the entanglement mesh.  Here we focus on that of Cai et 

al.29, whose work includes predictions for nanoparticles in entangled solutions that we can 

compare with the results for the diffusivity of the nanorods in the WLM solutions.  (This focus 

does not discount the possibility that the predictions of Yamamoto and Schweizer33 properly 

recast might not successfully describe the results.)  As described above, Cai et al. have proposed 

a mechanism for particle motion through the entanglement mesh based on “hopping” diffusion 

that can contribute to particle mobility as long as the particle size is not too much larger than the 

mesh.29  Based on this idea and scaling arguments from polymer physics, they have derived an 

expression for particle diffusivity as function of polymer concentration D(φ).  (See Eq. (F.4) in 

Ref. 29.)  Modifying the dependence on φ in their expression to account for the scaling behavior 

we have obtained empirically for the CPyCl/NaSal solutions (specifically, G∞ ~ φ1.75 and η0 ~ φ 

1.0) and taking the characteristic size of a nanorod to be its length L, we find: 

𝐷 𝜙 =	 Gc
dehij(6)

𝜙+.kl𝑒𝑥𝑝 − o
Fi(6)

𝜙+.kl + 𝐵𝜙76	   (7) 

where B is a constant described below, ζm is the “monomeric friction coefficient”, and ae(1) and 

Ne(1) are the tube diameter and the number of Kuhn lengths in an entanglement segment, 

respectively, that one would have in the melt.  (The theory neglects numerical factors of order 

unity in the prefactor and in the exponential of the first term.)  This diffusivity can be related to 

the effective viscosity felt by a nanorod, and hence this prediction can be compared directly to 

the XPCS results, through D(φ) = kT/ζ<ηm>.  The first term in Eq. (7) is the contribution from 
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“hopping”.  The second is the contribution from entanglement relaxation and is simply the 

expected diffusivity based on the macroscopic viscosity through the Stokes-Einstein relation, Bφ- 

1 = kT/ζη0.  From the results for η0 in Figure 2(d), we obtain B = 9.5×10-18 m2/s, where we 

convert from CPyCl concentration c to micelle concentration φ using the measured relation, φ = 

0.00052(c/mM).   

To highlight the enhanced mobility of the rods over macroscopic expectations, we rewrite 

Eq. (7) in terms of the ratio of the macroscopic and microscopic viscosities, 

qr
qe

− 1 = Gc
\dehij(6)

𝜙6.kl𝑒𝑥𝑝 − o
Fi(6)

𝜙+.kl .   (8) 

Figure 7 displays the results for η0/<ηm> - 1 plotted against φ0.58, and the solid line in the figure 

shows the result of a fit to the data using Eq. (8), which gives the fit parameters 𝜁_𝑁BK 1  = 

1.51(±0.6)×10-9 N·s/m and ae(1) = 2.2±0.2 nm.  As the figure indicates, the agreement between 

the fit and the data is good, supporting the applicability of the “hopping” diffusion model in 

 

Figure 7. The ratio of macroscopic viscosity η0 to the viscosity obtained from the nanorod 

diffusivity <ηm> minus one versus φ0.58, where φ is the micelle volume fraction.  The solid line 

shows the result of a fit using the form predicted by a model of “hopping” diffusion (Eq. 8), as 

described in the text.   
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explaining the enhanced mobility of the nanorods in the entangled WLM solutions.  The values 

obtained for the fit parameters reinforce this support.  Specifically, the result for ae(1) is the same 

order of magnitude as the micelle diameter, am ≈ 4 nm,62 as one would expect for the tube 

diameter if one could create a “melt” of wormlike micelles.  Also, if one approximates the 

monomeric friction factor as ζm = 3πamηw, then for am = 4 nm and the aqueous solvent of 

viscosity ηw = 10-3 Pa·s one obtains ζm = 3.8×10-11 N·s/m.  Combined with the fit result for 

𝜁_𝑁BK 1  above, this approximation gives Ne(1) = 6, which is again a reasonable order-of-

magnitude estimate.  Indeed, given that the expression derived by Cai et al. for D(φ) relies on the 

scaling behavior of solutions of flexible polymers and neglects numerical factors of order unity, 

we find the agreement in Figure 7 between the predicted diffusivity and that of the nanorods in 

the WLM solutions to be remarkable.   

 

V. Conclusions 

In conclusion, the results presented in this paper on the mobility of nanorods in entangled 

WLM solutions illustrate the effectiveness of XPCS in interrogating the nanometer-scale motion 

of nanoparticles within complex-fluid environments.  Figure 8 depicts schematically the 

relationship between the XPCS correlation function measured on the nanorods in the WLM 

solutions and the corresponding nanorod mean squared displacement.  A key aspect of the XPCS 

results is the q-dependent apparent amplitude of g2(q,t) that is smaller than the Siegert factor 

(A(q) < b), implying two temporally separated regimes of nanorod motion.  In the first regime, 

which occurs on time scales that are too small for the measurement to capture, the nanorod 

motion is restricted to a localization length set by the transient elasticity of the entangled 

micelles in agreement with a generalized Stokes-Einstein relation, provided the entanglement 
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mesh size is smaller than the nanorod length.  As mentioned above, these short-time dynamics 

are presumably dictated by Rouse dynamics that lead to subdiffusive motion at short times.28, 30, 

33   The second regime, which controls the terminal decay of g2(q,t), is characterized by a long-

 

Figure 8. Schematic representations of (a) the XPCS intensity correlation function and (b) the 

corresponding nanorod mean-squared displacement over an extended time range.  The data in 

(a) are the results from Figure 3 for g2(q,t) at q = 0.074 nm-1.  The solid line in (a) is the result 

of a fit to the data at large t using a stretched exponential lineshape with a second, partial decay 

at shorter t incorporated to account for the difference between the amplitude of g2(q,t) in the 

measured range and the Siegert factor b.  As depicted in (b), the observed terminal decay in 

g2(q,t) corresponds to diffusion of the nanorods, which occurs at a rate set by the hopping 

diffusion time τhop.  In the absence of hopping diffusion, the diffusivity would be smaller and 

would be set by the entanglement relaxation time τer.  The first partial decay of g2(q,t) 

corresponds to motion of the nanorods localized to a range 〈∆𝑟K(𝑡)〉 	≈ 𝜉y 𝐿⁄ .  We infer that 

these short-time dynamics are dictated by their coupling of the nanorods to Rouse dynamics and 

that extend to the relaxation time of an entanglement strand τe, as discussed in Reference 29.  
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time diffusivity of the nanorods that exceeds the diffusivity expected from the Stokes-Einstein 

relation by an amount that agrees remarkably with the predictions of “hopping” nanoparticle 

diffusion in entangled polymer solutions.  This agreement is perhaps surprising given the 

microscopic differences between WLM solutions and polymer solutions.  Further studies on 

other types of nanoparticle/entangled-polymer systems would help clarify whether this 

agreement is fortuitous or whether the theory indeed has broad applicability.   

 Interesting future XPCS experiments would extend such measurements to smaller t to 

capture the initial, partial decay of g2(q,t) and hence to characterize the nanorod dynamics at 

times and distances before the effects of entanglement confinement develop, when the motion 

should be affected by micelle segments below the entanglement length.28, 33  While such 

measurements would be challenging for XPCS today, they should become more feasible 

following anticipated improvements in the technique, for example through the advent of high-

frame-rate x-ray area detectors63 and through the proposed upgrades of the Advanced Photon 

Source and other synchrotron sources to diffraction-limited storage rings whose greatly 

improved x-ray brightness promises to revolutionize the dynamic range of XPCS.64   

Another interesting future direction would be XPCS experiments involving nanorods 

with larger aspect ratio in entangled polymer and WLM solutions.  Large aspect ratio should lead 

to clearer evidence of anisotropic diffusivity expected when 2R < ξ < L.  Further, such 

measurements that access dynamics at high wave vector (qL > 5) should probe the rotational 

diffusion of the rods56 and thus explore the coupling of rotational and translational mobility.38  In 

particular, since free rotation of a rod involves motion over a length scale of L/2, the degree to 

which rotational diffusion is constrained by entanglements should vary with ξ as long as ξ < L/2.  

Finally, nanoparticles with the requisite surface properties have been shown to act as end points 
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for wormlike micelles and thereby to serve as junctions in the formation of micellar networks.65, 

66  While focused potentially in different scientific questions than we have addressed here, XPCS 

experiments probing the nanoparticle dynamics in such materials could provide further insight 

into the nanoscale structural dynamics of these interesting composite materials. 
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