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are reviewed. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since January 1993, ‘Progress in Photovoltaics’ has pub-
lished six monthly listings of the highest confirmed effi-
ciencies for a range of photovoltaic cell and module
technologies [1–3]. By providing guidelines for inclusion
of results into these tables, this not only provides an au-
thoritative summary of the current state-of-the-art but also
encourages researchers to seek independent confirmation
of results and to report results on a standardised basis. In
version 33 of these Tables [2], results were updated to
the new internationally accepted reference spectrum (Inter-
national Electrotechnical Commission IEC 60904-3, Ed. 2,
2008), where this was possible.

The most important criterion for inclusion of results into
the tables is that they must have been independently mea-
sured by a recognised test centre listed elsewhere [1]. A
distinction is made between three different eligible defini-
tions of cell area: total area, aperture area and designated
illumination area, as also defined elsewhere [1]. ‘Active
area’ efficiencies are not included. There are also certain
minimum values of the area sought for the different device

types (above 0.05 cm2 for a concentrator cell, 1 cm2 for a
one-sun cell and 800 cm2 for a module).

Results are reported for cells and modules made from
different semiconductors and for sub-categories within
each semiconductor grouping (e.g. crystalline, polycrystal-
line and thin film). From version 36 onwards, spectral re-
sponse information is included when available in the
form of a plot of the external quantum efficiency (EQE)
versus wavelength, either as absolute values or normalised
to the peak measured value. Current–voltage (IV) curves
have also been included where possible from version 38
onwards.

2. NEW RESULTS

Highest confirmed ‘one-sun’ cell and module results are re-
ported in Tables I–IV. Any changes in the tables from
those previously published [3] are set in bold type. In most
cases, a literature reference is provided that describes either
the result reported, or a similar result (readers identifying
improved references are welcome to submit to the lead
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Table I. Confirmed single-junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000W/
m2) at 25 °C (IEC 60904-3: 2008, ASTM G-173-03 global).

Classification
Efficiency

(%) Area (cm2) Voc (V)
Jsc (mA/
cm2)

Fill factor
(%)

Test centre
(date) Description

Silicon
Si (crystalline cell) 26.3� 0.5 180.43 (da) 0.7438 42.25a 83.8 FhG-ISE (7/16) Kaneka, rear junction

[4]
Si (multicrystalline cell) 21.3� 0.4 242.74 (t) 0.6678 39.80b 80.0 FhG-ISE (11/15) Trina Solar [19]
Si (thin transfer

submodule)
21.2� 0.4 239.7 (ap) 0.687c 38.50c 80.3 NREL (4/14) Solexel (35 μm thick)

[20]
Si (thin film minimodule) 10.5� 0.3 94.0 (ap) 0.492c 29.7c 72.1 FhG-ISE (8/07)e CSG Solar (<2 μm on

glass) [21]

III-V Cells
GaAs (thin film cell) 28.8� 0.9 0.9927 (ap) 1.122 29.68f 86.5 NREL (5/12) Alta Devices [22]
GaAs (multicrystalline) 18.4� 0.5 4.011 (t) 0.994 23.2 79.7 NREL (11/95)d RTI, Ge substrate [23]
InP (crystalline cell) 22.1� 0.7 4.02 (t) 0.878 29.5 85.4 NREL (4/90)d Spire, epitaxial [24]

Thin Film Chalcogenide
CIGS (cell) 21.0� 0.6 0.9927 (ap) 0.757 35.70g 77.6 FhG-ISE (4/14) Solibro, on glass [25]
CIGS (minimodule) 18.7� 0.6 15.892 (da) 0.701c 35.29c 75.6 FhG-ISE (9/13) Solibro, 4 serial cells

[26]
CdTe (cell) 21.0� 0.4 1.0623 (ap) 0.8759 30.25d 79.4 Newport (8/14) First Solar, on glass

[27]
CZTSSe (cell) 9.8� 0.2 1.115 (da) 0.5073 31.95i 60.2 Newport (4/16) IMRA Europe [28]
CZTS (cell) 7.6� 0.1 1.067 (da) 0.6585 20.43i 56.7 NREL (4/16) UNSW [14]

Amorphous/Microcrystalline
Si (amorphous cell) 10.2� 0.3j 1.001 (da) 0.896 16.36d 69.8 AIST (7/14) AIST [29]
Si (microcrystalline cell) 11.8� 0.3k 1.044 (da) 0.548 29.39g 73.1 AIST (10/14) AIST [30]

Perovskite
Perovskite (cell) 19.7� 0.6l 0.9917 (da) 1.104 24.67i 72.3 Newport (3/16) KRICT/UNIST [31]
Perovskite (minimodule) 12.1� 0.6l 36.13 (da) 0.836c 20.20c 71.5 AIST (9/16) SJTU/NIMS, 10 serial

cells [5]

Dye sensitised
Dye (cell) 11.9� 0.4m 1.005 (da) 0.744 22.47m 71.2 AIST (9/12) Sharp [32]
Dye (minimodule) 10.7� 0.4m 26.55 (da) 0.754c 20.19c 69.9 AIST (2/15) Sharp, 7 serial cells

[32]
Dye (submodule) 8.8� 0.3m 398.8 (da) 0.697c 18.42c 68.7 AIST (9/12) Sharp, 26 serial cells

[33]

Organic
Organic (cell) 11.2� 0.3o 0.992 (da) 0.780 19.30d 74.2 AIST (10/15) Toshiba [34]
Organic (minimodule) 9.7� 0.3o 26.14 (da) 0.806 16.47c 73.2 AIST (2/15) Toshiba (8 series cells)

[35]

Any changes in the tables from those previously published [3] are set in bold type. CIGS, CuIn1-yGaySe2; a-Si, amorphous silicon/hydrogen alloy; nc-Si, nano-

crystalline or microcrystalline silicon; CZTSS, Cu2ZnSnS4-ySey; CZTS, Cu2ZnSnS4; (ap), aperture area; (t), total area; (da), designated illumination area; FhG-

ISE, Fraunhofer Institut für Solare Energiesysteme; AIST, Japanese National Institute of Advanced Industrial Science and Technology, NREL, National Re-

newable Energy Laboratory.
aSpectral response and current–voltage curve reported in the present version of these tables.
bSpectral response and current–voltage curve reported in version 47 of these tables.
cReported on a ‘per cell’ basis.
dSpectral responses and current–voltage curve reported in version 45 of these tables.
eRecalibrated from original measurement.
fSpectral response and current–voltage curve reported in version 40 of these tables.
gSpectral response and current–voltage curve reported in version 46 of these tables.
hSpectral response and current–voltage curve reported in version 43 of these tables.
iSpectral response and current–voltage curve reported in version 48 of these tables.
jStabilised by 1000 h exposure to one sun light at 50 °C.
kNot measured at an external laboratory.
lNot stabilised, initial efficiency. Reference [36] reviews the stability of similar devices.
mInitial performance (not stabilised). Reference [37] reviews the stability of similar devices.
nSpectral response and current–voltage curve reported in version 41 of these tables.
oInitial performance (not stabilised). References [38] and [39] review the stability of similar devices.
pSpectral response and/or current–voltage curve reported in version 42 of these tables.
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author). Table I summarises the best-reported measure-
ments for ‘one-sun’ (non-concentrator) single-junction
cells and submodules. Table II is new to the present issue
of these tables and summarises the growing number of cell
and submodule results involving high efficiency, one-sun
multiple-junction devices, with these previously reported
in Table I. Table III shows the best results for one-sun
modules. Table IV contains what might be described as
‘notable exceptions’. While not conforming to the require-
ments to be recognised as a class record, the one-sun cells
and modules in this table have notable characteristics that
will be of interest to sections of the photovoltaic commu-
nity, with entries based on their significance and
timeliness.

To encourage discrimination, Table IV is limited to
nominally 10 entries with the present authors having voted
for their preferences for inclusion. Readers who have sug-
gestions of results for inclusion into this table are welcome
to contact any of the authors with full details. Suggestions
conforming to the guidelines will be included on the voting
list for a future issue.

Table V shows the best results for concentrator cells
and concentrator modules (a smaller number of ‘notable
exceptions’ for concentrator cells and modules additionally
is included in Table V).

Sixteen new results are reported in the present version
of these Tables. The first new result in Table I is a new ef-
ficiency record for a large area (180 cm2 designated illumi-
nation area) silicon solar cell. An efficiency of 26.3% has
been measured by the Fraunhofer Institute for Solar En-
ergy Systems (FhG-ISE) for a cell fabricated by Kaneka

using an amorphous silicon heterojunction interdigitated
back contact approach [4]. Efficiency was a creditable
25.6% on a total area basis.

Table I also reports the first certified results for perov-
skite minimodules. An efficiency of 11.5% was reported
in August for a 16-cm2 four-cell minimodule fabricated
by the University of New South Wales and measured by
the Newport Technology and Applications Center. This
was surpassed in September with an efficiency of 12.1%
reported for a 36-cm2 10-cell minimodule fabricated by
Shanghai Jiao Tong University in conjunction with the
Japanese National Institute of Materials Science [5] with
the module measured by the Japanese National Institute
of Advanced Industrial Science and Technology (AIST).
This is an initial efficiency in both cases, with the stability
of these devices not investigated.

Five new results are reported in the new Table II relat-
ing to one-sun, multijunction devices. The first new result
is for a two-junction (2j), four-terminal GaInP/Si mechan-
ically stacked device with an efficiency of 30.5% measured
for a 1-cm2 device with the GaInP cell fabricated by the
National Renewable Energy Laboratory (NREL) and the
silicon cell by the Swiss Center for Electronics and Micro-
technology, Neuchatel, with the stacked device measured
by NREL [6].

A similar efficiency of 30.2% has been confirmed for a
4-cm2 two-terminal, three-junction, wafer bonded
GaInP/GaAs/Si cell fabricated and measured at FhG-ISE
[7]. Here, the GaInP/GaAs cells have not been directly
grown on the Si but grown inverted on a GaAs substrate
and transferred to the Si bottom cell via wafer bonding.

Table III. Confirmed terrestrial module efficiencies measured under the global AM1.5 spectrum (1000W/m2) at a cell temperature of
25 °C (IEC 60904-3: 2008, ASTM G-173-03 global).

Classification Effic. (%) Area (cm2) Voc (V) Isc (A) FF (%) Test centre (date) Description

Si (crystalline) 24.4� 0.5 13 177 (da) 79.5 5.04a 80.1 AIST (9/16) Kaneka (108 cells) [4]
Si (multicrystalline) 19.9� 0.4 15 143 (ap) 78.87 4.795a 79.5 FhG-ISE (10/16) Trina Solar (120 cells) [10]
GaAs (thin film) 24.1� 1.0 858.5 (ap) 10.89 2.255b 84.2 NREL (11/12) Alta Devices [44]
CdTe (thin-film) 18.6� 0.6 7038.8 (ap) 110.6 1.533c 74.2 NREL (4/15) First Solar, monolithic [45]
CIGS (Cd free) 17.5� 0.5 808 (da) 47.6 0.408d 72.8 AIST (6/14) Solar Frontier (70 cells) [46]
CIGS (large) 15.7� 0.5 9703 (ap) 28.24 7.254e 72.5 NREL (11/10) Miasole [47]
a-Si/nc-Si (tandem) 12.3� 0.3f 14 322 (t) 280.1 0.902g 69.9 ESTI (9/14) TEL Solar, Trubbach Labs [48]
Organic 8.7� 0.3h 802 (da) 17.47 0.569c 70.4 AIST (5/14) Toshiba [35]
Multijunction
InGaP/GaAs/InGaAs 31.2� 1.2 968 (da) 23.95 1.506 83.6 AIST (2/16) Sharp (32 cells) [49]

Any changes in the tables from those previously published [3] are set in bold type. CIGSS, CuInGaSSe; a-Si, amorphous silicon/hydrogen alloy; a-SiGe, amor-

phous silicon/germanium/hydrogen alloy; nc-Si, nanocrystalline or microcrystalline silicon; Effic., efficiency; (t), total area; (ap), aperture area; (da), desig-

nated illumination area; FF, fill factor; FhG-ISE, Fraunhofer Institut für Solare Energiesysteme; AIST, Japanese National Institute of Advanced Industrial

Science and Technology; NREL, National Renewable Energy Laboratory; ESTI, European Solar Test Installation. aSpectral response and/or current–voltage

curve reported in the present version of these tables.
bSpectral response and current–voltage curve reported in version 41 of these tables.
cSpectral response and/or current–voltage curve reported in version 48 of these tables.
dSpectral response and/or current–voltage curve reported in version 45 of these tables.
eSpectral response reported in version 37 of these tables.
fStabilised at the manufacturer to the 2% level following IEC procedure of repeated measurements.
gSpectral response and/or current–voltage curve reported in version 46 of these tables.
hInitial performance (not stabilised).
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An efficiency of 19.7% also has been confirmed for a 4-
cm2 monolithic GaInP/GaAs/Si cell again fabricated and
measured at FhG-ISE, with the GaInP/GaAs cells directly
grown on the Si.

The fourth new result in Table II is for a 1-cm2, 23.6%
efficient monolithic perovskite-on-silicon tandem cell fab-
ricated by combining an infrared-tuned silicon
heterojunction bottom cell developed at Arizona State Uni-
versity with a Cs0.17FA0.83Pb(Br0.17I0.83)3 perovskite top
cell deposited at Stanford University with the final device
measured at NREL [8]. Finally, 14.0% efficiency for a 1-
cm2 thin-film a-Si/nc-Si/nc-Si triple junction cell fabricated
and measured at AIST is reported [9].

Two significant new module results are reported in
Table III. Following the battle for supremacy for a large
area crystalline-Si module reported in the previous ver-
sions of these tables [3], two groups reported confirmed
large-area module efficiencies above 24% during the
reporting period. First, SunPower reported an efficiency
of 24.1% in June exceeded by Kaneka in September
with an aperture area efficiency of 24.4% reported for

a 1.3-m2 interdigitated back contact module measured
by AIST [4].

Figure 1. (a) Normalised external quantum efficiency (EQE) for
the new silicon cell and module results reported in this issue
and (b) corresponding current density–voltage (JV) curves for
the same devices. FhG-ISES, Fraunhofer-Institut für Solare

Energiesysteme.

Figure 2. (a) External quantum efficiency (EQE) for the new
two-junction multijunction cell results reported in this issue; (b)
external quantum efficiency (EQE) for the new three-junction
multijunction cell results reported in this issue (mixed normal-
ised and absolute results); and (c) corresponding current den-
sity–voltage (JV) curves. AIST, Japanese National Institute of
Advanced Industrial Science and Technology; CSEM, Swiss
Center for Electronics and Microtechnology; FhG-ISE, Fraunho-
fer-Institut für Solare Energiesysteme; NREL, National Renew-

able Energy Laboratory.
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An increase to 19.9% aperture area efficiency is also re-
ported for a larger (1.5m2) multicrystalline module fabri-
cated by Trina Solar [10] and measured at the FhG-ISE.
This module included a number of advanced cell and mod-
ule technologies, including half-cell, high-performance
multi-crystalline silicon wafers with a high minority carrier
lifetime, high-efficiency passivated emitter and rear cell
technology and highly efficient light trapping.

Five new results are reported as ‘notable exceptions’ in
Table IV. An efficiency of 25.3% has been confirmed for a
4-cm2 n-type silicon cell with both top and rear contacts,
fabricated and measured at FhG-ISE, a record for a cell
with this traditional type of contacting [11]. The efficiency
of a wide bandgap GaInP cell has been increased to 21.4%
for a small area (0.25 cm2) cell fabricated by LG Electron-
ics and measured at NREL [12]. Yet another increase in
CIGS (CuIn1-xGaxSe2) cell efficiency to 22.6% is reported
for a small area (0.4 cm2) cell fabricated by Zentrum für

Sonnenenergie- und Wasserstoff-Forschung Baden-
Württemberg and measured at FhG-ISE [13]. For a Cd-free
CIGSS device of similar area, efficiency was increased to
22.0% for a cell fabricated by Solar Frontier and also mea-
sured at FhG-ISE. Finally, an efficiency of 9.5% has also
been measured for a small (0.24 cm2) pure sulfide CZTS
(Cu2ZnSnS4) cell fabricated by the University of New
South Wales and measured at Newport [14]. For the previ-
ous four cells, cell area is too small for classification as an
outright record. Solar cell efficiency targets in governmen-
tal research programmes generally have been specified in
terms of a cell area of 1 cm2 or larger [15–17].

Two new concentrator cell results are reported in
Table V. The first is improvement in efficiency to 29.3%
for a small area (0.09 cm2) cell fabricated by LG Electron-
ics and measured at NREL. The final new result in Table V
is a new efficiency level of 34.2% for a small area
(0.05 cm2), two-junction GaInP/GaInAs concentrator cell
fabricated and measured by FhG-ISE [18], slightly higher
in measured efficiency than a similar device fabricated
and measured at NREL in 2014.

The EQE spectra for the new silicon cell and module re-
sults reported in the present issue of these Tables are
shown in Figure 1(a). Figure 1(b) shows the current
density–voltage (JV) curves for the same devices.
Figure 2(a) and (b) shows the EQE for the new two-
junction and three-junction multijunction cell results, re-
spectively with Figure 2(c) showing their current
density–voltage (JV) curves. Figure 3(a) and (b) shows
the corresponding EQE and JV curves for the new perov-
skite minimodule, together with the new GaInP, CIGS,
CZTS and GaAs concentrator cell results.

For the case of modules, the measured current–voltage
data have been reported on a ‘per cell’ basis (measured
voltage has been divided by the known or estimated num-
ber of cells in series, while measured current has been mul-
tiplied by this quantity and divided by the module area).

3. DISCLAIMER

While the information provided in the tables is provided in
good faith, the authors, editors and publishers cannot
accept direct responsibility for any errors or omissions.
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