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Motivation

* The dynamics in physical joints is still mostly unknown; However,
joints have a great influence on the energy dissipation and vibration
characteristics of structures.

* Great effort has been put into creating models which capture the
dynamic behavior in joints accurately.

* The scope of this project within the summer research institute is to
deduce parameters for those models from experimental results and
to quantify the uncertainty.

* The system used is the Brake-Reul} beam, which contains a lap joint
fixed together by three bolts.

* Friction models that are investigated: Coulomb friction, Jenkins
element, and Iwan friction model.



Coulomb Friction

* Parameters: U

* The coulomb friction model describes the K 9)
relation between tangential force and the _’ F_
applied normal force as a function of
displacement. .&1;7

e 1 may have different values for static and / /
dynamic friction.

Fr=pkFy

* Assumptions: Amontons’ friction laws and
Coulomb’s friction law



Jenkins Element

e Parameters: k, u x(t, §) i
* @ is the maximum distance the spring :’\/\/
can elongate without the slider slipping. L
* For a force equal to ufFy, the coulomb / 7 7
element will slip.
 Located at a single point. F (o) = {k x(t, p) Stick
* Fundamental element for Iwan and HEN Slip

other friction models.

e Assumptions: Coulomb Friction, Linear
spring



lwan Element w

* The Iwan model is a parallel connection of
multiple Jenkins elements with different slip
thresholds.

e Distribution of sliders given by:

/)((/)) =R W[H((jS) o H(¢ o ¢1n;1x)]+‘9(5(¢ . ¢mnx)

Converted to physical
parameters

R,y ¢, .S WP (K. P
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* Parameters:

F;: Force where macroslip first occurs _
K;: Interface stiffness F() = fo p ()klx(t) — (¢, $)|d
X: Power law exponent

B: Mathematical correction factor



Experimental Setup

M° Test Parameters:

% < Beam Interface Finish (Rough -> Mirror)

* Bolt Torque (3, 5, 7, 10, 15 N-m)

* Impact Level (100, 1000, 2000, 4000, >8000 N)

* 4 total bungee loops used to hold beam in
place, while also simulating free-free
boundary conditions.
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Beam 5 at Varied Applied Load Beam 5 at Varied Applied Load Beam 5 at Varied Applied Load

T T T T ] T T T T T T
100 N 100 N
1000 N
2000 N
10" ¢ ] 1o’
10"
5 3
2 2
> >
= 0 =
5 10 S
£ E . 0
< <C 10
10"
101 | E
100 110 120 130 140 150 160 170 180 190 200 190 200 210 220 230 240 250 550 560 570 580 590 600 610 620 630 640
Frequency [Hz] Frequency [Hz] Frequency [Hz]

Mode 1 Mode 2 Mode 3



Amplitute [g/N]

FRF for Varying Torque Level
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Deducing lwan Parameters

Hilbert Transform of time history
* Get frequency, damping, and velocity amplitudes

Choose linear fit of damping vs. velocity amplitude - Slope = x
* Also obtain standard error of

Determine Kt by difference in linear frequency and macroslip saturation frequency (using
frequency vs. velocity amplitude plot)

Determine @by choosing half the difference between linear and macroslip frequencies and
obtaining velocity at that point, then transferring into displacement by dividing by w

Assume a distribution for

Use sampling methods to determine distribution of F using all other parameters found
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Natural Frequency w, [Hz]

Hilbert Transform of Data
(Forcing Level > 8000 N)

155

Damping Ratio ¢

(

150 - @ﬁ&@ﬁw\ / : : /_
145 BN -910_2% o e
\\ W e ﬁ R

140 \
(L]
\ 103
135 v [
J) |
-2 107" 1

130

107 107 10 0° 107 107 1o
10° 10 10

Amplitute Amplitute



Probability

lwan Parameter Distributions
(Beam 1,Torque 15 N-m, Mode 1)
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Plasticity Effect #1

* Problem: Permanent change in fundamental frequency of beam 4

* Tests: New bolts; took out middle bolt; Mixed beams 3 and 4

* Results: All attempts showed same results, can conclude that beam 4 has permanent deformation at

the interface and is no longer valid for comparison w
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Plasticity Effect

2

* Problem: As bolt tightness was increased, the fundamental frequency was decreasing
(counterintuitive as tighter bolts create stiffer interface)

* Test: Tested beams 1:5 (we only used 3 and 4 previously)

* Results: Only 3 and 4 decrease. 1, 2, and 5 increase as expected

—(3,5,7,10 Nm)

Increasing Bolt Torque

Increasing Bolt
Torque
(3,5,7,10 Nm)

Beam 5



Plasticity Effect #3

* Problem: As beams go from rough to smooth, the fundamental frequency was decreasing

* Test: Tested beams 1:5 (we were comparing 1 with 4 previously)

* Results: Rough beams have fundamental frequency ~178 Hz and smooth beams have fundamental

frequency ~184 Hz (Disregarding beams 3 and 4)
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