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Motivation
• The dynamics in physical joints is still mostly unknown; However, 

joints have a great influence on the energy dissipation and vibration 
characteristics of structures. 

• Great effort has been put into creating models which capture the 
dynamic behavior in joints accurately. 

• The scope of this project within the summer research institute is to 
deduce parameters for those models from experimental results and 
to quantify the uncertainty. 

• The system used is the Brake-Reuß beam, which contains a lap joint 
fixed together by three bolts. 

• Friction models that are investigated: Coulomb friction, Jenkins 
element, and Iwan friction model.



• Parameters: μ

• The coulomb friction model describes the 
relation between tangential force and the 
applied normal force as a function of 
displacement.

• μ may have different values for static and 
dynamic friction.

• Assumptions: Amontons’ friction laws and 
Coulomb’s friction law

Coulomb Friction
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• Parameters:  �	, �

• � is the maximum distance the spring 
can elongate without the slider slipping.

• For a force equal to  ���, the coulomb 
element will slip.

• Located at a single point.

• Fundamental element for Iwan and 
other friction models.

• Assumptions: Coulomb Friction, Linear 
spring

Jenkins Element
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• The Iwan model is a parallel connection of 
multiple Jenkins elements with different slip 
thresholds.

• Distribution of sliders given by:

• Parameters:

��: Force where macroslip first occurs

��: Interface stiffness

χ: Power law exponent

β: Mathematical correction factor

Iwan Element
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Experimental Setup

• Test Parameters:
• Beam Interface Finish (Rough -> Mirror)

• Bolt Torque (3, 5, 7, 10, 15 N-m)

• Impact Level (100, 1000, 2000, 4000, >8000 N)

• 4 total bungee loops used to hold beam in 
place, while also simulating free-free 
boundary conditions.



FRF for Varying Load Level
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FRF for Varying Torque Level
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Deducing Iwan Parameters

• Hilbert Transform of time history
• Get frequency, damping, and velocity amplitudes

• Choose linear fit of damping vs. velocity amplitude - Slope = χ
• Also obtain standard error of χ

• Determine Kt by difference in linear frequency and macroslip saturation frequency (using 
frequency vs. velocity amplitude plot)

• Determine           by choosing half the difference between linear and macroslip frequencies and 
obtaining velocity at that point, then transferring into displacement by dividing by ω

• Assume a distribution for β

• Use sampling methods to determine distribution of �� using all other parameters found

max



Frequency vs. Amplitude Damping Ratio vs. Amplitude



Hilbert Transform of Data 
(Forcing Level > 8000 N)
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Iwan Parameter Distributions
(Beam 1,Torque 15 N-m, Mode 1)
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Assumed Beta
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Plasticity Effect #1
• Problem: Permanent change in fundamental frequency of beam 4

• Tests: New bolts; took out middle bolt; Mixed beams 3 and 4

• Results: All attempts showed same results, can conclude that beam 4 has permanent deformation at 
the interface and is no longer valid for comparison

Beam 4 (left)
Beam 3 (right)



Plasticity Effect #2
• Problem: As bolt tightness was increased, the fundamental frequency was decreasing 

(counterintuitive as tighter bolts create stiffer interface)

• Test: Tested beams 1:5 (we only used 3 and 4 previously)

• Results: Only 3 and 4 decrease. 1, 2, and 5 increase as expected
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Plasticity Effect #3
• Problem: As beams go from rough to smooth, the fundamental frequency was decreasing

• Test: Tested beams 1:5 (we were comparing 1 with 4 previously)

• Results: Rough beams have fundamental frequency ~178 Hz and smooth beams have fundamental 
frequency ~184 Hz (Disregarding beams 3 and 4)
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