

Calibration and Forward Uncertainty Propagation of Turbulence Models for Coarse-Grid Large-Eddy Simulation

Jeremy Templeton

Thermal/Fluid Sciences & Engineering Department
Sandia National Laboratories

US National Congress on Computational Mechanics

July 27, 2015

Interdisciplinary Team

Myra Blaylock
CFD

Stefan Domino
Algorithms

John Hewson
Combustion Models

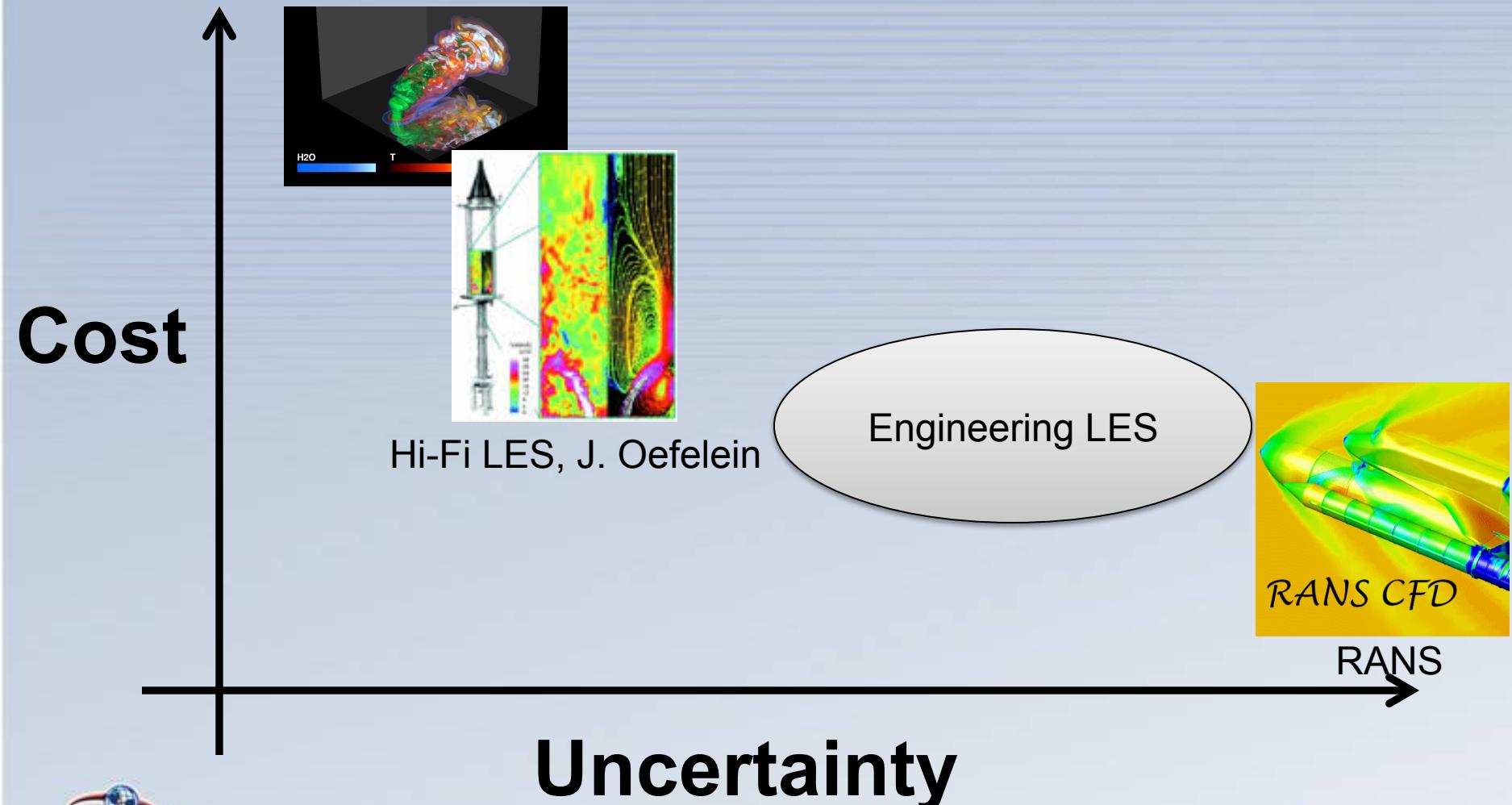
Raj Kumar
Infrastructure

Cosmin Safta
UQ/Calibration

Habib Najm
UQ Methods

Khachik Sargsyan
UQ Methods

How/Can High Fidelity Simulations to Enable Engineering LES?



Calibrate Subgrid-Scale Kinetic Energy (k^{sgs}) One-Equation LES Model

Transport Model:

$$\int \frac{\partial \bar{\rho} k^{sgs}}{\partial t} dv + \int \bar{\rho} k^{sgs} \alpha_j n_j dS = \int \frac{\mu_t}{\sigma_1} \frac{\partial k^{sgs}}{\partial x_j} n_j dS + \int (P_k^{sgs} - D_k^{sgs}) dv$$

Production: $P_k^{sgs} = \left[2\mu_t \left(\tilde{S}_{ij} - \frac{1}{3} \tilde{S}_{kk} \delta_{ij} \right) - \frac{2}{3} \bar{\rho} k^{sgs} \delta_{ij} \right] \frac{\partial \tilde{u}_i}{\partial x_j}$

$$\mu_t = C_{\mu_t} \Delta \sqrt{k^{sgs}}$$

Dissipation: $D_k^{sgs} = C_\epsilon \frac{\sqrt{(k^{sgs})^3}}{\Delta}$

$$f_k(t; \Delta) = C_{\mu_t} f_P(t; \Delta) - C_\epsilon f_D(t; \Delta)$$

Calibrate: C_ϵ and C_{μ_t} Safta *et al.*, submitted

Bayesian Calibration

Bayes formula:

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

likelihood

prior

posterior

evidence

$\theta = \{C_{\mu\epsilon}, C_\epsilon\}$

- Data D based on DNS of Isotropic Turbulence
- Model parameters θ are the k^{sgs} model constants: C_ϵ & $C_{\mu\epsilon}$
- The likelihood $P(D|\theta)$ is the probability of observing D given θ . If C_ϵ & $C_{\mu\epsilon}$ values are right, what are the chances of seeing D .
- The prior distribution $P(\theta)$ is the belief of what θ should be. Gaussians centered around the current nominal values for θ .
- The posterior distribution $P(\theta|D)$ is the probability that θ is correct after taking into account D .

Bayesian Calibration: Data

Bayes formula:

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

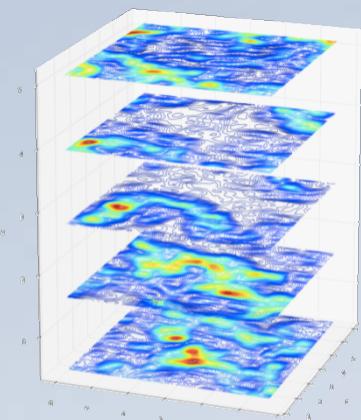
Diagram labels: likelihood (above the top arrow), prior (above the top right arrow), evidence (below the bottom right arrow), and posterior (below the bottom left arrow).

- **Data D** based on DNS of Isotropic Turbulence
- Model parameters θ are the k^{sgs} model constants: C_ϵ & $C_{\mu\epsilon}$
- The likelihood $P(D|\theta)$ is the likeliness of observing D given θ . If C_ϵ & $C_{\mu\epsilon}$ values are right, what are the chances of seeing D .
- The prior distribution $P(\theta)$ is the belief of what θ should be. MVN with diagonal covariance, centered around the current nominal values for θ .
- The posterior distribution $P(\theta|D)$ is the probability that θ is correct after taking into account D .

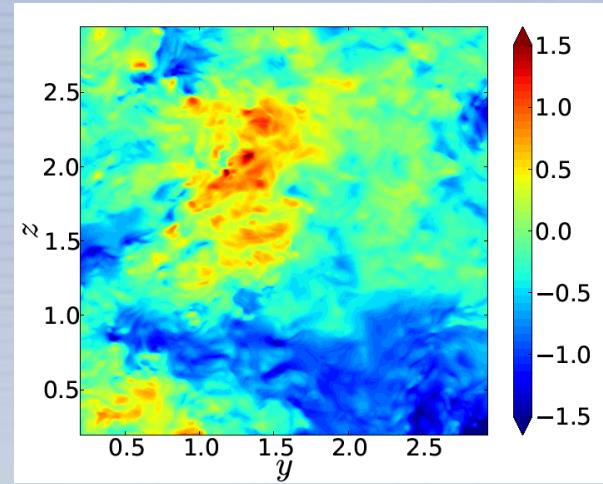
Data is Filtered DNS to LES scale

3 Filter sizes:

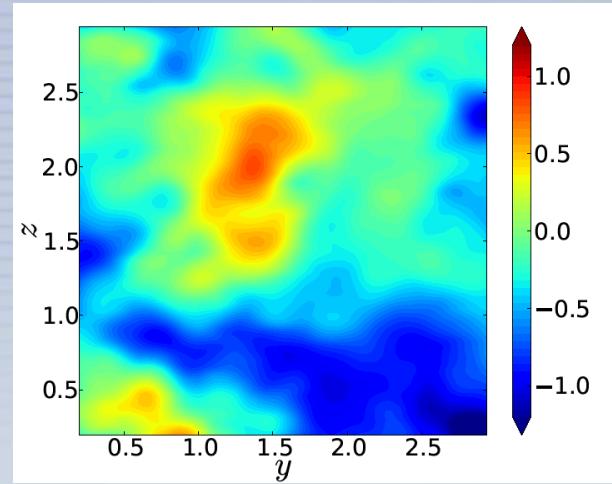
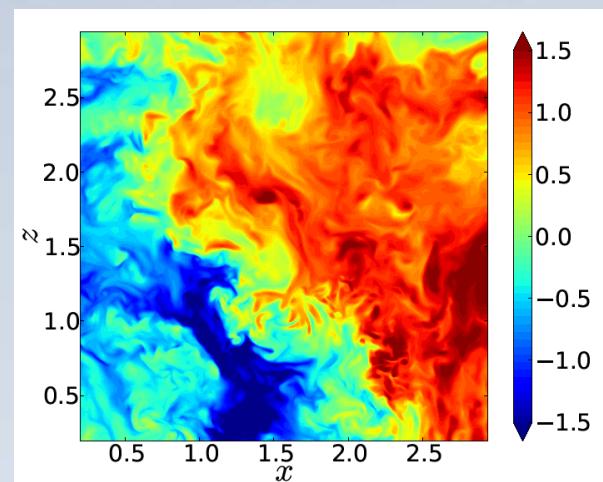
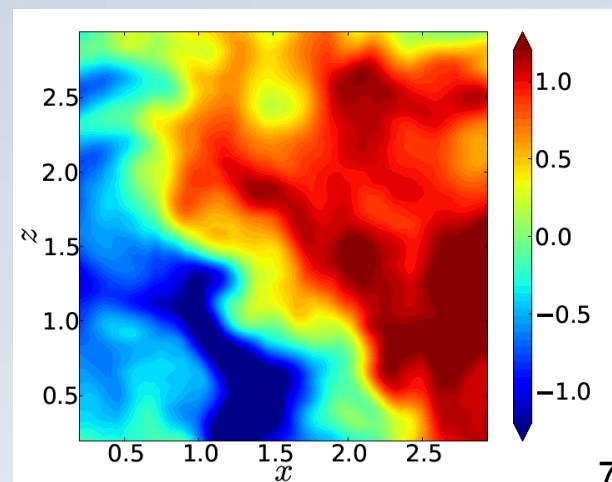
- $\Delta = L/64$
- $\Delta = L/32$
- $\Delta = L/16$



DNS



$\Delta = L/32$



Bayesian Calibration: Likelihood

Bayes formula:

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Diagram illustrating the Bayes formula:

- likelihood** (circled in red) is labeled above $P(D|\theta)$.
- prior** is labeled above $P(\theta)$.
- posterior** is labeled below $P(\theta|D)$.
- evidence** is labeled below $P(D)$.

- Data D based on DNS of Isotropic Turbulence
- Model parameters θ are the k^{sgs} model constants: C_ϵ & $C_{\mu\epsilon}$
- The **likelihood** $P(D|\theta)$ is the likeliness of observing D given θ . If C_ϵ & $C_{\mu\epsilon}$ values are right, what are the chances of seeing D .
- The prior distribution $P(\theta)$ is the belief of what θ should be. MVN with diagonal covariance, centered around the current nominal values for θ .
- The posterior distribution $P(\theta|D)$ is the probability that θ is correct after taking into account D .

PEM Likelihood Function

- Presumed Error (Classical) Model (PEM)

$$f_k(t; \Delta) = C_{\mu_\epsilon} f_P(t; \Delta) - C_\epsilon f_D(t; \Delta) + \epsilon_m + \epsilon_d.$$

$$L_{\mathcal{D}}(\theta) = \prod_{i=1}^{N_t} \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{(f_{k,i} - C_{\mu_\epsilon} f_{P,i} + C_\epsilon f_{D,i})^2}{2\sigma_i^2}\right)$$

Bayesian Calibration: Prior

Bayes formula:

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Diagram illustrating the Bayes formula:

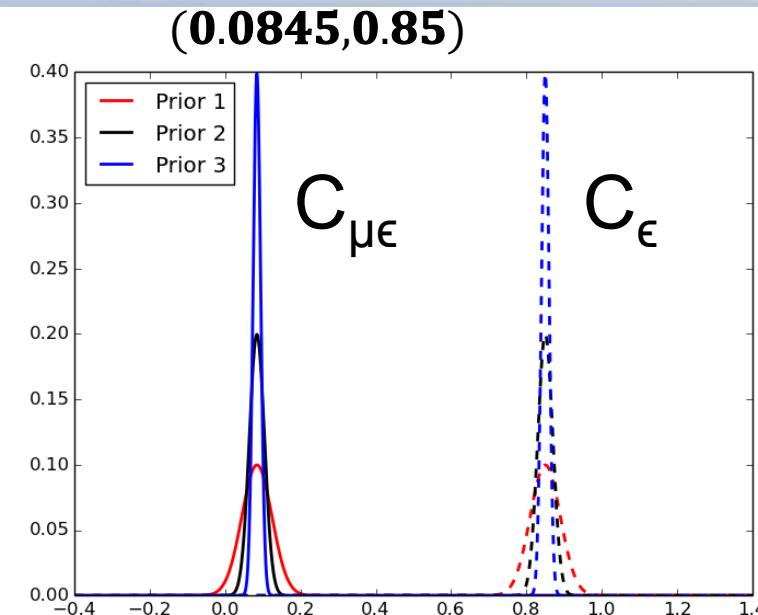
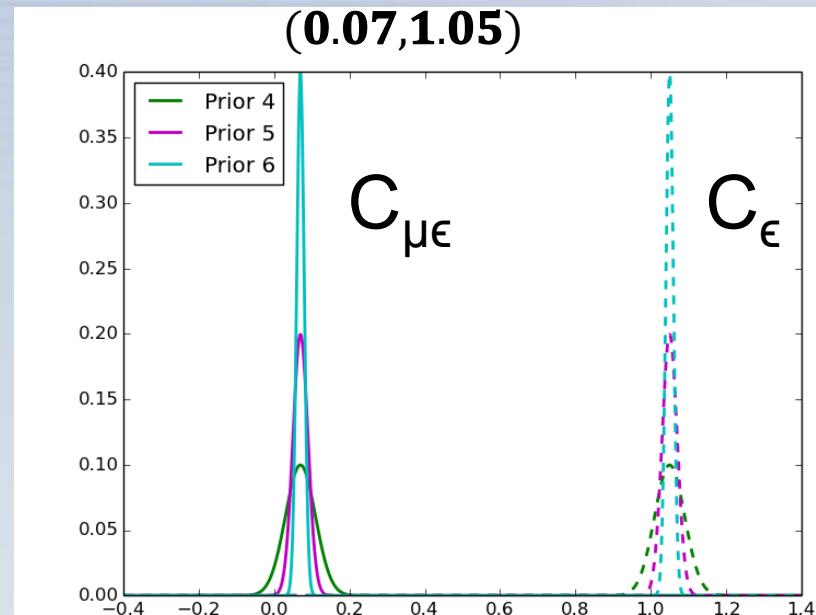
- posterior** (left): The result of the formula, representing the updated probability of the parameters given the data.
- likelihood** (top): The term $P(D|\theta)$ representing the probability of the data given the parameters.
- prior** (right): The term $P(\theta)$ representing the initial belief about the parameters before seeing the data.
- evidence** (bottom right): The term $P(D)$ representing the total probability of the data, which is the normalizing constant.

- Data D based on DNS of Isotropic Turbulence
- Model parameters θ are the k^{sgs} model constants: C_ϵ & $C_{\mu\epsilon}$
- The likelihood $P(D|\theta)$ is the likeliness of observing D given θ . If C_ϵ & $C_{\mu\epsilon}$ values are right, what are the chances of seeing D .
- The **prior distribution** $P(\theta)$ is the belief of what θ should be. MVN with diagonal covariance, centered around the current nominal values for θ .
- The posterior distribution $P(\theta|D)$ is the probability that θ is correct after taking into account D .

Priors Chosen From Literature

- **Centered at values from the literature ($C_{\mu\epsilon}$, C_ϵ)**
(0.0845,0.85) (0.07,1.05)
- **Range of Marginal Standard Deviations**

$$\sigma_1^{pr} = (0.04, 0.4), \sigma_2^{pr} = (0.02, 0.2), \sigma_3^{pr} = (0.01, 0.1)$$



Bayesian Calibration: Posterior

Bayes formula:

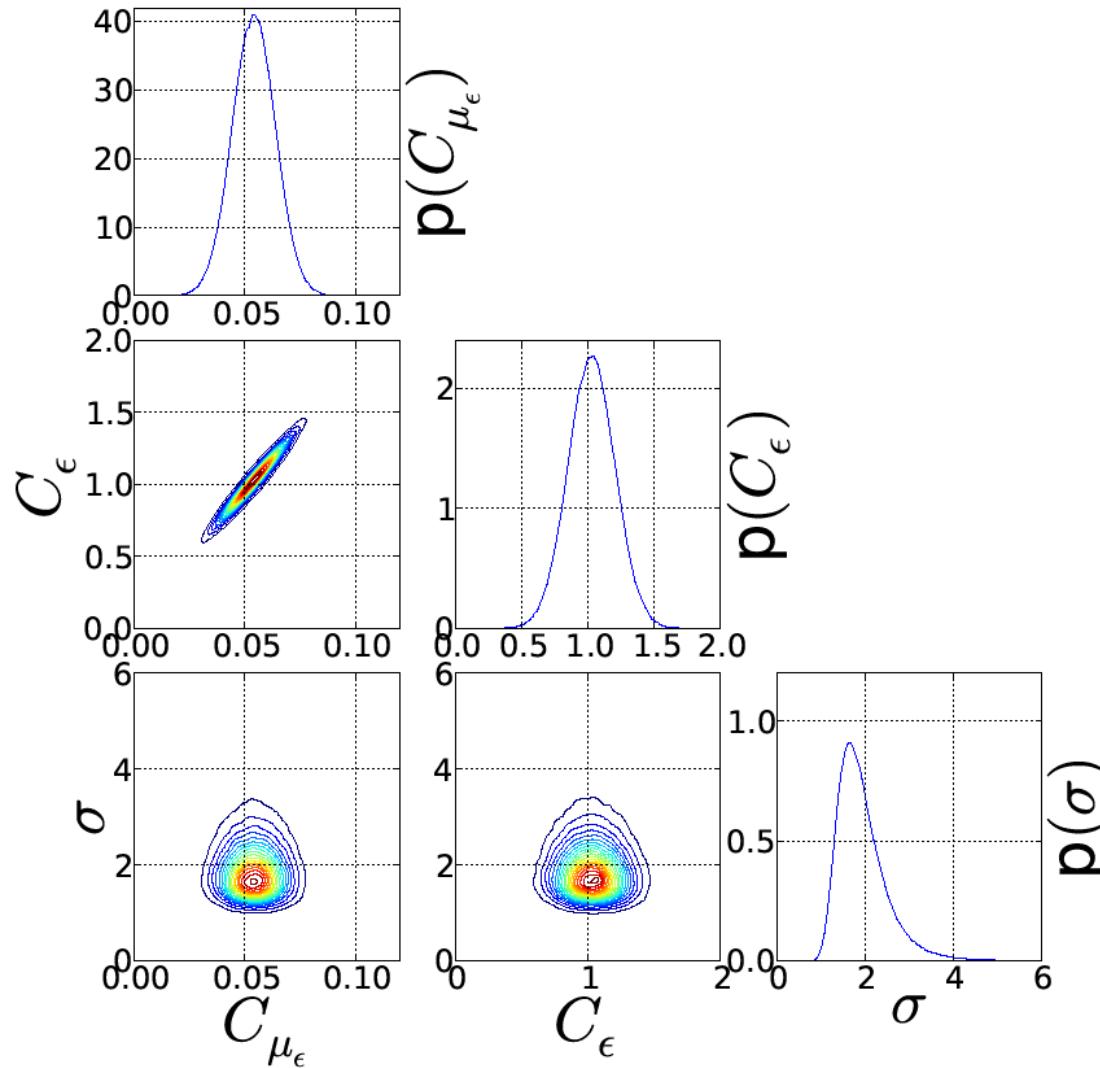
$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Diagram illustrating the Bayes formula:

- posterior** (circled in red) is the result of the formula.
- likelihood** is represented by the term $P(D|\theta)$.
- prior** is represented by the term $P(\theta)$.
- evidence** is represented by the term $P(D)$.

- Data D based on DNS of Isotropic Turbulence
- Model parameters θ are the k^{sgs} model constants: C_ϵ & $C_{\mu\epsilon}$
- The likelihood $P(D|\theta)$ is the likeliness of observing D given θ . If C_ϵ & $C_{\mu\epsilon}$ values are right, what are the chances of seeing D .
- The prior distribution $P(\theta)$ is the belief of what θ should be. MVN with diagonal covariance, centered around the current nominal values for θ .
- The **posterior distribution** $P(\theta|D)$ is the probability that θ is correct after taking into account D .

C_ϵ and $C_{\mu\epsilon}$ are Highly Correlated



Filter:

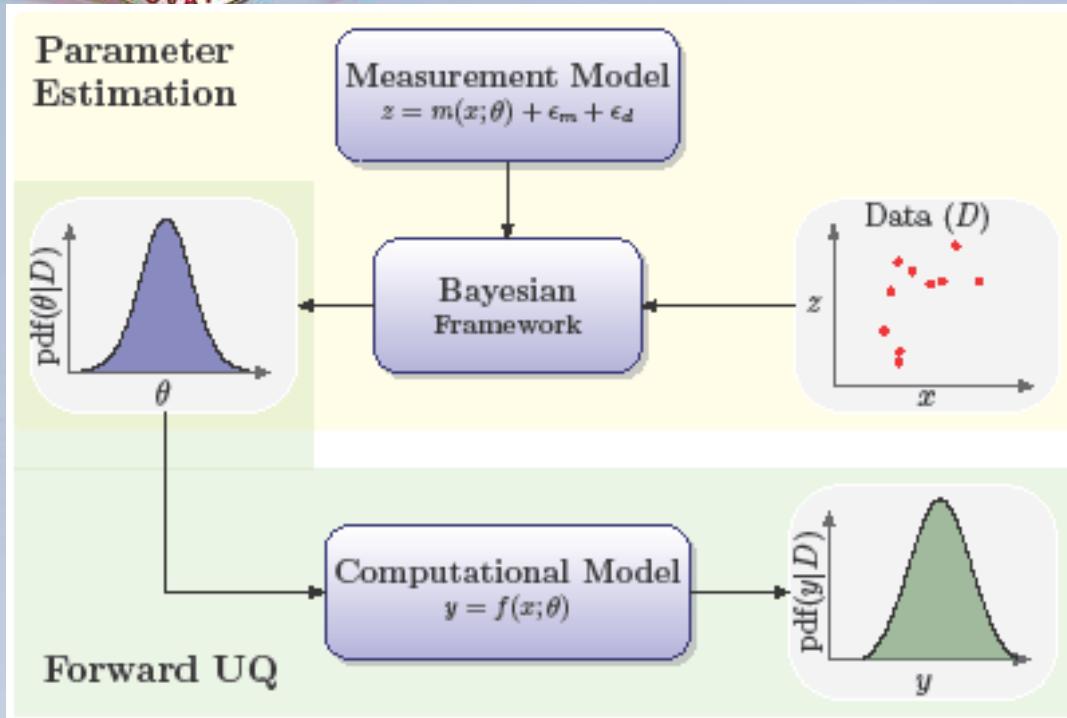
- $\Delta = L/16$

Prior:

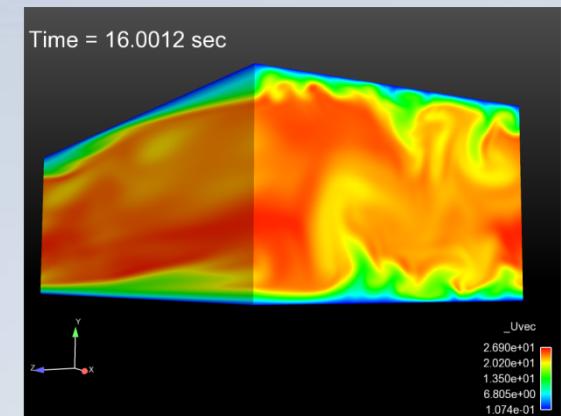
- $(0.0845, 0.85)$
- $\sigma = (0.01, 0.1)$

Forward UQ Uses PC Expansion

Parameter Estimation



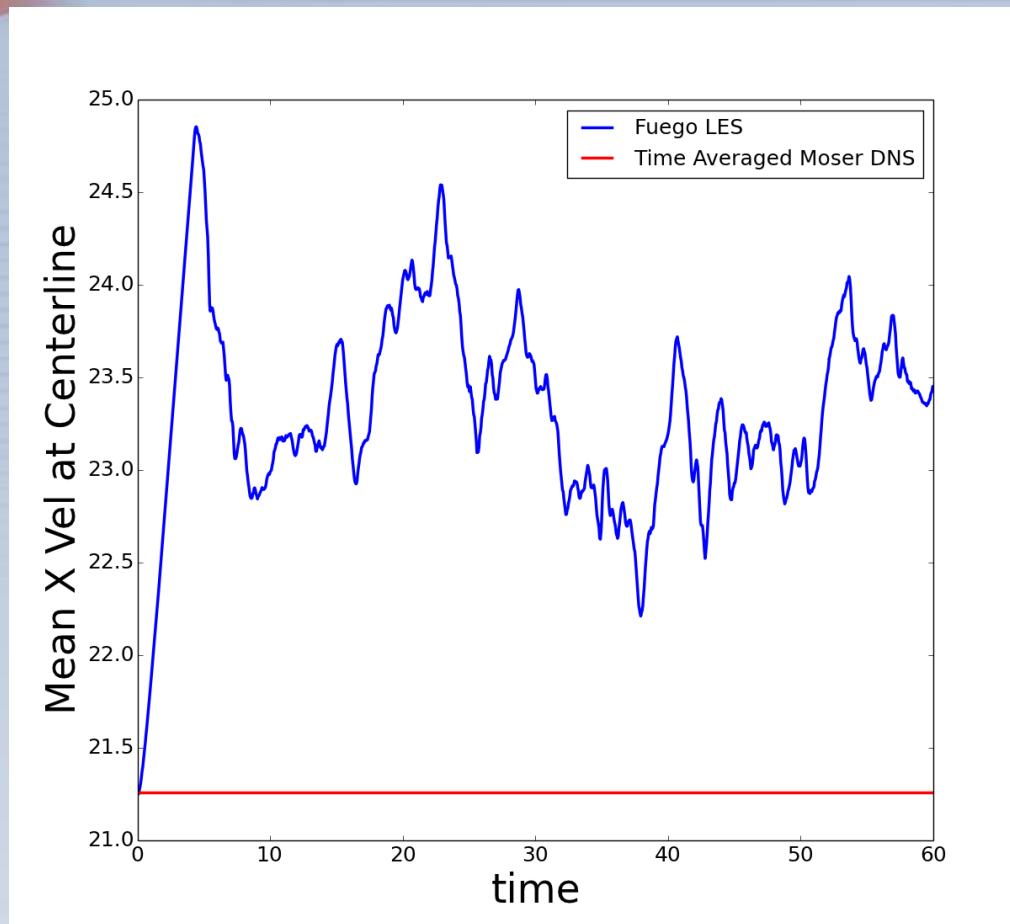
- y – quantity of interest: mean x velocity, rms, m
- Modeled by Polynomial Chaos Expansion



$$y(\theta(\xi)) \approx \sum_{k=0}^{N_t} c_k \Psi_k(\xi_1, \xi_2, \dots, \xi_n)$$

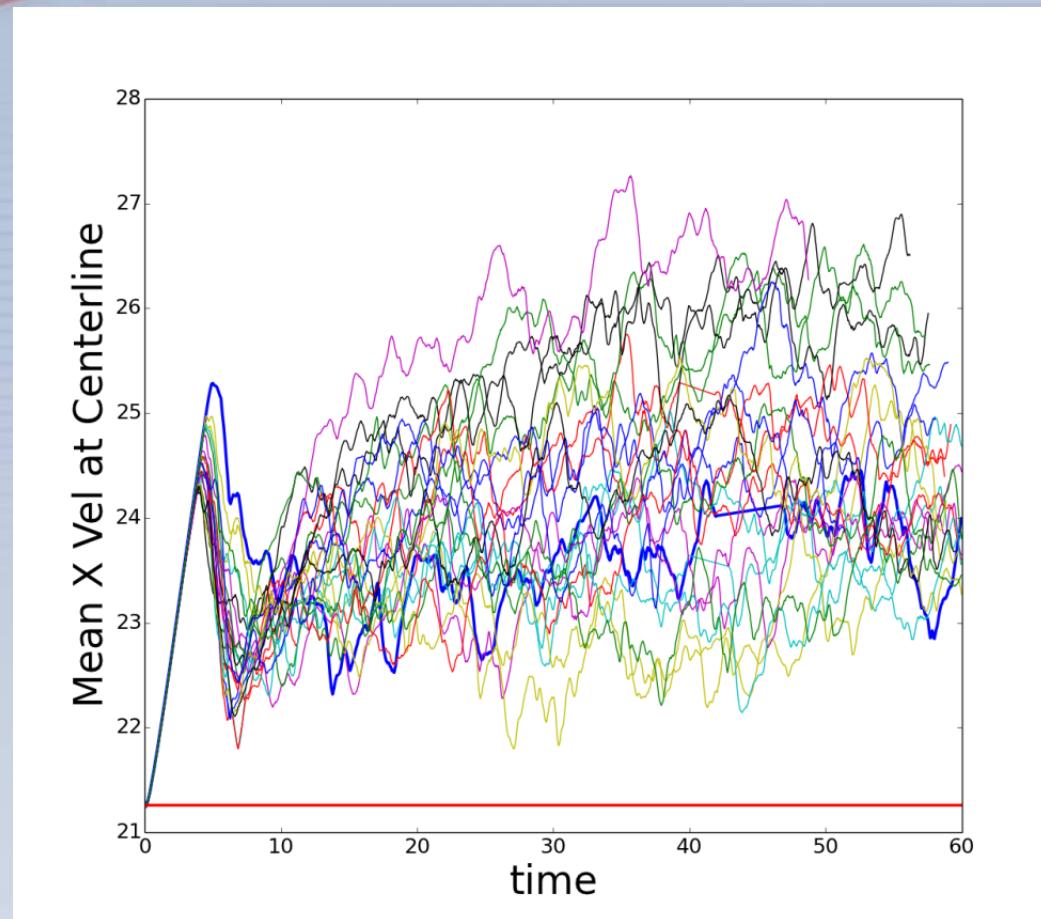
$$c_k = \frac{\langle y \Psi_k \rangle}{\langle \Psi_k^2 \rangle}$$

Average Velocity at the Centerline



Moser DNS time averaged value: 21.26
• 15% off

Average Velocity at the Centerline



Moser DNS time averaged value: 21.26

- 15% off

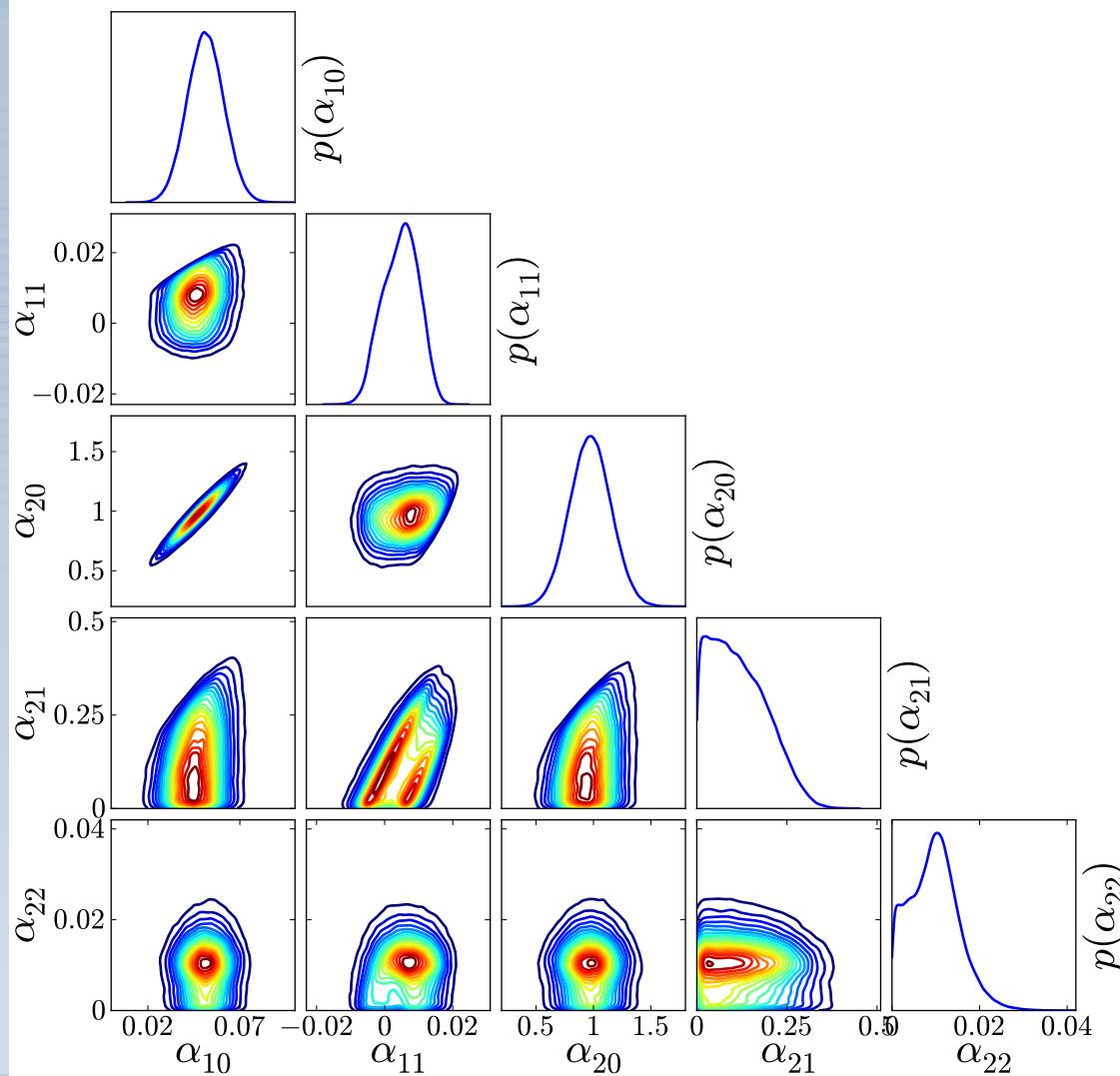
EEM Likelihood Function

- **Embedded Error Model (EEM)**
 - (Sargsyan, Najm, Ghanem - 2014)

$$C_{\mu_\epsilon} = \alpha_{10} + \alpha_{11}\xi_1$$

$$C_\epsilon = \alpha_{20} + \alpha_{21}\xi_1 + \alpha_{22}\xi_2$$

EEM Still Recovers Production to Dissipation Ratio



Filter:

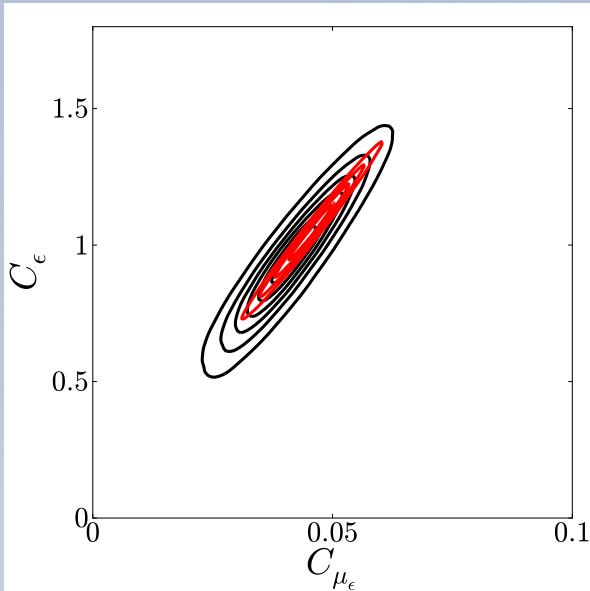
- $\Delta = L/16$

Prior:

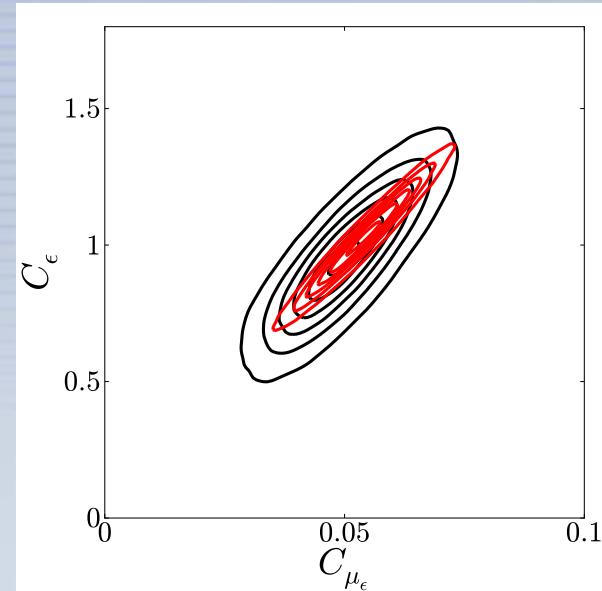
- $(0.0845, 0.85)$
- $\sigma = (0.01, 0.1)$

EEM Approach Results in Greater Model Uncertainty

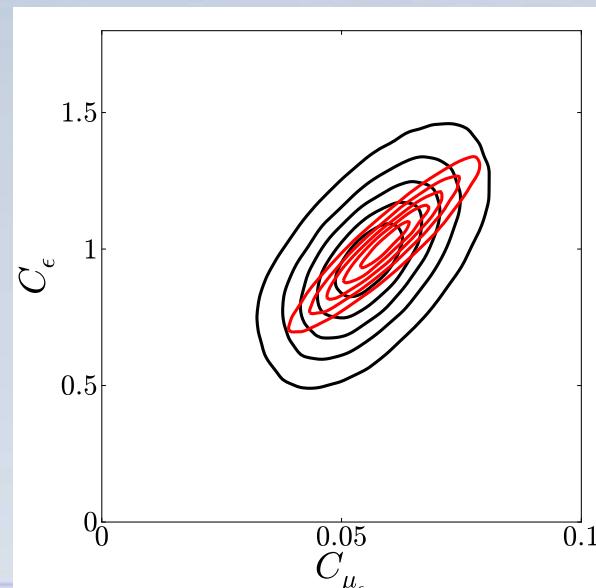
Small Prior Uncertainty



Medium Prior Uncertainty

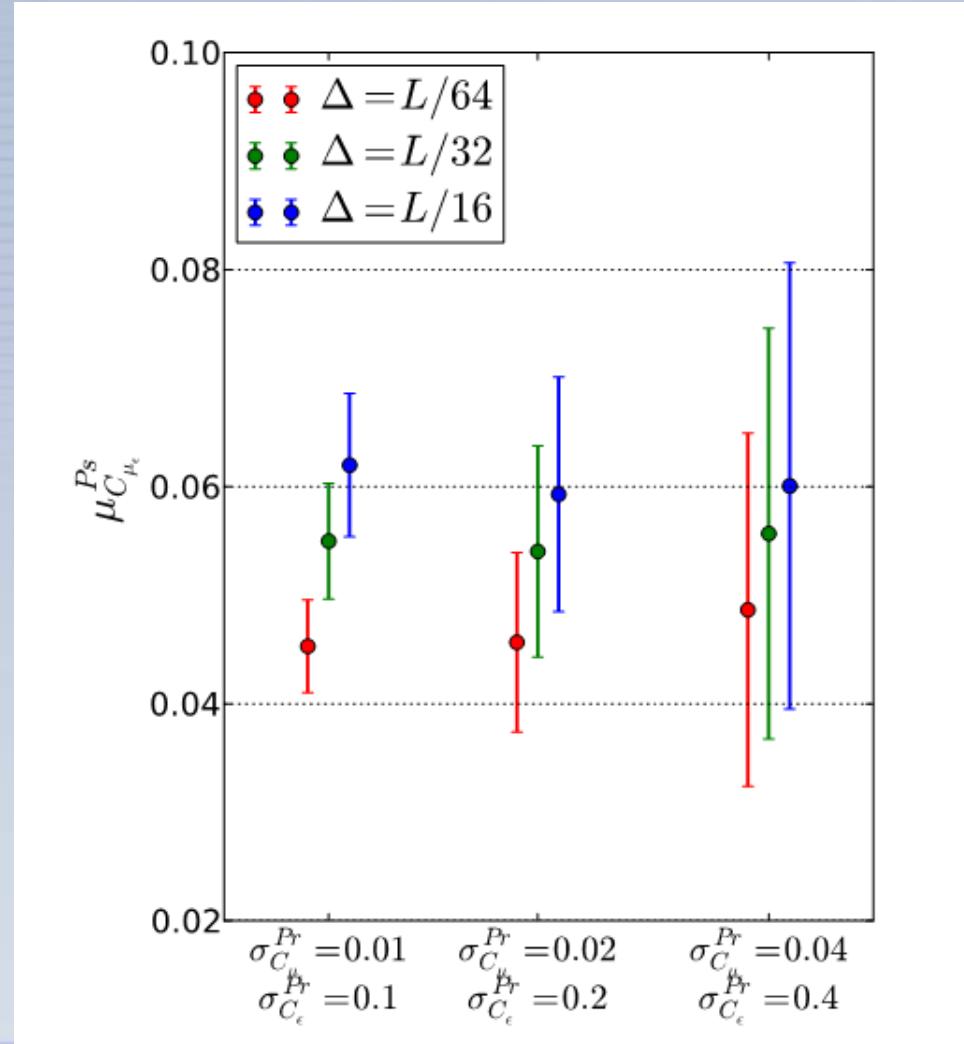


High Prior Uncertainty

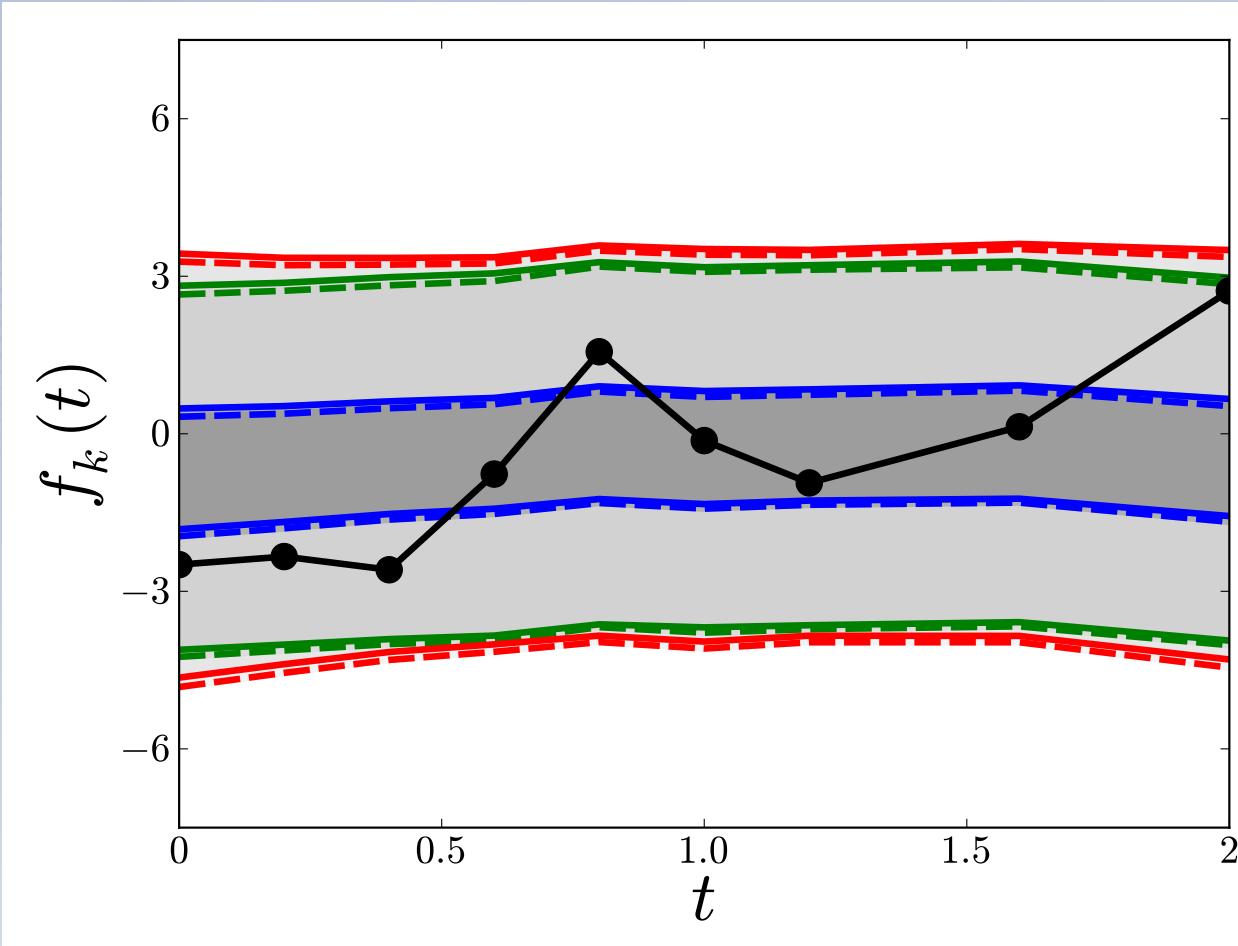


Results are Insensitive to Prior Uncertainty

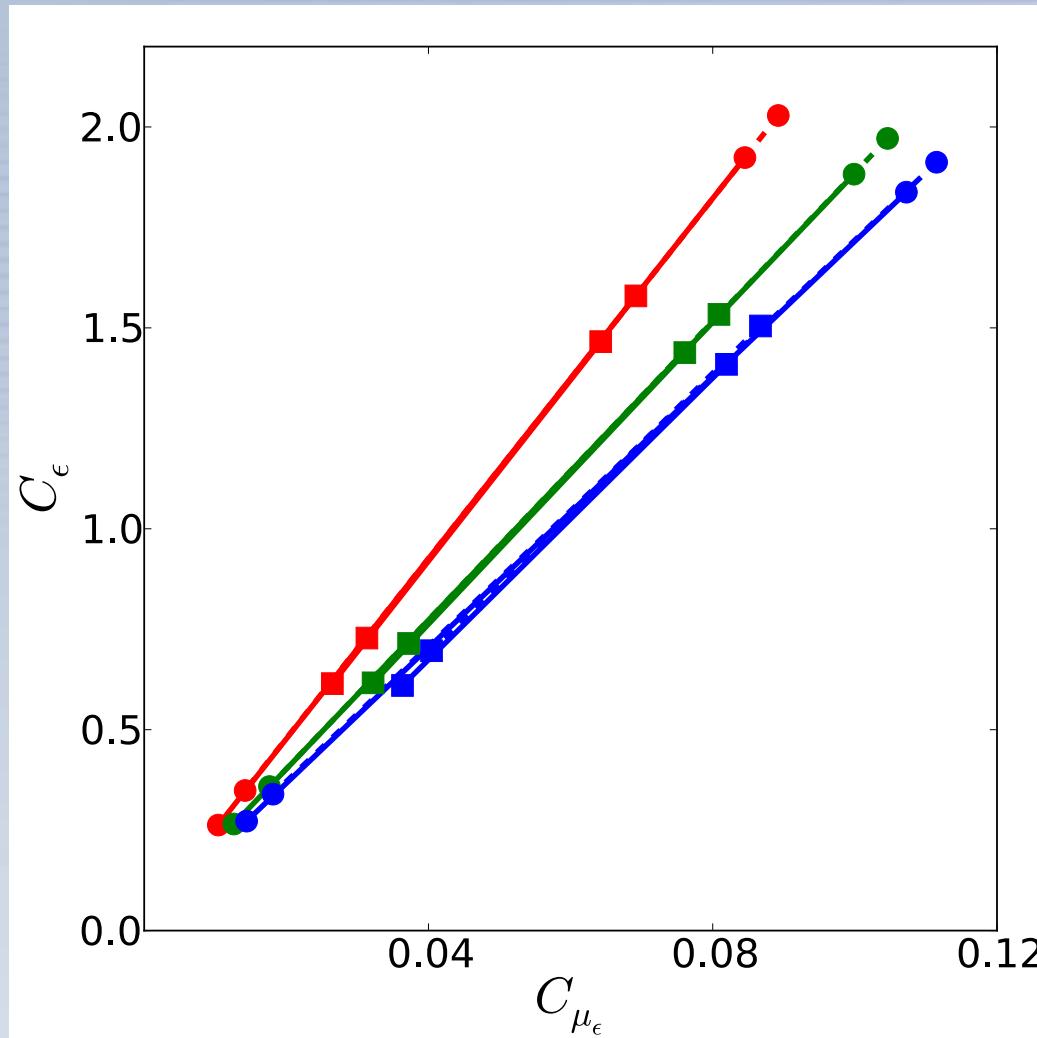
Posterior for $C_{\mu\epsilon}$



A Posteriori Test Shows EEM Recovers Data Uncertainty



Results are Sensitive to Filter Width



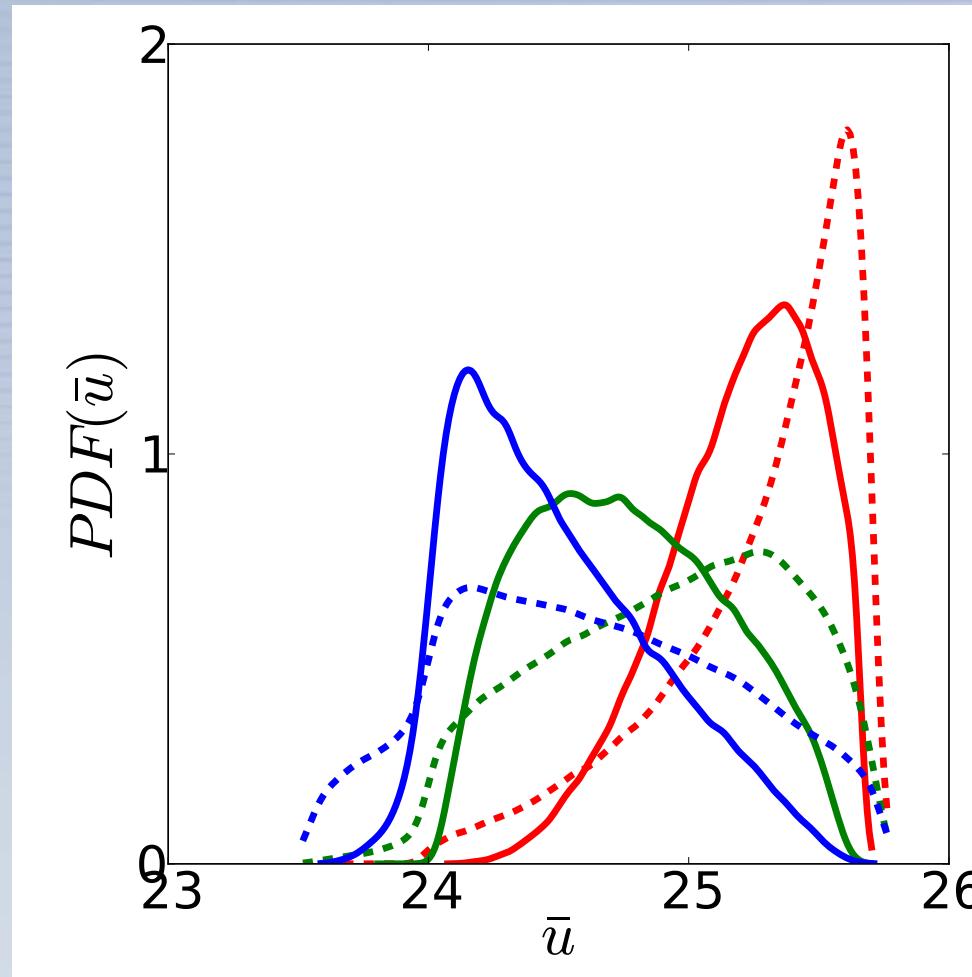
Filter Size:

L/16

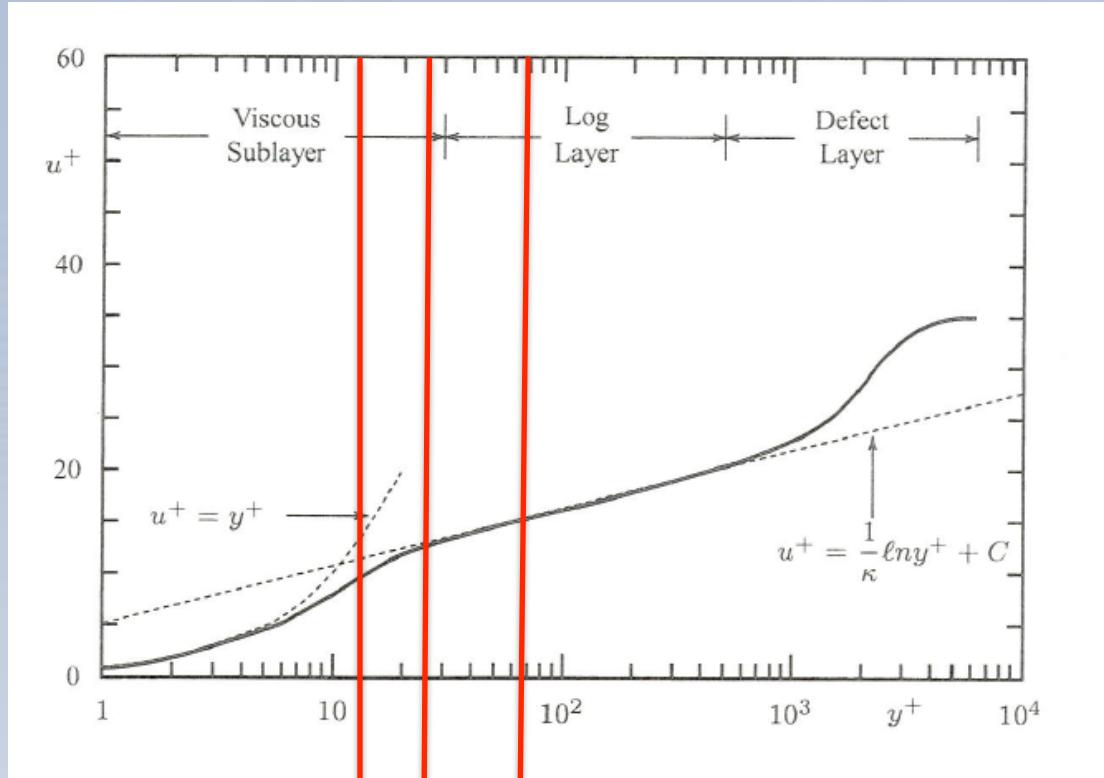
L/32

L/64

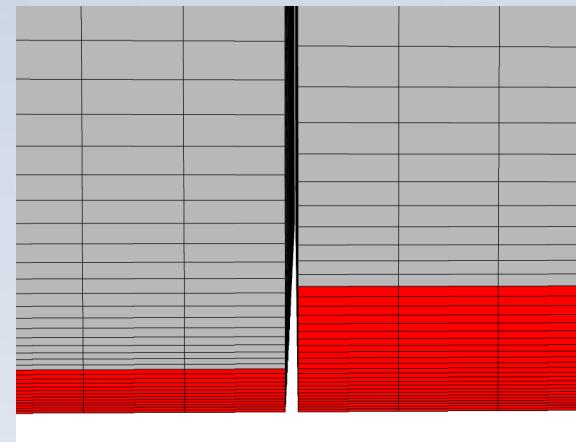
EEM PDFs Do Not Encapsulate Uncertainty



Direct Calibration Incorporating Physical Knowledge



**Use 97 nodes in wall-normal direction,
Alter allocation
between wall and bulk
regions**



Only The Log Layer Configuration is Robust

Dimensionality reduction by using PCA to construct parameter groups of $(C_{\mu\varepsilon}, C_{\varepsilon})$

$y^+ = 16$: viscous sublayer

Wall Region C's

Center C's	1	2	3	4	5
1	63		27.1	26.25	26.19
2			27.55	28.6	27.19
3			28.2	28.3	27.2
4			30.7	29.25	29.09
5		66	31.5	31.7	32.1

$y^+ = 32$: buffer layer

Wall Region C's

Center C's	1	2	3	4	5
1	64.02				21.4
2					22.4
3					24.01
4					27.95
5				65.1	33.9

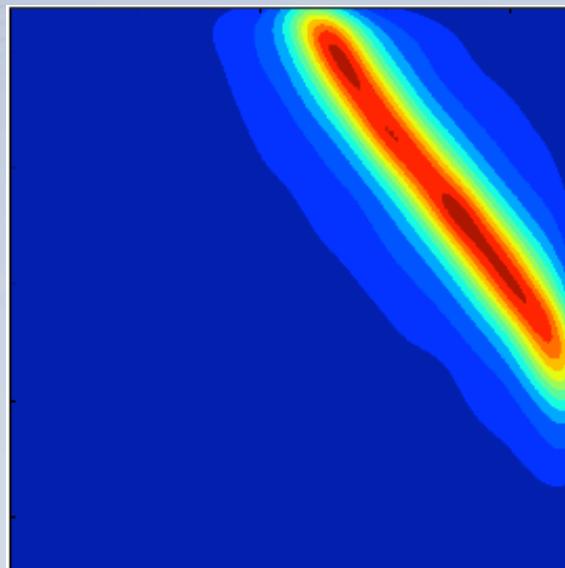
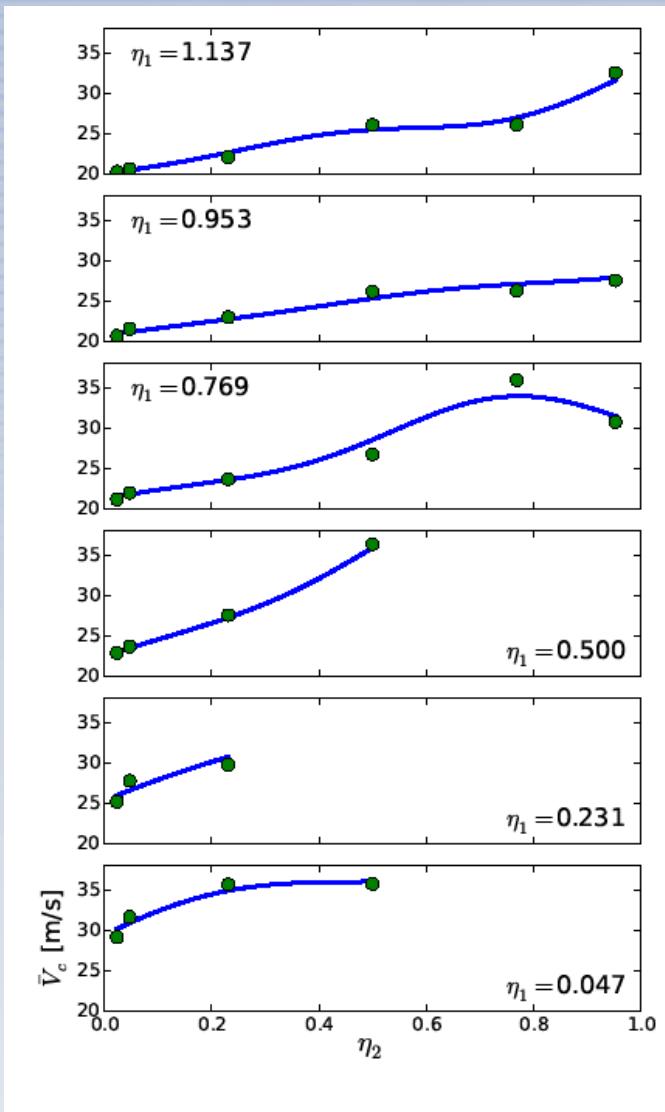
$y^+ = 48$: log layer

Center C's	1	2	3	4	5
1	27.5	26.2	26.1	22.9	21.5
2	30.7	35.9	26.7	23.6	21.9
3	46.6	54	36.3	27.5	23.6
4	52	56	56.3	29.7	27.7
5	57	55	35.7	35.6	31.6

Radial Basis Function Provides Good Approximation

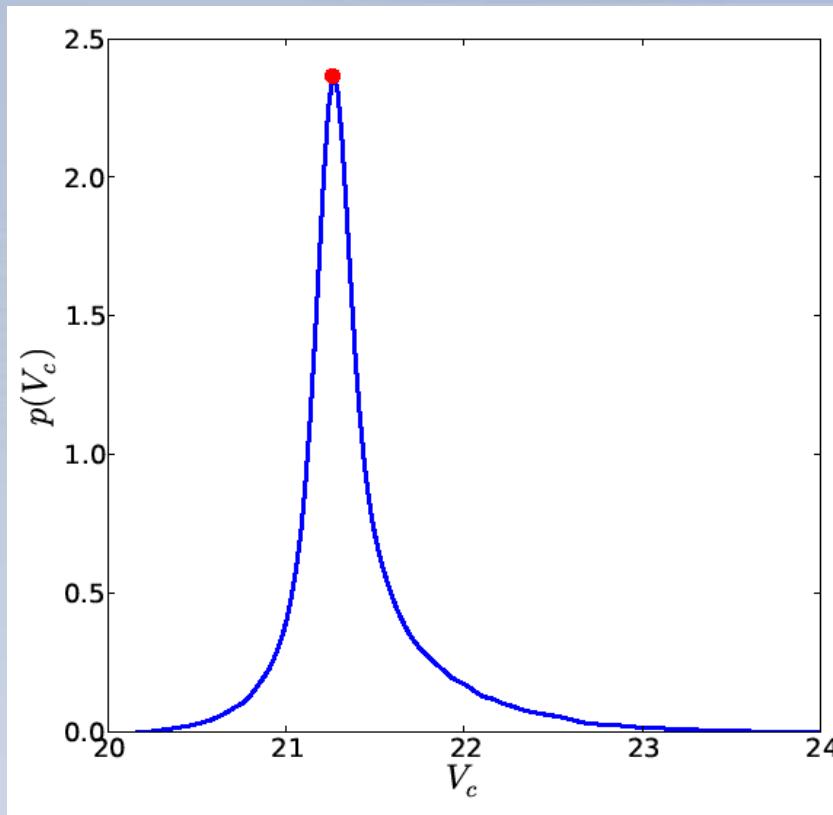
Wall Region C's		0	1	2	3	4	5	6
0	32.5	26.03	26	22	20.5	20.2		
1	27.5	26.2	26.1	22.9	21.5	20.6		
2	30.7	35.9	26.7	23.6	21.9	21.1		
3	46.6	54	36.3	27.5	23.6	22.8		
4	52	56	56.3	29.7	27.7	25.1		
5	57	55	35.7	35.6	31.6	29.1		

Center C's



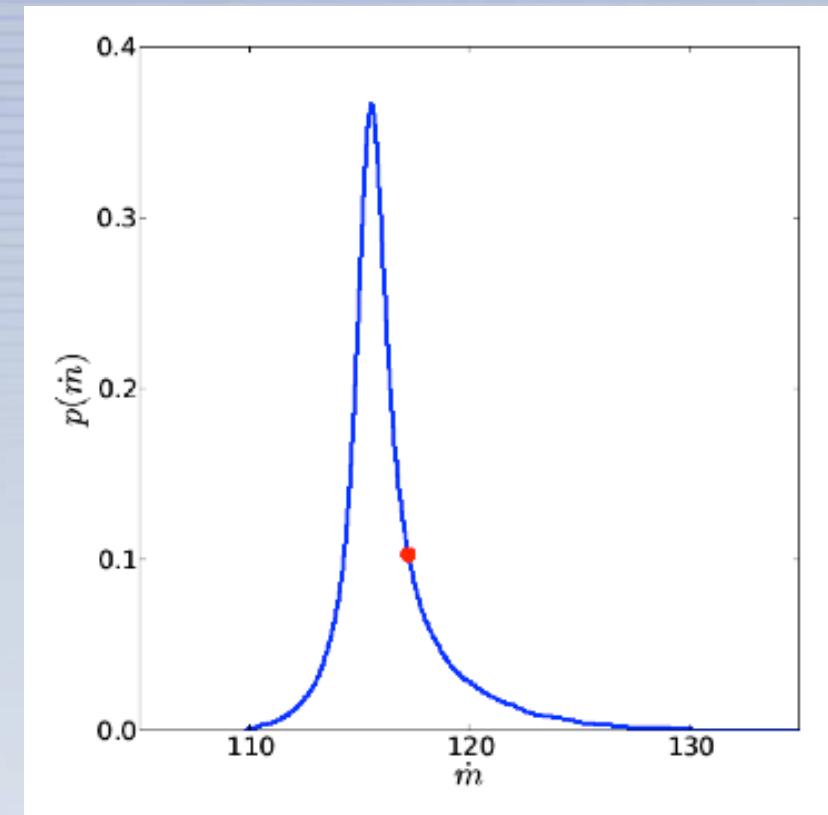
Calibrated Model Recovers Centerline Mean and Mass Flux

Center Velocity PDF



Model = 21.4 ± 0.4 , DNS = 21.3

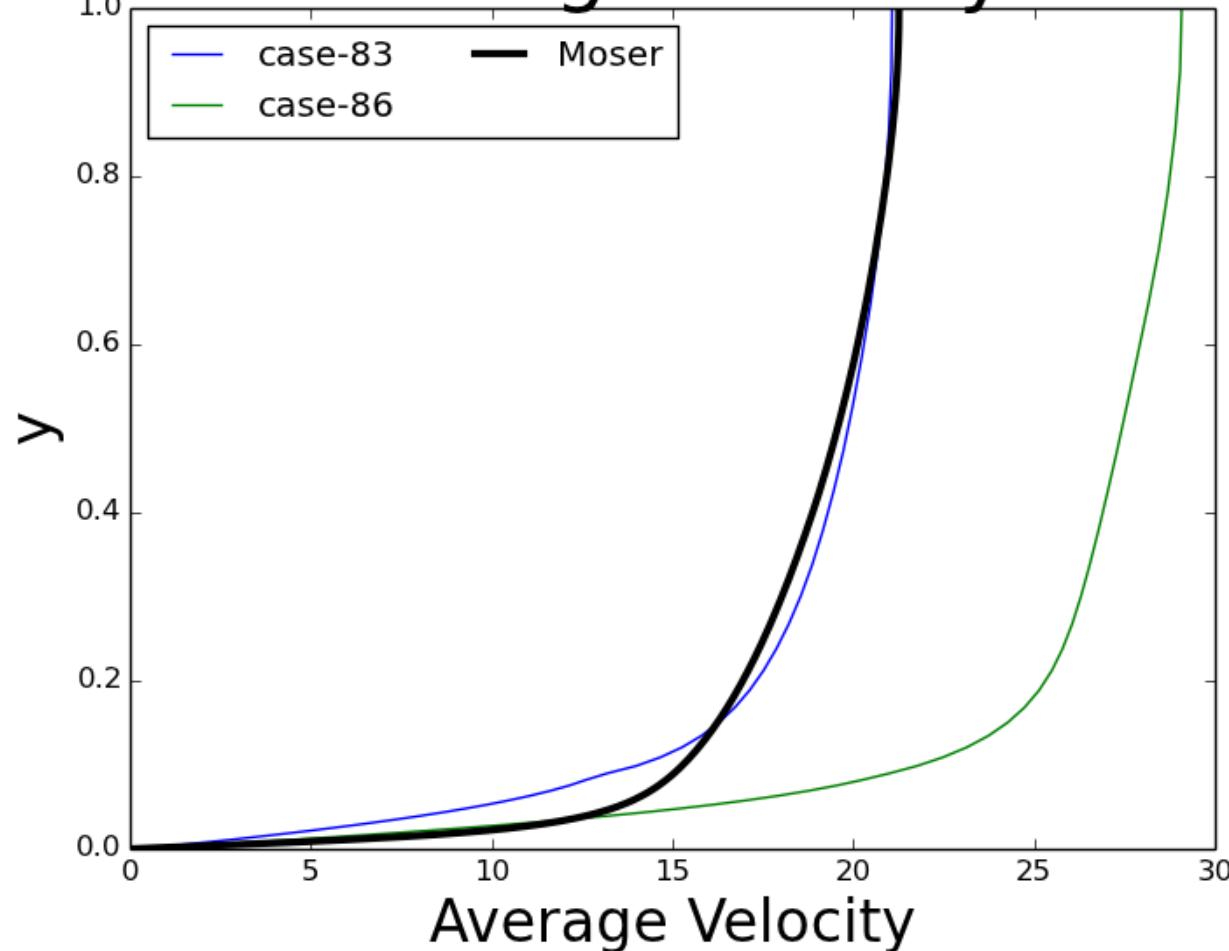
Mass Flux PDF



Model = 116 ± 2.5 , DNS = 117

Trade-offs are necessary in the calibration process

$BL=48$ Average Velocity Profiles



Conclusions

- **First principles calibration insufficient for engineering LES**
- **Direct calibration of engineering LES improves predictions**
 - Requires knowledge of physics and mesh
- **High-fidelity data can reduce dimensionality of parameter space and associated cost**
- **Model-form error likely the cause of trade-offs in the calibration process**