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Fig. 1. Schematic of the Reacting JICF Facility

Fig. 2. Volume rendering of the instantaneous temperature, H2O and H2 fields.
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Calibrate Subgrid-Scale Kinetic Energy (ksgs)               
One-Equation LES Model 

Transport Model: 

Production: 

Dissipation: 

Calibrate: and 
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Bayesian Calibration 

Bayes formula: 
 

posterior 

prior likelihood 

evidence 

•  Data D based on DNS of Isotropic Turbulence 

•  Model parameters θ are the ksgs model constants: Cϵ & Cµϵ 

•  The likelihood P(D|θ) is the probability of observing D given θ. If Cϵ & 

Cµϵ values are right, what are the chances of seeing D. 
•  The prior distribution P(θ) is the belief of what θ should be. Gaussians 

centered around the current nominal values for θ. 

•  The posterior distribution P(θ|D) is the probability that θ is correct after 

taking into account D. 5 

θ = {Cµϵ, Cϵ}  



Bayesian Calibration:  Data 

Bayes formula: 
 

posterior 

prior likelihood 

evidence 

•  Data D based on DNS of Isotropic Turbulence 

•  Model parameters θ are the ksgs model constants: Cϵ & Cµϵ 

•  The likelihood P(D|θ) is the likeliness of observing D given θ. If Cϵ & Cµϵ 

values are right, what are the chances of seeing D. 
•  The prior distribution P(θ) is the belief of what θ should be. MVN with 

diagonal covariance, centered around the current nominal values for θ. 

•  The posterior distribution P(θ|D) is the probability that θ is correct after 

taking into account D. 6 



Data is Filtered DNS to LES scale 

3 Filter sizes:  
•  ∆ = L/64 
•  ∆ = L/32 
•  ∆ = L/16 

DNS ∆ = L/32 
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Bayes formula: 
 

Bayesian Calibration: Likelihood 

posterior 

prior likelihood 

evidence 

•  Data D based on DNS of Isotropic Turbulence 

•  Model parameters θ are the ksgs model constants: Cϵ & Cµϵ 

•  The likelihood P(D|θ) is the likeliness of observing D given θ. If Cϵ & Cµϵ 

values are right, what are the chances of seeing D. 
•  The prior distribution P(θ) is the belief of what θ should be. MVN with 

diagonal covariance, centered around the current nominal values for θ. 

•  The posterior distribution P(θ|D) is the probability that θ is correct after 

taking into account D. 8 



PEM Likelihood Function 

•  Presumed Error (Classical) Model (PEM) 
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Bayesian Calibration: Prior 

Bayes formula: 
 

posterior 

prior likelihood 

evidence 

•  Data D based on DNS of Isotropic Turbulence 

•  Model parameters θ are the ksgs model constants: Cϵ & Cµϵ 

•  The likelihood P(D|θ) is the likeliness of observing D given θ. If Cϵ & Cµϵ 

values are right, what are the chances of seeing D. 
•  The prior distribution P(θ) is the belief of what θ should be. MVN with 

diagonal covariance, centered around the current nominal values for θ. 

•  The posterior distribution P(θ|D) is the probability that θ is correct after 

taking into account D. 10 



Priors Chosen From Literature 

•  Centered at values from the literature (Cµϵ, Cϵ) 

•  Range of Marginal Standard Deviations 
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(𝟎.𝟎𝟖𝟒𝟓,𝟎.𝟖𝟓) (𝟎.𝟎𝟕,𝟏.𝟎𝟓) 

Cµϵ Cϵ Cµϵ Cϵ 

(𝟎.𝟎𝟖𝟒𝟓,𝟎.𝟖𝟓) (𝟎.𝟎𝟕,𝟏.𝟎𝟓) 



Bayesian Calibration: Posterior 

Bayes formula: 
 

posterior 

prior likelihood 

evidence 

•  Data D based on DNS of Isotropic Turbulence 

•  Model parameters θ are the ksgs model constants: Cϵ & Cµϵ 

•  The likelihood P(D|θ) is the likeliness of observing D given θ. If Cϵ & Cµϵ 

values are right, what are the chances of seeing D. 
•  The prior distribution P(θ) is the belief of what θ should be. MVN with 

diagonal covariance, centered around the current nominal values for θ. 

•  The posterior distribution P(θ|D) is the probability that θ is correct after 

taking into account D. 12 



Cϵ and Cµϵ are Highly Correlated  

13 

Filter: 
•  ∆ = L/16 
Prior: 
•  (0.0845,0.85) 
•  σ = (0.01, 0.1) 



Forward UQ Uses PC Expansion 

14 

•  y – quantity of interest: 
mean x velocity, rms, ​𝑚  

•  Modeled by Polynomial 
Chaos Expansion  

LES UQ 8

posterior densities of model parameters can be carried
to other configurations employing the same model, it is
not clear how to estimate posterior predictictive distri-
butions in configurations other than the one used for the
calibration process. For the EEM approach this di�culty
is circumvented by the fact that parameters densities are
consistent with the data and there are no additional error
terms involved. For this approach, the posterior 1� 99%
quantile range, shown with red lines in Figure 11, is very
close to the posterior predictive results for the PEM ap-
proach. Figure 12 shows further comparisons between
PEM, with solid lines, and EEM, with dashed lines, for
runs R1 and R5. For both these runs there is a similar
agreement for the PP 1�99% quantile range between the
PEM and EEM approaches. Similar results are observed
for runs R2 and R6 (results not shown).

2. Principal Component Analysis of Joint PDFs

Given the strong dependence in the joint posterior dis-
tribution of C

µ✏ and C

✏

for PEM, we proceed with a
Principal Component Analysis53 (PCA) of these distri-
butions. Through the PCA approach, we aim to identify
linear combinations of these parameters that explain the
MCMC samples. Let X 2 Rn⇥2 be a matrix with n rows
and two columns, first column for C

µ✏ and second col-
umn for C

✏

. Each row represents one MCMC sample.
Without loss of generality, assume that the mean values
are already subtracted from X.

The principal components (PC) of X are the eigenvec-
tors of the covariance matrix X

T

X 2 R2⇥2, and the cor-
responding non-zero eigenvalues represent the variances
of the MCMC data along the principal directions. For
this study we have two principal directions correspond-
ing to the parameter space spanned by C

µ✏ and C

✏

. For
all runs and filter widths, the PC analysis indicate that
variances attributed to the 2nd PC are less that 5% of
the variances along the 1st PC. This is consistent with
the degree of dependency observed by visual inspection
in Fig. 5 and by the distance correlation results in Fig. 10.
The calibration results are further examined by explor-
ing the dependency between C

µ✏ and C

✏

along the 1st

PC for several cases. For each case, the MCMC samples
are projected on the line corresponding to the 1st PC for
that case. The marginal posterior densities along these
lines are then computed via KDE.

Figure 13 shows the segments along the 1st PC corre-
sponding to R1-R4 (Fig. 13a) and R3-R6 (Fig. 13b) plot-
ted in the 1%-99% quantile range. This quantile range
contains 98% of all MCMC samples projected on the 1st

PC. Remember that R1 and R2 have the widest prior
width, R3 and R4 have the medium prior width, and R5
and R6 have the narrowest prior width. The PCs based
on the same filter width are nearly co-linear for R1-R4.
For this series of runs, the width of the posterior density
along the 1st PC is mostly a↵ected by the prior width.
The prior mean has a much smaller e↵ect and only shifts

the 1%-99% segments whithout changing the slope and
intercept of the 1st PC. Runs R5 and R6 are shown along
with R3 and R4 in Fig. 13b. For these runs the prior ef-
fect is stronger (because of the narrow prior width) and is
competing with the e↵ect of filter width. For smaller fil-
ter widths (red lines), the reduced noise level in the data
renders the likelihood dominant over the prior and the
1st PCs remain co-linear and only a↵ected by the prior
width. For larger filter widths (blue lines), the prior for
R5 and R6 becomes dominant and a↵ects the dependency
between C

µ✏ and C

✏

. For example, the di↵erence between
the triangle-solid lines (R5) and the triangle-dashed lines
(R6) is location of the mean of the prior.
Figure 14 shows marginal densities along the 1st PC

for R1-R4. The horizontal axis corresponds to the nat-
ural coordinate along the PC, f

Cµ✏ ,C✏ , shifted such that
the Maximum Aposteriori Probability (MAP) estimate
corresponds to f = 0. Consistent to earlier results,
these marginal densities are mostly impacted by the prior
width, �pr

1 for runs R1 and R2 and �

pr

2 for runs R3 and
R4.

IV. FORWARD UQ

In this section we describe an approach for pushing
forward the densities of model parameters ✓ = (C

µ✏ , C✏

)
and obtain probability densities for Quantities of Inter-
est (QoIs) prediced by LES models. Figure 1 shows a
schematic for the Forward UQ process in the bottom
half. Bellow we provide a description of a non-intrusive
approach, followed by a description of LES code and the
configuration setup.
The non-intrusive propagation of uncertainty from

model parameters ✓ to QoI y, proceeds through the fol-
lowing procedure. Given a basis of standard random vari-
ables ⇠ = (⇠1, ⇠2, . . . , ⇠n), and a known functional form
✓ = ✓(⇠), we employ the representation in Eq. (20) to
cast the QoI y derived from the output of LES model f
as a PCE expansion

y(✓(⇠)) ⇡
NtX

k=0

c

k

 
k

(⇠1, ⇠2, . . . , ⇠n). (37)

The coe�cients of this PCE are evaluated by Galerkin
projection exploiting the orthogonality of basis terms

c

k

=
hy 

k

i
h 2

k

i . (38)

Evaluation of the projection integrals in Eq. (38) require
a number of evaluations of the model f . For small to
moderate number of dimensions, numerical quadrature
provides an e�cient way to evaluate c

k

using a number
of samples much smaller compared to Monte Carlo sam-
pling algorithms. The quadrature approach involves eval-
uating y = f(✓) for a particular set of parameter values
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posterior densities of model parameters can be carried
to other configurations employing the same model, it is
not clear how to estimate posterior predictictive distri-
butions in configurations other than the one used for the
calibration process. For the EEM approach this di�culty
is circumvented by the fact that parameters densities are
consistent with the data and there are no additional error
terms involved. For this approach, the posterior 1� 99%
quantile range, shown with red lines in Figure 11, is very
close to the posterior predictive results for the PEM ap-
proach. Figure 12 shows further comparisons between
PEM, with solid lines, and EEM, with dashed lines, for
runs R1 and R5. For both these runs there is a similar
agreement for the PP 1�99% quantile range between the
PEM and EEM approaches. Similar results are observed
for runs R2 and R6 (results not shown).

2. Principal Component Analysis of Joint PDFs

Given the strong dependence in the joint posterior dis-
tribution of C

µ✏ and C

✏

for PEM, we proceed with a
Principal Component Analysis53 (PCA) of these distri-
butions. Through the PCA approach, we aim to identify
linear combinations of these parameters that explain the
MCMC samples. Let X 2 Rn⇥2 be a matrix with n rows
and two columns, first column for C

µ✏ and second col-
umn for C

✏

. Each row represents one MCMC sample.
Without loss of generality, assume that the mean values
are already subtracted from X.

The principal components (PC) of X are the eigenvec-
tors of the covariance matrix X

T

X 2 R2⇥2, and the cor-
responding non-zero eigenvalues represent the variances
of the MCMC data along the principal directions. For
this study we have two principal directions correspond-
ing to the parameter space spanned by C

µ✏ and C

✏

. For
all runs and filter widths, the PC analysis indicate that
variances attributed to the 2nd PC are less that 5% of
the variances along the 1st PC. This is consistent with
the degree of dependency observed by visual inspection
in Fig. 5 and by the distance correlation results in Fig. 10.
The calibration results are further examined by explor-
ing the dependency between C

µ✏ and C

✏

along the 1st

PC for several cases. For each case, the MCMC samples
are projected on the line corresponding to the 1st PC for
that case. The marginal posterior densities along these
lines are then computed via KDE.

Figure 13 shows the segments along the 1st PC corre-
sponding to R1-R4 (Fig. 13a) and R3-R6 (Fig. 13b) plot-
ted in the 1%-99% quantile range. This quantile range
contains 98% of all MCMC samples projected on the 1st

PC. Remember that R1 and R2 have the widest prior
width, R3 and R4 have the medium prior width, and R5
and R6 have the narrowest prior width. The PCs based
on the same filter width are nearly co-linear for R1-R4.
For this series of runs, the width of the posterior density
along the 1st PC is mostly a↵ected by the prior width.
The prior mean has a much smaller e↵ect and only shifts

the 1%-99% segments whithout changing the slope and
intercept of the 1st PC. Runs R5 and R6 are shown along
with R3 and R4 in Fig. 13b. For these runs the prior ef-
fect is stronger (because of the narrow prior width) and is
competing with the e↵ect of filter width. For smaller fil-
ter widths (red lines), the reduced noise level in the data
renders the likelihood dominant over the prior and the
1st PCs remain co-linear and only a↵ected by the prior
width. For larger filter widths (blue lines), the prior for
R5 and R6 becomes dominant and a↵ects the dependency
between C

µ✏ and C

✏

. For example, the di↵erence between
the triangle-solid lines (R5) and the triangle-dashed lines
(R6) is location of the mean of the prior.
Figure 14 shows marginal densities along the 1st PC

for R1-R4. The horizontal axis corresponds to the nat-
ural coordinate along the PC, f

Cµ✏ ,C✏ , shifted such that
the Maximum Aposteriori Probability (MAP) estimate
corresponds to f = 0. Consistent to earlier results,
these marginal densities are mostly impacted by the prior
width, �pr

1 for runs R1 and R2 and �

pr

2 for runs R3 and
R4.

IV. FORWARD UQ

In this section we describe an approach for pushing
forward the densities of model parameters ✓ = (C

µ✏ , C✏

)
and obtain probability densities for Quantities of Inter-
est (QoIs) prediced by LES models. Figure 1 shows a
schematic for the Forward UQ process in the bottom
half. Bellow we provide a description of a non-intrusive
approach, followed by a description of LES code and the
configuration setup.
The non-intrusive propagation of uncertainty from

model parameters ✓ to QoI y, proceeds through the fol-
lowing procedure. Given a basis of standard random vari-
ables ⇠ = (⇠1, ⇠2, . . . , ⇠n), and a known functional form
✓ = ✓(⇠), we employ the representation in Eq. (20) to
cast the QoI y derived from the output of LES model f
as a PCE expansion

y(✓(⇠)) ⇡
NtX

k=0

c

k

 
k

(⇠1, ⇠2, . . . , ⇠n). (37)

The coe�cients of this PCE are evaluated by Galerkin
projection exploiting the orthogonality of basis terms

c

k

=
hy 

k

i
h 2

k

i . (38)

Evaluation of the projection integrals in Eq. (38) require
a number of evaluations of the model f . For small to
moderate number of dimensions, numerical quadrature
provides an e�cient way to evaluate c

k

using a number
of samples much smaller compared to Monte Carlo sam-
pling algorithms. The quadrature approach involves eval-
uating y = f(✓) for a particular set of parameter values



Average Velocity at the Centerline 
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Moser DNS time averaged value: 21.26 
•  15% off  



Average Velocity at the Centerline 
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Moser DNS time averaged value: 21.26 
•  15% off  



EEM Likelihood Function 

 
•  Embedded Error Model (EEM) 

–  (Sargsyan, Najm, Ghanem - 2014) 
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B. Likelihood Construction

In the Bayesian framework, the likelihood LD(✓) is the
probability to observe the data D for an instance of the
model parameters ✓. In this context, D consists of the
values for f

k

, f
P

, and f

D

, and the model is given by the
right-hand side of Eq. (15). In general, the discrepancy
between model predictions and the data can be formal-
ized as27

f

k

(t;�) = C

µ✏fP (t;�)� C

✏

f

D

(t;�) + ✏

m

+ ✏

d

. (17)

Here, ✏

m

is the model error, i.e. a consequence of the
model only being an approximation of the true process,
and ✏

d

is the data error, i.e. the discrepancy resulting
from any imperfections in the measurement process. In
the present context all data is gathered from numerical
simulations, hence the data error is not considered in this
study. The assignment of a statistical model structure for
the model error ✏

m

is not straightforward and entails a
significant degree of modeling.27

In this study we employ two modeling approaches to
estimate ✏

m

. In the first approach we consider a normally
distributed error model, with ✏

m

⇠ N(0,�). Under this
assumtion the likelihood LD(✓) is written as

LD(✓) =
NtY

i=1

1p
2⇡�

i

exp

✓
� (f

k,i

� C

µ✏fP,i

+ C

✏

f

D,i

)2

2�2
i

◆

(18)
Here, the dependency on the filter width was dropped to
simplify the notation. The expression in Eq. (18) assumes
independent errors between the left- and right-hand sides
of Eq. (15) at the time steps t

i

. This assumptions is rea-
sonable if these time instances are su�ciently far away
from each other. In this study we further assume the
same standard deviation for all t

i

with i = 1, 2 . . . , N
t

,
�

i

= �. The posterior distribution for � will be esti-
mated along with distributions for C

µ✏ and C

✏

. One set-
back with this approach is that the model error term is
now part of the calibrated model, i.e. the evolution of
k

sgs is now governed by a right-hand side that includes a
standard normal random variable in addition to the two
terms shown in Eq. (15).

The second approach follows the works of Berliner37

and Sargsyan et al.

27 who suggest to embedd the model
error terms in the model components. By embedding
the error model within the components themselves, the
model predictions automatically contain all errors with-
out the need to specify external error terms. We begin
by parameterizing these model constants as

C

µ✏ = C

µ✏(↵1), C

✏

= C

✏

(↵2) (19)

where ↵1 and ↵2 are sets of parameters whose densities
are yet to be determined. This e↵ectively re-casts the
calibration problem into one of estimating densities of ✓
such that the forward-propagated PDFs of C

µ✏ and C

✏

,
and subsequently of C

µ✏fP � C

✏

f

D

, are consistent with
the values of f

k

.

For both approaches we presume that C
µ✏ and C

✏

are
random variables with finite variance and we will adopt
a Polynomial Chaos expansion (PCE)38,39 to represent
these model constants. A brief description of PCE con-
cept is presented below. For an in-depth description,
the reader is referred to a series of publications on this
topic.38,40–42

Consider a probability space (⌦,S, P ), where ⌦ is a
sample space, S is a �-algebra on ⌦, and P is a proba-
bility measure on (⌦,S). Let ⇠ = {⇠1(!), ⇠2(!), . . .} be a
set of independent standard random variables (RVs) on
⌦. Then any RV X : ⌦ ! R with finite variance, i.e.
X 2 L

2(⌦), can be represented as:

X(!) =
1X

k=0

↵

k

 
k

(⇠1, ⇠2, . . .) (20)

where  
k

are multivariate polynomials,  
k

(⇠1, ⇠2, . . .) =
 

k

(⇠) =  
k1(⇠1) k2(⇠2) . . . that are products of univari-

ate polynomials. In a practical computational context,
one truncates the PCE in both polynomial order p and
dimensionality n. The number of terms in the resulting
finite PCE

X(!) ⇡
PX

k=0

↵

k

 
k

(⇠1, ⇠2, . . . , ⇠n) (21)

and P = (n+ p)!/n!p!.
Generalized Polynomial Chaos (GPC) expansions have

been developed42 using a broader class of orthogonal
polynomials in the Askey scheme.43 Each family of poly-
nomials corresponds to a given choice of distribution for
the ⇠

i

and is orthogonal with respect to the density of
the vector of random variables ⇠, i.e.

h 
i

 
j

i =
Z
 

i

(⇠) 
j

(⇠)dP (⇠) = �

ij

h 2
i

i, (22)

where �
ij

is Kronecker’s delta. In general, popular choices
for (⇠, ) pairs are uniform RVs with Legendre polyno-
mials or normal RVs with Hermite polynomials.
We employ Hermite-Gauss PCEs to represent C

µ✏ and
C

✏

as

C

µ✏ =
X

k

↵1,k k

(⇠), C

✏

=
X

k

↵2,k k

(⇠). (23)

Here ⇠ = {⇠1, . . . , ⇠M} is a vector of standard normal
random variables, while  

k

(⇠) =  
k1(⇠1) · · · kM (⇠

M

)
are multivariate Hermite polynomials, orthogonal with
respect to the density of these standard normal random
variables. To illustrate the functional form representa-
tion via PCEs we employ first order expansions for both
parameters

C

µ✏ = ↵10 + ↵11⇠1

C

✏

= ↵20 + ↵21⇠1 + ↵22⇠2 (24)

A “triangular” form is adopted adopted above in order
to avoid rotational symmetries. The likelihood, expressed



EEM Still Recovers Production to 
Dissipation Ratio 
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Filter: 
•  ∆ = L/16 
Prior: 
•  (0.0845,0.85) 
•  σ = (0.01, 0.1) 



EEM Approach Results in 
Greater Model Uncertainty 
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Small Prior Uncertainty Medium Prior Uncertainty 

High Prior Uncertainty 



Results are Insensitive to  
Prior Uncertainty 

Posterior for Cµϵ 
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A Posteriori Test Shows EEM 
Recovers Data Uncertainty 
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Results are Sensitive to 
Filter Width 
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Filter Size: 
 
L/16 
L/32 
L/64 



EEM PDFs Do Not Encapsulate 
Uncertainty 
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Filter Size: 
 
L/16 
L/32 
L/64 



Direct Calibration Incorporating 
Physical Knowledge 
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16   32  48 

Use 97 nodes in wall-
normal direction, 
Alter allocation 
between wall and bulk 
regions 



Only The Log Layer 
Configuration is Robust 
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y+ = 16: viscous sublayer 

Laminar	
   Turbulent	
  

Wall	
  Region	
  C's	
  
1	
   63	
  	
  	
   27.1	
   26.25	
   26.19	
  
2	
  	
  	
   	
  	
   27.55	
   28.6	
   27.19	
  
3	
  	
  	
   	
  	
   28.2	
   28.3	
   27.2	
  
4	
  	
  	
   	
  	
   30.7	
   29.25	
   29.09	
  
5	
  	
  	
   66	
   31.5	
   31.7	
   32.1	
  

Center	
  C's	
   1	
   2	
   3	
   4	
   5	
  

y+ = 32: buffer layer 

y+ = 48: log layer 

Wall	
  Region	
  C's	
  
1	
   64.02	
  	
  	
   	
  	
   	
  	
   21.4	
  
2	
  	
  	
   	
  	
   	
  	
   	
  	
   22.4	
  
3	
  	
  	
   	
  	
   	
  	
   	
  	
   24.01	
  
4	
  	
  	
   	
  	
   	
  	
   	
  	
   27.95	
  
5	
  	
  	
   	
  	
   	
  	
   65.1	
   33.9	
  

Center	
  C's	
   1	
   2	
   3	
   4	
   5	
  

1	
   27.5	
   26.2	
   26.1	
   22.9	
   21.5	
  
2	
   30.7	
   35.9	
   26.7	
   23.6	
   21.9	
  
3	
   46.6	
   54	
   36.3	
   27.5	
   23.6	
  
4	
   52	
   56	
   56.3	
   29.7	
   27.7	
  
5	
   57	
   55	
   35.7	
   35.6	
   31.6	
  

Center	
  C's	
   1	
   2	
   3	
   4	
   5	
  

Dimensionality reduction by using 
PCA to construct parameter groups 
of (Cµε, Cε) 



Radial Basis Function 
Provides Good Approximation 

26 

Wall	
  Region	
  C's	
  
0	
   32.5	
   26.03	
   26	
   22	
   20.5	
   20.2	
  
1	
   27.5	
   26.2	
   26.1	
   22.9	
   21.5	
   20.6	
  
2	
   30.7	
   35.9	
   26.7	
   23.6	
   21.9	
   21.1	
  
3	
   46.6	
   54	
   36.3	
   27.5	
   23.6	
   22.8	
  
4	
   52	
   56	
   56.3	
   29.7	
   27.7	
   25.1	
  
5	
   57	
   55	
   35.7	
   35.6	
   31.6	
   29.1	
  

Center	
  C's	
   1	
   2	
   3	
   4	
   5	
   6	
  

Wall Region C’s 

Center C’s 



Calibrated Model Recovers 
Centerline Mean and Mass Flux 
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Center Velocity PDF Mass Flux PDF 

Model = 21.4 ± 0.4, DNS = 21.3 Model = 116 ± 2.5, DNS = 117 



Trade-offs are necessary in the 
calibration process 
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Conclusions 

•  First principles calibration insufficient for 
engineering LES 

•  Direct calibration of engineering LES improves 
predictions 
–  Requires knowledge of physics and mesh 

•  High-fidelity data can reduce dimensionality of 
parameter space and associated cost 

•  Model-form error likely the cause of trade-offs in the 
calibration process 
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