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•  Unlike MFE, no Steady State phase, only 
‘transient’ events.

Level per pulse is known, ~ few MeV ions 
normal to surface. At 10 Hz operation, 3e8 
pulses per year

•  At 10 nm erosion/pulse, 3 METER thickness 
lost per year. So NOTHING can be lost per 
pulse. Melting should be avoided as well.

•  Biggest threat below Melting is 
Thermomechanical stress

•  Leading Geometry: Spherical w/ or w/o gas fill

•  Backup Geometry (LEFT): Cusp with ‘beam 
dump’ on axis

•  Leading materials: tungsten and W alloys, 
SiC

Image provided by R. Raffray, 
UC San Diego

HAPL 

In an IFE Reactor, the First-wall is subjected to a Programmed
High Fluence of Energetic Ion pulses (3 x 108/year)

 

Pulsed Power Sciences, Sandia National Laboratories
TJR 03/19/2006 



Laser IFE Direct Drive Threat Spectra (note: NIF is indirect drive)

 
•  For Direct-drive Laser IFE: 

~70% neutrons, 1-2% x-rays
30% ions (50-50 fusion and ‘debris’)

•  Ions: several MeV, ~ few µsec each, 
8-20 J/cm2 fluence, judged 
Significant Threat

•  X-rays: ~ 1 J/cm2, up to 10 keV energies, 
judged less significant threat

•  RHEPP-1: 700 keV N, higher for N+2 ,         
100-150 ns pulsewidth, 75-95 GW/m2

•  RHEPP-1 energy delivery too short, but 
otherwise good fidelity with reactor ion 
threat

F=P*√t: High Heat Flux conditions with Heat Diffusion 
effect included. Comparison:  

ITER ELMs (est):  
22.4 - 67.1 MW m-2 s1/2 

RHEPP-1:  
33 - 112 MW m-2 s1/2 

Pulsed Power Sciences, Sandia National Laboratories
TJR 7/08/2004 

Simulation: Thermal Power to Wall in Ions 
from 154 MJ Yield. Wall Radius: 6.5 m 



Regimes of IFE Materials Response to Ions 

Ablation
Depth 
(µm)

Fluence (J/cm2)

Net AblationNo net ablation, but
 surface roughening

Threshold for 
ablation

Goals (for each material):  examine net ablation to validate codes
                                            find threshold for ablation

                                            Understand roughening. Is there mass loss?
                                            Find threshold for roughening

(Fluence/pulse, No. of pulses)

Threshold for      
roughening 

Area of Interest 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 

DONE 



Thresholds for Materials exposure to ions on RHEPP

 
•  General exposure conditions: MAP 

nitrogen beam, 150 ns pulsewidth, 
single shot.  

•  Roughening threshold for graphite 
(matrix) is unknown, but probably 
below 0.5 J/cm2 

•  Roughening threshold for tungsten 
for He beam is below that for MAP 
Nitrogen 

•  Chart to left: ‘PM W Plansee’ refers 
to random-grain Powder Met 
Tungsten provided by Plansee 

 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 

0 

Roughening threshold, PM W 
Plansee, unheated 1.25 J/cm2

6 J/cm2 Ablation threshold, 
tungsten 

Melting threshold, PM W Plansee, 
600C, SIM and experiment 2.0 J/cm2

? Roughening threshold, Graphite 

3 J/cm2 Ablation threshold, graphites,
BUCKY code and experiment 
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Adding P*√t connects IFE with MFE simulation  

of short transient thermal loads 

JUDITH 

JUDITH 

QSPA Kh-50 

QSPA Kh-50 

MK200-U 

MK200-U 

RHEPP-1 

RHEPP-1 

Slide provided by
J. Linke 



Performance of tungsten under short transient thermal  
loads. Confirms heat conduction dominates over direct energy deposition 
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2000 shot series: PM W samples laid out radially from center. 10 and 8cm out 
are sub-threshold for roughening, 6cm is above. Note temperature 

excursions from modeling, based on fluence scatter from FCup data. 

Pulsed Power Sciences, Sandia National Laboratories
TJR 06/09/2006 

PM W, R10 
0.2 J/cm2
270C_AP
Hi 415C
Lo 145C

AP = Average High Surface Temp 
Hi and Lo occur on 5% of pulses

RHEPP-1 Roughening Threshold, PM W, Multi-pulse, nitrogen beam exposure 

These PM W appear unaffected 

PM W, R8 
0.6-0.9 J/cm2

1290C_AP   
Hi 1960C
Lo 535C

PM W, R6    
1.2 J/cm2

1690C_AP
Hi 2278C (5%)
Lo 1175C (5%)
Ra ~ 2.5 µm

PM W, R4  
1.9 J/cm2

3070C_AP
Hi 3650C
Lo 2100C
Ra ~ 4 µm

These PM W are very rough 

R6 = 6 cm from
Beam center 

PM W, R2               
3.5 J/cm2

4300C_AP
Melt Duration 159 ns
Melt Depth 0.8 µm
Ra ~ 6-10 µm

BEAM CENTER 



SEMs of Polycrystalline (PM) Tungsten Roughening from previous slide: 
Threshold at ~ 1 J/cm2, roughening saturates after ~ 400 pulses

Pulsed Power Sciences, Sandia National Laboratories
TJR 06/11/2007 

0.2 J/cm2 
2000MAG 

BOTTOM - 2000 pulses 

TOP - 400 pulses 

(Texture from 
Deposited film) 

0.6-0.9 J/cm2 
750MAG 

1.2 J/cm2 
750MAG 

1.9 J/cm2 
750MAG 

3.5 J/cm2 
750MAG 

800 pulses-
This one only 

All samples initially
Room Temperature (RT) 

270C_Ave 
Peak (AP)
Hi 415C
Lo 145C

1290C_AP
Hi 1960C
Lo 535C

1690C_AP
Hi 2280C
Lo 1175C
Ra~ 2.5 µm

3070C_AP
Hi 3650C
Lo 2100C
Ra~ 4 µm

4300C_AP
Melt Depth 
0.8 µm
Ra~ 6-10 µm

(20 µm) 

RHEPP-1 Roughening Threshold, PM W, Multi-pulse, nitrogen beam exposure 



Is this erosion from melting? No. 
PM Tungsten after 1600 pulses (non-melting): 

Mostly mountains  
 
•  Heated/treated PM W 

examined with NEXIV laser 
interferometry 

•  Comprehensive line-out 
scan: max height 30 µm, 
min height < 10 µm 
compared to untreated

•  Very deep micro-cracking 
not visible here

•  Hypothesis: Thermal 
expansion from heating, 
plastic deformation

 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 



!  Polished Powder Met W exposed to 100 shots N beam @ 2.25 J/cm2 ave /
pulse, ~ melting temperature at surface. No melt layer observed. 

!  600°C exposure 

!  Sample cracking horizontally/vertically down to 10 µm depth 

FIB-XTEM of 1000-pulse W at 2.25 J/cm2 (ave):
Deep horizontal/vertical cracking without melt

Pulsed Power Sciences, Sandia National Laboratories
TJR 11/25/03 

Near-surface 5 - 10 µm depth 

Suspect fatigue-cracking. If deep enough to reach steel substrate, wall will fail 



Evidence of lack of melt on Single Crystal Surface: 15,000X SEM

•  Surface of Single-Crystal Tungsten, 
heated 510°C, after ~ 800 exposures 
at various fluences

•  SEM at 15,000 magnification shows 
Clean Break along crack - stress 
cracking only

•  Away from crack, surface is unaffected 
by Helium beam exposure

Pulsed Power Sciences, Sandia National Laboratories
TJR 7/08/2004 

HAPL 



Three Forms of tungsten, treated at about same fluence:
Its all about the grains. 

 

Pulsed Power Sciences, Sandia National Laboratories
TJR 03/19/2006 RHEPP-1 Ion Exposure 

W-0.5%TiC 1.5 J/cm2. 
Ra = 0.04 µm

1,000X MAG

Two on right are SAME material

1,000X MAG 300X MAG

M182Perp ~ 1.25 - 1.5 J/cm2 
Ra ~ 0.15 µm

M182Parallel ~ 1.3 J/cm2 
Ra ~ 4.5 µm

 
•  (LEFT) W-0.5%TiC (Kurishita) formed by Hot Isostatic Press (HIP) – 

strengthens grain boundaries

•  (CENTER) M182Perp tungsten: grains vertical to surface. Bottom of 
grains protected. (RIGHT) M182Parallel – grain corners get lifted.

 



PM Tungsten exposed to Nitrogen (top) and Neon (bottom):
Mass loss with N, not with Neon 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 

> 1.2 J/cm2 

Top: Nitrogen 

500X Mag 

Bottom: Neon 

All images 500X Mag except above (250X) 

Mass loss: N -306.1 µg, Ne +167.4 µg
(gain due to entrained Cu) 

~ 1.2 J/cm2 
< 1.2 J/cm2 

RHEPP-1 Nitrogen Beam 



PM Tungsten, 1.9 J/cm2 RT, sectioned SEMs (near Melt):
Large distortions in near-surface zone

Pulsed Power Sciences, Sandia National Laboratories
TJR 7/08/2004 

• Wholesale failure 
down to 20 µm level in 
last image

400 pulses 

1600 pulses 

All images BEI 1000X MAG 

Increasing pulse number 

RHEPP-1 Nitrogen Beam 



Helium beam exposure 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 



The RHEPP helium beam well simulates IFE threat 
from both He ion and total Ion current  

•  RED: Simulation, 154 MJ IFE yield, at 6.5 
meter wall radius, He4 ions only 

•  BLUE: RHEPP pulse 27335, He beam,            
1 J/cm2 fluence, 9e6 W/cm2 power density

•  He component is ~ 1/3 of total ion pulse 
(fusion plus debris ions)

•  Total pulsewidth ~ 1.5 µsec FWHM, vs ~ 80 
ns Thermal Power FHWM for RHEPP

•  RHEPP 1 J/cm2 needs to be 3 J/cm2 to 
include all ion effects. But shorter delivery 
increases effective RHEPP dose by 4x

•  RHEPP He beam matches pulse heating time 
for reactor pulse, and 1-2 J/cm2 matches 
overall power delivery to first wall expected 
for 154 MJ pulse

Pulsed Power Sciences, Sandia National Laboratories
TJR 9/25/2008 

HAPL 
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Energy Distribution of He4 for 401 MJ Target 
Raw data:  http://aries.ucsd.edu/ARIES/WDOCS/ARIES-IFE/SPECTRA/ 

 

Total:    Burn    = 3.13e19  He4/shot 
             Debris  = 7.31e19  He4/shot	
  

He4 Fluence (10 m radius  chamber):
Burn     =  2.49e12  He4/cm2

Debris  =  5.82e12  He4/cm2

Total    =   0.83e13  He4/cm2

Thanks to
Shahram Sharafat 

Range of RHEPP He ions 

COMPARISON:
Each RHEPP pulse delivers 
~3e13 He4/cm2 to treatment 

surface at 2.25 J/cm2 fluence. 
Max surface temp at 2.25J/cm2 

~ 2350C



Ra as function of Number of Nitrogen pulses @ 4.0 J/cm2

Helium actually roughens less than nitrogen
I-D 8 mm Profilometer Scans, 450 shots He (Left) and Nitrogen (Right) 

(He-450) 

Ra ~ 1-3 µm
P-V ~ 10-30 µm 

Ra ~ 1-3 µm
P-V ~ 5-15 µm 

Ra ~ 4-9 µm
P-V ~ 20-35 µm 

Ra ~ 7-10 µm
P-V ~ 50-70 µm 

Pulsed Power Sciences, Sandia National Laboratories
TJR 10/16/2008 

HAPL 

Presented at HAPL Meeting, Madison, September 2003

• Roughening of PM Tungsten: 450 pulses He @ 1.3 J/cm2 
roughens more than 200 pulses N @ 4 J/cm2 (Melt)

• N-beam roughening catches up and passes at 400 pulses

He Beam 1.3 J/cm2 N Beam 4J/cm2

(None) (N-200) (He-450) (None) (N-400) (He-450) (None) (N-600) 



!  1 J/cm2 ~ 1.25e13 He/cm2 /pulse
!  Fluences and MaxTemps are Averages. 

±30% variation in fluence, with outliers 
to ±50%

!  Vacuum ~ Mid e-5 Torr (no Cryos)
!  Heated samples not discussed – 

heating to 520°C doesn’t affect results
!  520°C may be below DBTT

Sample Setup for He1*_1600: four 400 shot series
 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 

500°C Heater at bottom 

Samples mounted before Start
Beam Center off to center Right 

‘TOP’ FCup 

‘MID’ FCup 
‘BOT’ 
FCup 

MaxTemp Vs Fluence (from Heat-Flow modeling)

500°C 

1100°C 

Melt @
3 J/cm2

HAPL 
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 Polycrystalline Tungsten He exposure behavior - 1600 pulses

Pulsed Power Sciences, Sandia National Laboratories
TJR 9/27/2008 

Ave 0.8 J/cm2/ 
pulse

Ave 1.4 J/cm2 /pulse

All samples initially Room Temperature (RT) 

~1000°C 
Average 
MaxTemp

(50 µm) 350 GW/m2/pulse 

•  Average maximum surface temperature < 1500°C
•  No effect 1st 400 pulses: below threshold
•  Using √t scaling: 0.8 J/cm2 equivalent of 0.4 MJ/m2. Consistent 

with QSPA plasma exposure of tungsten PFCs (ref: A. Zhitukhin 
et al, JNM 363-365 (2007) 301-307

•  Final 400 pulses @ 0.85 J/cm2: probable cumulative mass loss

400 pulses 800 pulses 
1200 pulses 

1600 pulses 

All images 1000X magnification 

~1500°C 
Average 
MaxTemp

~600°C 
Average 
MaxTemp

Ave 0.6 J/cm2 /pulse
Ave 0.85 J/cm2 /pulse

~1050°C 
Average 
MaxTemp

(Est) total He implantation
~ 1.8e16 /cm2 

Ra ~ 1.5 µm 

‘Porosity’ evidence in images different from nitrogen

HAPL 



M184(P) oriented grain tungsten - 1600 pulses

Pulsed Power Sciences, Sandia National Laboratories
TJR 9/27/2008 

Ave 0.8 J/cm2/ 
pulse

Ave 1.2 J/cm2 /pulse

All samples initially Room Temperature (RT) 

~1000°C

(50 µm) 
•  Bottom Row: improved performance. 
•  Ra (TOP) ~ 1.5 µm, (BOT) ~ 0.26 µm – SMOOTHER SURFACE 

400 pulses 
800 pulses 1200 pulses 1600 pulses 

All images 1000X magnification 

~1300°C
~600°C

Ave 0.6 J/cm2 /pulse
Ave 0.85 J/cm2 /pulse

~1050°C

HAPL 

RHEPP-1 Roughening Threshold, PM W, Multi-pulse, helium beam exposure 



Bottom Row from last slide: Same M184p material tilted at 55° to beam
 

!  55° tilt reduces effective fluence 
in half

!  Does this lead to longer-term 
survivability?

!  Helium looks to cause more 
roughening than nitrogen beam

Pulsed Power Sciences, Sandia National Laboratories
TJR 9/29/2008 

M184p 
‘Tilt’ 
M184p 

M184p – 1600 He pulses 

M182p – 1600 N pulses 

HAPL 

RHEPP-1 Roughening Threshold, PM W, Multi-pulse, helium beam exposure 



Alternate material: W-coated Carbon ‘Velvet’ survives 1600 pulses 
amazingly well

Pulsed Power Sciences, Sandia National Laboratories
TJR 11/25/03 RHEPP-1 nitrogen beam exposure 

(RIGHT)
520C (nominal), 1600 
pulses, 1.5 J/cm2/pulse

NOTE: W remaining on 
tips (see below) and 
sides 

(ABOVE)
RT @ ~ 2.8 J/cm2, 1600 pulses

NOTE: bent tips, flat ends have W 
removed, rounded ends still have W 

 

EDS scan of tip (cross): W rich

Carbon fibers w/ 1.6 µm W coating, 
2% areal coverage



Comparison of SEMs, exposed/unexposed velvet

Pulsed Power Sciences, Sandia National Laboratories
TJR 11/25/03 

After 1600 pulses at 520C 
(nominal), 1.5 J/cm2 /pulse

Carbon fibers w/ 1.6 µm W coating, 
2% areal coverage

Untreated Velvet Fibers

RHEPP-1 nitrogen beam exposure 



Needles and needle groups as a first wall  

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 

T.J. Renk, P. P. Provencio, T. J. Tanaka, J. P. Blanchard, C. J. Martin, and T. R. Knowles, 
Survivability of First-Wall Materials in Fusion Devices: an Experimental Study of Material 
Exposure to Pulsed Energetic Ions, Fusion Science and Technology 61 (2012), 57-80.  



‘Needle’ geometry minimizes full-exposure area,  
maximizes ‘glancing blow’ area, minimizes He penetration depth

•  Design issues: overall length, tip geometry 
(sharpness, etc), assembly into groups

•  Several designs investigated here:
–  Single Tungsten needle (Knowles-left)
–  Mo-coated W needle: ~ 0.25 µm Mo deposited 

by RHEPP
–  ‘Array’ -more later
–  ‘Bundle’ -more later

•  Single W needles mounted in holder with carbon 
velvet at base to minimize blowoff

Pulsed Power Sciences, Sandia National Laboratories
TJR 7/08/2004 

Dimensions (Knowles W):
Tip Length 3000 µm

Radius 125 µm
Rtip 0.25 µm

Shaft 1.5 cm X 250µm diam 

Incoming Beam 

HAPL 



Arrays of Needles could be used in both IFE and MFE walls

•  Spacing, orientation aspect ratio to 
be determined

•  MFE: arrays of needles on 
‘pedestals’ facing circulating 
plasma direction

Pulsed Power Sciences, Sandia National Laboratories
TJR 7/08/2004 

Dimensions (Knowles W):
Tip Length 3000 µm 

Incoming Ions 
IFE 

MFE 
Circulating Plasma 

HAPL 



  Top SEM view: 400-pulse coated needle compared to virgin (right)
 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 RHEPP-1 He Ion Exposure 

Treated 400 pulses. 
Diameter at

 ‘bend’ ~ 25 µm (right) diameter at bend ~ 30 µm 

Tip geometry identical to virgin needle at 400 pulses 

HAPL 



  Mo-coated tungsten needle shows no sign of He bubble 
formation at 800 shots

 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 RHEPP-1 He Ion Exposure 

Near tip Where EDS shows Mo 

Tip may be blunted 

HAPL 



  There IS evidence of He bubbles in both flat M184p and 
single crystal W, at ~ 1.2 J/cm2

 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 RHEPP-1 He Ion Exposure 

M184perp Room Temp Single Crystal W RT 
Single Crystal 520°C 1200x

Below: BSE image 

!  Structures occur at 400 pulses and up
!  Mostly observed in cracks - consistent with 

~ 1 µm He range in RHEPP
!  More work is needed to assess exact nature 

of He retention
!  NO EVIDENCE of He bubble/blister 

formation on needles - up to 1600 pulses

All Images
7500MAG 

HAPL 



  Mo-coated W needle at 1200 pulses: 
markers are Mo coating, 90° bend

 

Pulsed Power Sciences, Sandia National Laboratories
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Diameter at ‘bend’ ~ 35 µm 

Mo coating is peeling back from tip, but intact down shaft 

Beam 

Bent at tip: means full force hits bend. Also means tip cannot erode back 
In step-back fashion. This tip almost unaffected by beam HAPL 



  Tungsten needles compared - down shaft away from tip
 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 RHEPP-1 He Ion Exposure 

Virgin: 1mm from tip 

W needle-flat - 400 pulses 

Mo coated (BSE image): ripples are coating 
still intact after 1600 pulses. Confirmed by EDS W needle-uncoated: 1600 pulses 

HAPL 



  A FIB cut is made into the Mo-coated tungsten needle for XTEM
 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 RHEPP-1 He Ion Exposure 

Cut Location 

HAPL 

300 µm 



  FIB-XTEM: Mo-coated W needle survives 1600 pulses with no 
apparent effect vs uncoated untreated W needle

 

Pulsed Power Sciences, Sandia National Laboratories
TJR 9/29/2008 RHEPP-1 He Ion Exposure 

Mo coated - 1600 pulses 

!  FIB cuts made in both needle surfaces 
300 µm from tip

!  Both XTEMS show fully dense 
tungsten with long oriented grains, no 
voids, no bubbles/blisters 

!  Close-up (bottom) shows columnar 
structure of as-deposited Mo - 200 nm 
thick - original thickness unknown

!  No apparent effect from exposure

W needle uncoated virgin 

Magnified
Coated
Treated

HAPL 



Two arrayed needle geometries investigated   

•  Left: ‘Array’ - Sewing needles and 
dressmaker pins on Al-6061 substrate, mylar 
strip in center. Hole diameter 0.029in, 175 
drilled into 1/8 in substrate 0.060in apart.

•  Needle Composition; high carbon steel with 
Nickel plating

•  Bottom Left: ‘Bundle’ - sewing needles tied 
together by wires

•  Below: Arrays mounted before Shots 
1201-1600

Pulsed Power Sciences, Sandia National Laboratories
TJR 9/25/2008 

Cost ~ $5 

HAPL 

RHEPP-1 He Ion Exposure 



  Comparison of Steel needles 400 pulses: 
virgin, in array, bundled, flat

 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 RHEPP-1 He Ion Exposure 

Virgin-Tip  

Away from tip, both bundled and array needle shows almost no effect from 400 pulses 

Tip in array  Tip in ‘bundle’  Tip. flat  

Virgin – 1mm from tip  In array – 1mm from tip  In bundle – 2mm from tip  FLAT – 1mm from tip  

HAPL 



 The needles protect the Al-6061 base very effectively:
Mylar strip used as a marker

 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 RHEPP-1 He Ion Exposure 

!  Exposed mylar eroded away
!  Inside the ‘forest’, complete 

protection of Al substrate, mylar 
partially intact

BACK of Al (no needles):
Mylar removed, Al melted LEADING edge: Al heavily melted.

In needle ‘forest’, no Al damage

HAPL 



  Attempt to measure Mass Loss: 4 samples tested post-1600 show 
mass GAIN

 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 RHEPP-1 He Ion Exposure 

!  Gain occurs due to Cu adsorption from 
incoming beam

!  M184p TILT gained by far the most mass
!  PM tungsten AND M184P FLAT gained 

similar mass/cm2

!  On Areal basis, W/M Needle gained similarly 
with M184p FLAT

!  Assume 116 µg on M184P tilt is entrained 
Cu. Then Pm tungsten LOST ~ 95 µg. 

!  Then needle area is consistent with < 1 µg 
gain. Actually gained 2.7 µg. 

!  Total data on W needles consistent with 
little or no mass loss due to 1600 
exposures. 

Sample Mass Gain
(µg)

% Gain µg/cm2

PM Tungsten 6.358 0.35 6.358

M184p FLAT 5.378 0.0532 5.378

M184p TILT 115.9 1.07 115.9

W/M Needle 2.768 1.72 (35.2)



Summary – fusion materials exposure

•  RHEPP pulsewidth similar to He4 component in reactor, 1-2 J/cm2 produces 
comparable power loading as 154 MJ pulse to 6.5 m-radius wall, comparable 
He implantation as 415 MJ pulse to 10m-radius wall.

•  ‘Needles’ show promise as robust alternative to flat geometry. Little or no affect from 
1600 He beam pulses.
–  CAVEAT: THE RHEPP IONS ARE NOT PARALLEL. Must investigate affective fluence 

compared to parallel ion path expected in reactor. 

•  Helium exposure of tungsten flats at up to 1600 pulses shows in all cases 
more surface roughening/signs of exfoliation than with comparable nitrogen 
pulses. Not Clear That Any of FLAT Materials RHEPP-tested will survive. 
–  ROCK: effects here are NOT due to He entrainment, i.e. 1e18 cm-2 reported He 

blister formation threshold holds here, and results seen here are due to 
thermomechanical stress only. Then samples do not appear to be able to reach 
1e18 cm-2 without unacceptable morphology change/weight loss.

–  HARD PLACE: effects seen ARE due to He entrainment, then threshold for pulsed 
He exposure is more like upper 1e15 cm-2.

Pulsed Power Sciences, Sandia National Laboratories
TJR 6/11/2004 

HAPL 
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Ablation study of sub-range foils  
 

Pulsed Power Sciences, Sandia National Laboratories
TJR 04/16/2004 



The RHEPP-1 nitrogen beam was used in sub-range foil ablation 
experiments

•  High-energy pulsed ions (700 kV, 200 A/
cm2) vaporize and redeposit material. 
Geometry as shown.

•  Foils mounted on same ablation setup 
for mechanical rigidity. Normal 6-8 J/
cm2 at beam center reduced by factor 
0.707.

•  Foils exposed:
•  650 nm, 800 nm Al 2 - 6.4 to 11.5 

cm (Lebow)
•  400 nm Ag 4 cm

•  Conditions DURING ablation not 
known: analysis of framing images MAY 
yield clues about ablation dynamics
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1-D Heat flow modeling: RHEPP nitrogen beam on sub-range foils
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•  Purpose – predict thermal 

response of sub-range (for 
RHEPP) Au, Ag, Ti, Al. Look 
for fastest heating rate. 

•  Proton precursor to 90 ns, 
then Ni (++) heating starts

•  Au heats from surface 
melting to ablation in ~ 15 
ns
–  Ag not far behind
–  800 nm Al too slow

 



1st Experiment: plume evolution,  solid titanium target
Pulsed Power Sciences, Sandia National Laboratories

TJR 7/30/2010 

T = 0 sec (arbitrary) T = 2.35 µsec T = 7.35 µsec 

T = 12.35 µsec T = 17.35 µsec 
T = 22.35 µsec 

Exposure = 100 ns 

Note: 1) slowness of plume evolution, 2) 100 nsec exposure time 



The RHEPP-1 nitrogen beam strikes foil at 45°, and 
film is deposited in both directions normal to foil plane

•  High-energy pulsed ions (700 kV, 200 A/
cm2) vaporize and redeposit material. 
Geometry as shown.

•  ‘Lid’ deposit at ~ 50-60 cm distance, 
‘bottom’ deposit at ~ 20 cm distance. 
Si wafer mounted for 1-D dek-tak 
thickness profile measurements

•  No deposition observed at tank bottom

•  Foils exposed:
•  650 nm Al 11.5 cm diam (Lebow)
•  400 nm Ag 4 cm diam (Lebow)
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40 mm diameter Ag target, Shot 2039
Pulsed Power Sciences, Sandia National Laboratories
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T = 4100 ns (arbitrary) T = 4250 ns T = 4400 ns 

Exposure = 5 ns 

Note: 1) diameter shrinks with time, 2) 900 ns total time duration 
T = 4700 ns T = 4850 ns T = 5000 ns 



Photos of Si wafers after 7 shots

Pulsed Power Sciences, Sandia National Laboratories
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•  (Left) Deposit on top lid 

•  (Bottom) bottom Si wafers demounted on bench

•  (lower right) note cm-markers on close-up of film, 
heterogeneous appearance.   

 

Si wafers on top lid after 
shots 

Bottom Si wafers on bench 

Closeup, deposited material 



The RHEPP-1 nitrogen beam strikes foil at 45°, and 
film is deposited in both directions normal to foil plane

•  1-D dek-tak thickness measurements 
made of both top and bottom 
depositions. Two chords measured 
from (approx) deposition center (left).

•  ‘Smoothed profile overlaid, material 
inventoried using average thicknesses 
and 2πrΔr additions. 

•  Totals: 81 µm-cm2 top, 181 µm-cm2 
bottom, 265 µm-cm2 total. FIB-SEM of 
samples shows ~ 25-50% increase in 
thickness compared to dek-tak

•  Total volume of 7 foils shot (not 
including He shot): 479 µm-cm2. So 
between 70 and 85% of initial mass 
accounted for.  

•  Foil surface rough - typical RA ~0.3 µm
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The RHEPP-1 deposited film appears to be formed of droplets, 
but film appears slightly porous to fully dense

•  ‘Smoothed profile overlaid, material 
inventoried using average thicknesses 
and 2πrΔr additions. 

•  FIB-SEM of Top 3 cm radius point 
(right) shows twice the thickness as 
Dek-tak indicates. So 265 becomes 
530.

•  Total volume of 7 foils shot (not 
including He shot): 479 µm-cm2. So 
about equal to deposited material.  

•  Surface of Ni film deposited from thick 
target is much smoother (below)

•  SEM shows ‘droplets’ - indication 
from FIB is ‘overlapped pancakes’

•  EDX shows Al, O in film. Since we 
break vacuum every shot (unlike with 
films from solid targets), much more 
oxidation occurs. 
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SEM, deposited material, 
‘top’ 3 cm radius FIB/XTEM, top 3 cm film 

SEM, Ni film from 
solid target 

SEM, deposited material, 
‘top’ 5 cm radius 

FIB/XTEM, 
top 5 cm film 



Summary of sub-range foil shots

Pulsed Power Sciences, Sandia National Laboratories
TJR 7/30/2010 

 
• Extended timescale imaging: 40 mm Ag shows lighted image for 900 ns. 

• Al (much larger diameter target) light shows much shorter duration.

• Deposited film measurements show twice as much film deposited from foils in 
‘transmission’ direction, compared to ‘reflected’ direction. No material is 
deposited in direction of beam propagation.

• FIB cut and SEM images of film surface show ‘droplety’ appearance. Viewing 
of the cut indicates fully dense to slightly porous layer . This may be expected 
since the most of material is probably deposited in molten state. Measured 
thickness shows that dek-tak is off by factor ~ 2.  Therefore, the two spots 
together account for roughly all the material in the foils.

 


