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Water-Phase Energy Production

How can we view this chemical conversion process within a reactor (environmental
control) to investigate catalyst performance with sub-nanometer resolution?
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Environmental TEM
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In-situ TEM Liquid Cell
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'Pd Catalyst Growth for High Surface Area

Pd for Hydrogen Storage
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Pd-salt Electron-Beam Induced Growth

* x200k magnification

» First 8 sec at x4 speed, last 6 sec at x8 speed (~80 sec real time)
L.R. Parent et al. ACS Nano 2012.



Pd-salt/Template E-Beam Induced Growth

: . :

* x400k to x800k magnification
* First 7 sec at x24 speed, last 15 sec at x48 speed (~15 min real time)
L.R. Parent et al. ACS Nano 2012.




Partial Chemical Reduction

Pd/surfactant paste is mixed with ascorbate (2:1) 2 hrs prior to STEM imaging

* x1.5M to x5M magnification, x8 speed (~2 min real time)
L.R. Parent et al. ACS Nano 2012.




Partial Chemical Reduction: Later Stages of Growth

* x1M to x1.2M to x2M magnification

* x32 speed (~7.5 min in real time)
L.R. Parent et al. ACS Nano 2012.




omplete Chemical Reduction in Liquid Stage

Formed with ascorbate in situ produces same morphology as ex situ growth

Porous, highly spherical nanoparticles are formed by complete
ascorbate reduction

L.R. Parent et al. ACS Nano 2012.



‘Generation of Reactive Species by the e Beam

Radiolysis of water and Ag reduction from AgNO,
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Woehl et al. ACS Nano 2012.
Abellan et al. ChemComm. 2014.

-OH + Ag* — AgOH*

Amount of products formed depends on the electron dose

H,0 ~“AA > 0.062 H*(0.28 "OH,)0.047 H,, 0.073 H,0,,0.28 pmol J™'

Buxton, VCH Weinheim 1987.



Use Scanning TEM to Control Dose
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Woehl et al. ACS Nano 2012.

Requires quantification of imaging conditions, accelerating voltage, electron dose, and liquid thickness



Effect of Beam Ener
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Abellan et al. CISCEM 2014.




Cell Water Thickness Effect on Growth
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Effect of Cell Thickness on NP Growth
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Resolution and Limitations

TiO, nanoparticles in water
* 30 nm SiN membrane windows

 Water thickness increased

* 96 nm

e 366 nm
e 525nm
* 660 nm

* Contrast from fringes decreases
with increased background
scattering from water

E-beam radiolysis damage produces
hydrogen gas bubbles Abellan et al. ChemComm 2014.




‘Non-classical ‘Particle-mediated’ Growth

Oriented attachment

Banfield and Penn, Geochim cosmochim. Acta 1999.

Coalescence and growth

Catalysis nanoparticle degradation

Non-classical nanoparticle growth
mechanisms control growth of many
natural and synthetic nanomaterials

Prieto et al. Nature Materials 2013.




 Ensemble-Scale Growth of Ag Nanoparticles

Tracking Individual NP Mobility
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Woehl et al. Nano Letters 2014.




Ensemble-Scale Growth Rate and PSD
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Lifshitz-Slyozov-Wagner
(LSW) Model for Ostwald "> <Bisy> ="
Ripening

Lifshitz and Slyozov, ] Phys. Chem. Sol. 1961.

How does the PSD compare
to the LSW model?

Woehl et al. Nano Letters 2014.




| Experimental PSD Deviates from the LSW Model ‘
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Woehl et al. Nano Letters 2014.



Nanoparticle Aggregation Kinetics
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30% decrease in number of
particles due to aggregation

Woehl et al. Nano Letters 2014.




Proposed growth mechanism

Hypothesis: Nanoparticle growth occurs by
monomer attachment and ensemble-scale
aggregation

Woehl et al. Nano Letters 2014.



Smoluchowski Coagulation Kinetics
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von Smoluchowski, M. Physikalische Zeitschrift, 1916

Smoluchowski kinetics Power-law growth
yield a closed form PSD and (T>~ta
power law growth

Sholl and Skodje, Physica A 1996. Woehl et al. Nano Letters 2014.



Smoluchowski PSD Quantitatively Fits Experimental PSD
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Woehl et al. Nano Letters 2014.



Ensemble Growth Rate Exceeds Monomer Attachment Rates
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Aggregation expedites nanoparticle growth on the ensemble scale
(relative to growth by monomer attachment)

Woehl et al. Nano Letters 2014.



Ag Growth Model Conclusions

<[> was consistent with LSW model for Ostwald ripening, but not the PSD

Numerous aggregation events caused the number of nanoparticles to decrease by

30 % over the growth time

Smoluchowski coagulation kinetics quantitatively described the mean growth

exponent and the experimental PSD

Future application:
Understanding
nanoparticle catalysis
degradation

Prieto et al., Nature Materials, 2013 Nanoparticle diameter (nm)
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Woehl et al. Nano Letters 2014.



CINT Electrochemical Discovery Platform
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Temperature Control up to 200°C
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Liquid thickness plays a larger role in heating calibration than the liquid
thermal conductivity, therefore measurement of the temperature
changes on column is preferable




Towards Visualizing Water-Phase Energy Production
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Figure 1 Reaction pathways for production of H. by reactions of oxygenated
hydrocarbons with water. (Asterisk represents a surface metal site.)

Cortright et al. Nature 2002.

H, Production Requirements In-situ TEM Capability

Temperature: 500 K Temperature: 290 — 445 K
Pressure: 10 atm Pressure: <1 atm (0.001 atm)
Nanoscale catalyst Nanoscale catalyst

Gas inlet Redesign for gas and liquid inlet

RGA RGA
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Outline

e What is in-situ liquid EM imaging?
- Instrumentation, resolution, limitations

- Calibration of electron dose STEM Probe

e Why is this characterization technique useful for catalysis?
- Nanoparticle catalyst synthesis in solution
- Dynamic observations in solution

e What is the future for water-phase catalysis characterization?
- Elevated temperature and pressure in cell
- In-situ vs. operando



Water-phase Catalysts

 Oxidation and hydrogenation ( treat with H2 in presence of catalyst (Ni, Pd, or Pt) to remove double bonded carbon) processes
*TiO2 assisted photocatalysts, and red mud as a catalyst

 Higher surface area to improve catalytic activity

e How to improve catalyst activity and durability? Active and stable? Lower temperature than gas phase

eSurface plays an important role in reaction rate, therefor support material is important

eMaterials: metal (Ru, Pt, Rh, Ir; and Pd) and metal oxides (Cu, Mn, Co, Cr, V, Ti, Bi, and Zn, zeolite (Na,K, Ca, Sr; and Ba) and
silicate materials) good electrical conductivity, high stable oxidation states. Metal oxides are usually less active but more resistant
to poisoning

eCharacteristics: high activity, resistance to poisiong, stability at prolonged use and temp, mechanical stability and resistance to
attrition (reduce strength or effectiveness), non-selectivity, physical and chemical stability

eSupport: for metal (activated carbon, TiO2, alumina, cerium oxide, lead oxide and Mg0), role for immobilizing active catalyst.
Functions: increase surface area of catalytic material, decrease sintering and improve hydrophobicity and thermal, hydrolytic,
and chemical stability of the material, govern the useful lifetime of the catalyst. May act as co-catalyst.

eProblems: rapid deactivation by poisoning, sintering or leaching. Noble metals are sensitive to poisoning by halogens, sulfur, or
phosphorous containing compounds.

eReaction temperatures up to 325C, but many reactions below 200C
eRadicals produced by the electron beam are similar to those produced by a photocatlyst

eFuture: Bi-metallic catalysts and high-porosity supports



Using Dose to Control Growth
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Diffusion limited growth slower than predicted by LSW
model. Finite confinement of liquid by cell may play a role.

Woehl et al., ACS Nano (2012)



Effect of Beam Energy

Dose 39.1 e'/nm? per frame

Based on final particles morphology, higher kV is Stopping power of water

equlvalent to applylng a lower reductive dose. NIST website (and references therein)

Seoxey = 4.76 MeV cm?/g

Sa00kev = 2.798 MeV cm?/g
However, overall Ag area higher at 300kV. Higher Saookey = 2.36 MeV cm?2/g

effect of back reactions at lower kV.

Abellan et al. ChemComm 2014



iquid Samples Memory (of Irradiation) |

Si Support

Radiolytic species move, ultimately producing

Bgerens | solution depletion and an increasing number of
' excess unreacted radicals.
B tniou Total dose on the cell is important
1st (...) Sequence of experiments

21.6 e/

Abellan et al. ChemComm 2014



Templated Growth Model
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L. R. Parent et. al., ACS Nano, 6, 3589 (2012).



