

Improving ASIC Reuse with Embedded FPGA Fabrics

John Teifel, Matthew E. Land, Russell D. Miller
Sandia National Laboratories

Albuquerque, NM 87185, U.S.A.
jteifel@sandia.gov

Abstract: We investigate an embedded FPGA fabric that

may be able to improve ASIC reuse across multiple

applications. This fabric is automatically generated from a

high-level architecture specification, synthesized to existing

standard-cell libraries, and laid out using commercial

tools. The area and performance of the fabric is evaluated

across several silicon technology nodes.

Keywords: Embedded FPGA; hybrid ASIC; IP reuse.

Introduction

As ASIC development cycles and fabrication costs

continue to escalate with each successive technology

generation, government applications are increasingly less

able to pursue custom ASIC designs. Mask configurable

ASICs have helped to significantly reduce ASIC NRE costs

and development schedules [1], but such devices still suffer

from the inability to be reconfigured after manufacturing to

address new application requirements. While embedding

hard FPGA blocks within a larger ASIC to provide low-

cost post-fabrication re-configurability is the dream of

many system-on-chip designers [2], these hard FPGA

blocks are not widely available as commercial IP. As a

result, soft FPGA blocks [3][4][5][6], those that can readily

be implemented with standard cell libraries, have been

proposed as an alternative to the hard FPGA layouts. In this

paper, we investigate the feasibility of using these

synthesizable embedded FPGA fabrics in government

ASIC applications.

A notional embedded FPGA chip is illustrated in Figure 1,

where the FPGA block is allocated 17% of the total ASIC

die area. It is assumed that some fraction of the FPGA’s I/O

signals will interface with internal ASIC circuits and some

fraction will go off-chip. Additionally, it is assumed that

the embedded FPGA block is reconfigurable upon power

up and that its configuration bits are stored in shift register

logic, compatible with standard cell library implementation

flows. The remaining sections of this paper outline the

design of this embedded FPGA block and its physical

realization.

Embedded FPGA Fabric

The embedded FPGA fabric uses a traditional island-style

programmable logic architecture, as shown in Figure 2a,

where configurable logic blocks (CLBs) and bidirectional

I/O pad resources are connected together with routing

blocks (RBs). The CLBs contain LUTs (lookup tables) and

DFF registers to realize digital logic. The RBs, which

implement both connection box and switch box routing

functions [7], wire the CLBs into useful applications.

Unidirectional routing is used in the RBs so that they can

be realized with standard-cell ASIC libraries (bidirectional

routing requires tristate buffer logic that is incompatible

with most standard-cell libraries and synthesis flows, and in

most cases requires more area [8]). The configuration bits

for the CLBs, RBs, and I/O resources are stored in simple

shift registers, as shown in Figure 2b, where a

configuration_done signal is used to tristate the I/O ports

until the FPGA’s programming is complete (to prevent

drive contention during shifting). Almost all of the circuit

features of the embedded FPGA fabric are parameterized,

as illustrated in Figure 2c-g, including the size of the LUTs,

the number of LUTs in the CLB, the number of input and

outputs to the CLB, and the number of routing tracks and

crossbar connectivity in the RBs. The routing length, the

number of CLBs a routing wire crosses before having to go

through a multiplexor in an RB, is also parameterized.

Figure 3a shows the software tool flow that is used to

convert RTL designs into embedded FPGA programming

bit streams. First, a commercial ASIC tool (Synopsys

DesignCompiler) is used for front-end logic synthesis to

optimize the RTL and transform it into a simplified Verilog

netlist of gates with LUT-style functions. Second, the open-

source VTR tools [9] are used to map, place, and route the

LUT-style netlist onto the embedded FPGA fabric. The

VTR tools enable the architecture of the embedded FPGA

fabric to be described using a concise, high-level XML-

based specification, allowing it to be easily parameterized.

It should also be noted that while the VTR tools accept

Verilog RTL as an input format, only a very limited subset

of the language is supported and hence the reason for the

front-end logic synthesis stage using a commercial

Figure 1: Notional 5x5-mm

2
 FPGA block embedded

within a larger 12x12-mm
2
 ASIC.

FPGA

Block

5mm

12mm

ASIC

SAND2015-10890C

synthesis tool. Finally, a custom Sandia tool

(gen_efpga_bitstream) is used for the back-end

programming bit-stream generation.

Advanced FPGA features, such as arithmetic carry chains,

hard multipliers, and block memories were not considered

in this paper, but would be straightforward to incorporate

into the circuit and software framework described above.

Architecture Studies

Using the benchmark circuits listed in Table 1, detailed

area studies were performed to determine optimal values

for the embedded FPGA’s circuit parameters. In the CLB,

the LUT size was varied from 3-5, the number of LUTs

was varied from 3-5, and the number of inputs was varied

from 4-15. The Fc in the RBs, which is the fraction of

routing wires an individual port can connect to in a given

(a) (b)

(c) (d)

 (e) (f) (g)

Figure 2: Flexible, parameterized embedded FPGA fabric (a) architecture, (b) configuration circuit, (c) Configurable Logic

Block, (d) Basic Logic Element, (e) Routing Block, (f) crossbar circuit , and (g) Look-Up-Table circuit.

crossbar, was set to 0.15, 0.25, 0.35, 0.45, or 1.0 for the

CLB inputs, CLB outputs, and I/O routing. By leveraging

VTR’s automatic-size-scaling capability, where the number

of CLBs and the number of routing tracks are minimized

for smallest area, each benchmark was implemented onto a

given FPGA architecture configuration. The area of the

benchmark was then estimated, using a custom Sandia tool,

based on the number of required flip flops and the number

of equivalent two-input multiplexors. The accuracy of this

estimator tool was verified to be within +15% of the

synthesized gate area. Figure 4 plots the geometric mean of

the normalized area across all of the benchmarks for 248 of

the most promising FPGA architecture configurations. The

most area-optimal architecture setting was for a CLB with

nine inputs and four three-input LUTs.

Table 2 summarizes the results of these detailed

architecture experiments, and the values chosen for use in

this paper. Most of these parameters were set to minimize

the embedded FPGA’s area. The routing length, is one

exception, which was set to span four CLBs to improve

clock speeds. Also, without loss of generality, the number

of routing tracks and the CLB array size were set to their

values to support the physical design experiments in the

next section, and would most likely be sized differently

depending on the end-use application.

Physical Design

Figure 3b shows the physical design flow used to realize

the embedded FPGA fabric. First, the VTR tools are used

to generate a resource graph of the embedded FPGA from a

high-level XML architecture specification, and a custom

Sandia tool (gen_efpga_structural_verilog) is used to

generate a Verilog RTL model of the embedded FPGA

block from the VTR resource graph. Second, the Verilog

RTL model is synthesized using a commercial tool

(Synopsys DesignCompiler) and laid out using a

commercial auto-place-and-route tool (Cadence

Encounter). Finally, a commercial tool (Synopsys

PrimeTime) is used to determine the speed of the FPGA

after it has been programmed with a benchmark or end-user

design.

Table 1: Benchmarks used for architecture studies.

Benchmark Name # Flip-flops # LUTs (K=3)

SNL Design 1375 5671

ch_intrinsics [9] 489 1466

diffeq1 [9] 193 6268

diffeq2 [9] 96 6071

mkPkgMerge [9] 7380 17100

mkSMAdapter4B [9] 5431 14837

or1200 [9] 2739 15014

raygentop [9] 6784 25786

sha [9] 911 4738

stereovision0 [9] 13405 17147

stereovision3 [9] 102 400

(a) (b)

Figure 3: (a) FPGA software tool flow for benchmark

designs. (b) FPGA fabric physical realization flow.

Table 2: Embedded FPGA fabric parameters.

Parameter
Fabric Support Values used in

this paper

K (LUT size) >1 3

N (# LUTs per CLB) >0 4

I (Inputs into CLB) >1 9

Fc for CLB inputs 0.0 - 1.0 0.15

Fc for CLB outputs 0.0 - 1.0 0.25

Fc for IO inputs 0.0 - 1.0 0.25

Fc for IO outputs 0.0 - 1.0 0.25

W (# of Routing Tracks) >1 38

CLB Array Size Arbitrary 10x10

L (Routing Lengths) Arbitrary Length-4

Routing Hierarchy Arbitrary Single length

Clock Domains 1 1

Figure 4: Area results of architecture parameter studies.

Figure 5 shows the density and performance of the

embedded FPGA fabric after it was synthesized and laid

out in 350-nm, 90-nm, and 45-nm CMOS technologies. As

expected, the area and speed is more competitive in smaller

geometry technologies. For example, a 45-nm process

technology is required to achieve 100-MHz clock speeds

with 16-bit counter logic. The layouts for these embedded

FPGA fabrics are shown in Figure 6, and a version of the

350-nm FPGA fabric is currently being fabricated.

Summary

Embedded FPGA fabrics were evaluated as a method for

improving ASIC-level IP reuse, and an automated design

flow was developed to rapidly insert them into standard-

cell ASICs using a combination of commercial and open-

source tools. Ultimately, government applications will need

to weigh the performance/density overheads of these

programmable logic fabrics versus the benefit they provide

in enabling portions of an ASIC to be reconfigurable.

Acknowledgements
Sandia is a multi-program laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United

States Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000.

References
1. J. Teifel, et. al., ViArray Standard Platforms: Rad-Hard

Structured ASICs for Digital and Mixed-Signal Applications.

IEEE Aerospace Conference, 2012.

2. M. Borgatti, et. al., A 1GOPS Reconfigurable Signal

Processing IC with Embedded FPGA and 3-Port 1.2GB/s

Flash Memory Subsystem. IEEE ISSCC, 2003.

3. S. J. E. Wilton, et. al., Design Considerations for Soft

Embedded Programmable Logic Cores. IEEE JSSC, vol. 40,

no. 2, Feb 2005.

4. V. Aken’Ova, et. al., An Improved “Soft” eFPGA Design

and Implementation Strategy, IEEE CICC, 2005.

5. www.adicsys.com

6. www.menta.fr

7. U. Farooq, et. al., “FPGA Architectures: An Overview,” in

Tree-based Heterogeneous FPGA Architectures, New York,

NY, USA: Springer, 2012, pp. 7-48.

8. G. Lemieux, et. al., Directional and Single-Driver Wires in

FPGA Interconnect, IEEE ICFPT, 2004.

9. J. Luu, et. al., VTR 7.0: Next Generation Architecture and

CAD System for FPGAs, ACM Trans. on Reconfigurable

Technology and Systems, vol. 7, no. 2, Jun 2014.

(a)

(b)

Figure 5: (a) Number of 3-input configurable logic

blocks in a 5x5mm embedded FPGA for various process

nodes. (b) Speed of various counter benchmarks using

worst case military-spec conditions (slow transistors and

wires, 125C temperature, 90% Vdd).

(a) (b)

(c)

Figure 6: Embedded FPGA layouts (1
st
 pass layouts; not

optimized for smallest block size) in various standard-

cell technologies: (a) 45-nm (1.5x1.5-mm
2
) (b) 90-nm

(2x2-mm
2
), (c) 350-nm (6x6-mm

2
).

http://www.adicsys.com/
http://www.menta.fr/

