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Abstract: We investigate an embedded FPGA fabric that 

may be able to improve ASIC reuse across multiple 

applications. This fabric is automatically generated from a 

high-level architecture specification, synthesized to existing 

standard-cell libraries, and laid out using commercial 

tools. The area and performance of the fabric is evaluated 

across several silicon technology nodes. 
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Introduction 

As ASIC development cycles and fabrication costs 

continue to escalate with each successive technology 

generation, government applications are increasingly less 

able to pursue custom ASIC designs. Mask configurable 

ASICs have helped to significantly reduce ASIC NRE costs 

and development schedules [1], but such devices still suffer 

from the inability to be reconfigured after manufacturing to 

address new application requirements. While embedding 

hard FPGA blocks within a larger ASIC to provide low-

cost post-fabrication re-configurability is the dream of 

many system-on-chip designers [2], these hard FPGA 

blocks are not widely available as commercial IP. As a 

result, soft FPGA blocks [3][4][5][6], those that can readily 

be implemented with standard cell libraries, have been 

proposed as an alternative to the hard FPGA layouts. In this 

paper, we investigate the feasibility of using these 

synthesizable embedded FPGA fabrics in government 

ASIC applications. 

A notional embedded FPGA chip is illustrated in Figure 1, 

where the FPGA block is allocated 17% of the total ASIC 

die area. It is assumed that some fraction of the FPGA’s I/O 

signals will interface with internal ASIC circuits and some 

fraction will go off-chip. Additionally, it is assumed that 

the embedded FPGA block is reconfigurable upon power 

up and that its configuration bits are stored in shift register 

logic, compatible with standard cell library implementation 

flows. The remaining sections of this paper outline the 

design of this embedded FPGA block and its physical 

realization. 

Embedded FPGA Fabric 

The embedded FPGA fabric uses a traditional island-style 

programmable logic architecture, as shown in Figure 2a, 

where configurable logic blocks (CLBs) and bidirectional 

I/O pad resources are connected together with routing 

blocks (RBs). The CLBs contain LUTs (lookup tables) and 

DFF registers to realize digital logic. The RBs, which 

implement both connection box and switch box routing 

functions [7], wire the CLBs into useful applications. 

Unidirectional routing is used in the RBs so that they can 

be realized with standard-cell ASIC libraries (bidirectional 

routing requires tristate buffer logic that is incompatible 

with most standard-cell libraries and synthesis flows, and in 

most cases requires more area [8]). The configuration bits 

for the CLBs, RBs, and I/O resources are stored in simple 

shift registers, as shown in Figure 2b, where a 

configuration_done signal is used to tristate the I/O ports 

until the FPGA’s programming is complete (to prevent 

drive contention during shifting). Almost all of the circuit 

features of the embedded FPGA fabric are parameterized, 

as illustrated in Figure 2c-g, including the size of the LUTs, 

the number of LUTs in the CLB, the number of input and 

outputs to the CLB, and the number of routing tracks and 

crossbar connectivity in the RBs. The routing length, the 

number of CLBs a routing wire crosses before having to go 

through a multiplexor in an RB, is also parameterized. 

Figure 3a shows the software tool flow that is used to 

convert RTL designs into embedded FPGA programming 

bit streams. First, a commercial ASIC tool (Synopsys 

DesignCompiler) is used for front-end logic synthesis to 

optimize the RTL and transform it into a simplified Verilog 

netlist of gates with LUT-style functions. Second, the open-

source VTR tools [9] are used to map, place, and route the 

LUT-style netlist onto the embedded FPGA fabric. The 

VTR tools enable the architecture of the embedded FPGA 

fabric to be described using a concise, high-level XML-

based specification, allowing it to be easily parameterized. 

It should also be noted that while the VTR tools accept 

Verilog RTL as an input format, only a very limited subset 

of the language is supported and hence the reason for the 

front-end logic synthesis stage using a commercial 
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synthesis tool. Finally, a custom Sandia tool 

(gen_efpga_bitstream) is used for the back-end 

programming bit-stream generation. 

Advanced FPGA features, such as arithmetic carry chains, 

hard multipliers, and block memories were not considered 

in this paper, but would be straightforward to incorporate 

into the circuit and software framework described above. 

Architecture Studies 

Using the benchmark circuits listed in Table 1, detailed 

area studies were performed to determine optimal values 

for the embedded FPGA’s circuit parameters. In the CLB, 

the LUT size was varied from 3-5, the number of LUTs 

was varied from 3-5, and the number of inputs was varied 

from 4-15. The Fc in the RBs, which is the fraction of 

routing wires an individual port can connect to in a given 
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Figure 2: Flexible, parameterized embedded FPGA fabric (a) architecture, (b) configuration circuit, (c) Configurable Logic 

Block, (d) Basic Logic Element, (e) Routing Block, (f) crossbar circuit , and (g) Look-Up-Table circuit. 



 

 

crossbar, was set to 0.15, 0.25, 0.35, 0.45, or 1.0 for the 

CLB inputs, CLB outputs, and I/O routing. By leveraging 

VTR’s automatic-size-scaling capability, where the number 

of CLBs and the number of routing tracks are minimized 

for smallest area, each benchmark was implemented onto a 

given FPGA architecture configuration. The area of the 

benchmark was then estimated, using a custom Sandia tool, 

based on the number of required flip flops and the number 

of equivalent two-input multiplexors. The accuracy of this 

estimator tool was verified to be within +15% of the 

synthesized gate area. Figure 4 plots the geometric mean of 

the normalized area across all of the benchmarks for 248 of 

the most promising FPGA architecture configurations. The 

most area-optimal architecture setting was for a CLB with 

nine inputs and four three-input LUTs. 

Table 2 summarizes the results of these detailed 

architecture experiments, and the values chosen for use in 

this paper. Most of these parameters were set to minimize 

the embedded FPGA’s area. The routing length, is one 

exception, which was set to span four CLBs to improve 

clock speeds. Also, without loss of generality, the number 

of routing tracks and the CLB array size were set to their 

values to support the physical design experiments in the 

next section, and would most likely be sized differently 

depending on the end-use application. 

Physical Design 

Figure 3b shows the physical design flow used to realize 

the embedded FPGA fabric. First, the VTR tools are used 

to generate a resource graph of the embedded FPGA from a 

high-level XML architecture specification, and a custom 

Sandia tool (gen_efpga_structural_verilog) is used to 

generate a Verilog RTL model of the embedded FPGA 

block from the VTR resource graph. Second, the Verilog 

RTL model is synthesized using a commercial tool 

(Synopsys DesignCompiler) and laid out using a 

commercial auto-place-and-route tool (Cadence 

Encounter). Finally, a commercial tool (Synopsys 

PrimeTime) is used to determine the speed of the FPGA 

after it has been programmed with a benchmark or end-user 

design.  

Table 1: Benchmarks used for architecture studies. 

Benchmark Name # Flip-flops # LUTs (K=3) 

SNL Design 1375 5671 

ch_intrinsics [9] 489 1466 

diffeq1 [9] 193 6268 

diffeq2 [9] 96 6071 

mkPkgMerge [9] 7380 17100 

mkSMAdapter4B [9] 5431 14837 

or1200 [9] 2739 15014 

raygentop [9] 6784 25786 

sha [9] 911 4738 

stereovision0 [9] 13405 17147 

stereovision3 [9] 102 400 
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Figure 3: (a) FPGA software tool flow for benchmark 

designs. (b) FPGA fabric physical realization flow. 

Table 2: Embedded FPGA fabric parameters. 

Parameter 
Fabric Support Values used in 

this paper 

K (LUT size) >1 3 

N (# LUTs per CLB) >0 4 

I (Inputs into CLB) >1 9 

Fc for CLB inputs 0.0 - 1.0 0.15 

Fc for CLB outputs 0.0 - 1.0 0.25 

Fc for IO inputs 0.0 - 1.0 0.25 

Fc for IO outputs 0.0 - 1.0 0.25 

W (# of Routing Tracks) >1 38 

CLB Array Size Arbitrary 10x10 

L (Routing Lengths) Arbitrary Length-4 

Routing Hierarchy Arbitrary Single length 

Clock Domains 1 1 

 

Figure 4: Area results of architecture parameter studies. 



 

 

Figure 5 shows the density and performance of the 

embedded FPGA fabric after it was synthesized and laid 

out in 350-nm, 90-nm, and 45-nm CMOS technologies. As 

expected, the area and speed is more competitive in smaller 

geometry technologies. For example, a 45-nm process 

technology is required to achieve 100-MHz clock speeds 

with 16-bit counter logic. The layouts for these embedded 

FPGA fabrics are shown in Figure 6, and a version of the 

350-nm FPGA fabric is currently being fabricated. 

Summary 

Embedded FPGA fabrics were evaluated as a method for 

improving ASIC-level IP reuse, and an automated design 

flow was developed to rapidly insert them into standard-

cell ASICs using a combination of commercial and open-

source tools. Ultimately, government applications will need 

to weigh the performance/density overheads of these 

programmable logic fabrics versus the benefit they provide 

in enabling portions of an ASIC to be reconfigurable. 
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Figure 5: (a) Number of 3-input configurable logic 

blocks in a 5x5mm embedded FPGA for various process 

nodes. (b) Speed of various counter benchmarks using 

worst case military-spec conditions (slow transistors and 

wires, 125C temperature, 90% Vdd). 
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Figure 6: Embedded FPGA layouts (1
st
 pass layouts; not 

optimized for smallest block size) in various standard-

cell technologies: (a) 45-nm (1.5x1.5-mm
2
) (b) 90-nm 

(2x2-mm
2
), (c) 350-nm (6x6-mm

2
). 
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