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INTRODUCTION

¢ Thin film solid state Li-ion batteries are needed for autonomous
microsystems, sensors, memory back up power.

¢ Limetal anode melts below solder reflow temperature, complicating on chip

integration.

Al and Si alloy with Li at potentials close to metallic Li, are inexpensive,

have higher melting points, and have high capacities of ~990 mAh/g and

~3500 mAh/g, respectively.

Solid state batteries with Al anodes degrade after a few cycles, while

those with Si retain >90 % of their capacity after 100 cycles.

We combine in situ cycling with surface conductivity and composition

analysis to demonstrate how surface reactions on the Al negative

electrode lead to loss of Li diffusion paths and loss of surface electronic

conductivity, which together contribute to the rapid degradation of solid

state Li-ion batteries with thin film Al anodes.
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(a) Schematic of all-solid-state batteries with Al negative electrodes. (b) SEM of micron-
scale devices showing morphology changes upon cycling. SEM of Al surface for (c)
pristine and (d) cycled devices shown in (b). (e) Cross-section SEM image of Al electrode
after 10 charging cycles, tilt = 45°. The Pt layer is added uniquely to protect the surface
of the battery during the ion milling process and is not an active layer of the device. (f)
Discharge capacity as a function of the number of cycles for 10 nA.
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Capacity loss persists even when Al
anodes are coated in situ with 400
nm of Cu. Rapid oxygen diffusion
through Cu is the likely cause.

2 um

®A2p oxide (@) Li-ts

metal
g

pristine

cycled

)

4 532 530 528 80 78 76 74 72 70
Binding energy (eV)  Binding energy (V)

Topography and conductive atomic force microscopy scans for (a, b)
pristine and (c, d) cycled Al-based batteries, respectively, showing
complete loss in electronic conductivity upon cycling. XPS of Al negative
electrode for pristine and cycled batteries showing (e) oxygen peaks, (f) Al
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\metal and oxide peaks, and (g) Li peak for the cycled device.
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RAPID CAPACITY LOSS, MORPHOLOGY OXIDATION OF LITHIATED Al SURFACE MODEL FOR RAPID CAPACITY LOSS
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of the lithiated Al,O5 creates a void with an A
unoxidized Al surface. (b) The surface of voids in f i
the Al film provides a path for Al and Li to diffuse
to a growing AlLi mound. As long as the voids
remain unreacted this process is reversible. (c)
Oxidation of the surface of the voids removes
the diffusion paths for Al that is required for the -
facile decay of the AlLi mound. Loss of electrical
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Why is Si more stable then Al?

« Liis insoluble in Si and must react in the bulk. In Al the sparingly soluble Li
diffuses to the surface to react with Al,O; and decrease strain energy.

« Si surface diffusion at room temperature is negligible, and thus the

\_ formation of surface mounds and the associated trapped Li does not occur. -
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