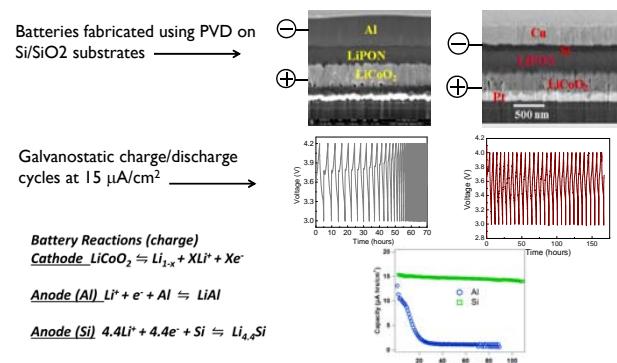
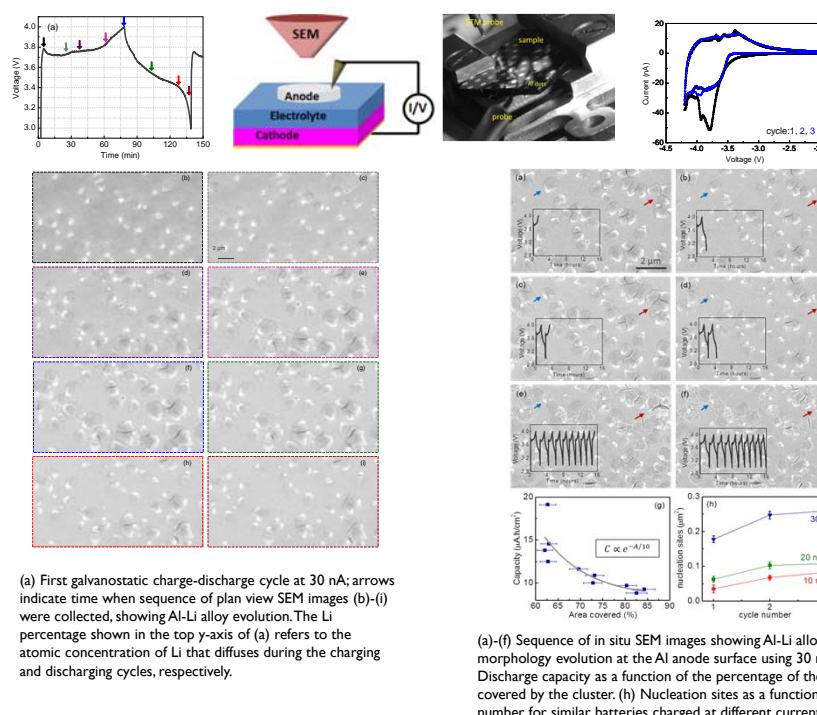


Surface/Interface Effects In All-Solid-State Li-Ion Batteries

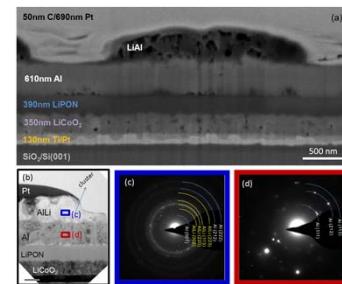
DOE Energy Frontier Research Center


C. Gong¹, D. Ruzmetov², A. Pearse¹, D. Ma¹, J. N. Munday¹, N. Bartelt³, L. Bendersky², Yu Qui⁴, G. Rubloff¹, M. S. Leite¹, A. A. Talin³

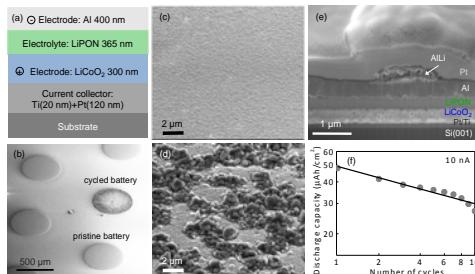
1. University of Maryland, College Park; 2. NIST, Gaithersburg; 3. Sandia National Labs, Livermore; 4. Michigan State University, East Lansing


SAND2016-0080C

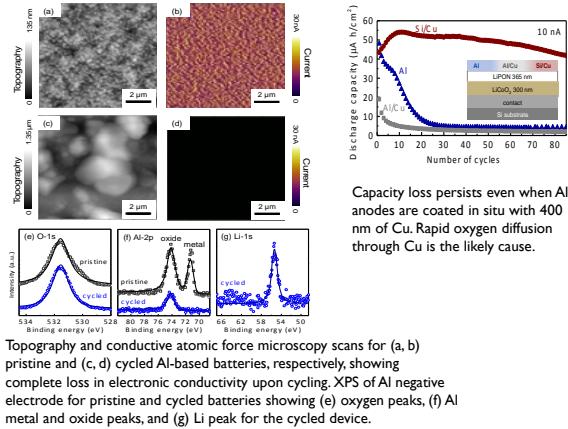
INTRODUCTION


- Thin film solid state Li-ion batteries are needed for autonomous microsystems, sensors, memory back up power.
- Li metal anode melts below solder reflow temperature, complicating on chip integration.
- Al and Si alloy with Li at potentials close to metallic Li, are inexpensive, have higher melting points, and have high capacities of ~990 mAh/g and ~3500 mAh/g, respectively.
- Solid state batteries with Al anodes degrade after a few cycles, while those with Si retain >90 % of their capacity after 100 cycles.
- We combine *in situ* cycling with surface conductivity and composition analysis to demonstrate how surface reactions on the Al negative electrode lead to loss of Li diffusion paths and loss of surface electronic conductivity, which together contribute to the rapid degradation of solid state Li-ion batteries with thin film Al anodes.

IN SITU SCANNING ELECTRON MICROSCOPY

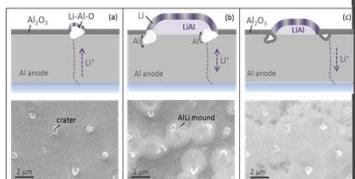


TEM Analysis: LiAl only found in the mound



(a) Cross section SEM image of a battery after ten cycling sweeps showing an AlLi mound formed at the Al anode's surface. (b) TEM cross-section bright field. Scale bar is 250 nm. (c)-(d) SAED patterns from (b) collected at two different locations: (c) a mound on top of an Al layer containing the LiAl f3m phase, and (d) underneath it, showing pure Al.

RAPID CAPACITY LOSS, MORPHOLOGY CHANGE IN AL ANODES



OXIDATION OF LITHIATED AL SURFACE AND LOSS OF CONDUCTIVITY

MODEL FOR RAPID CAPACITY LOSS

Model (a) Li diffuses to the surface of the Al thin film to react with Al₂O₃ surface oxide. Expansion of the lithiated Al₂O₃ creates a void with an unoxidized Al surface. (b) The surface of voids in the Al film provides a path for Al and Li to diffuse to a growing AlLi mound. As long as the voids remain unreacted this process is reversible. (c) Oxidation of the surface of the voids removes the diffusion paths for Al that is required for the facile decay of the AlLi mound. Loss of electrical contact further contributes to capacity loss

References

I. M. S. Leite¹, D. Ruzmetov², Z. Li, L. A. Bendersky, N. C. Bartelt, A. A. Talin³, "New insights from *in situ* electron microscopy into capacity loss mechanisms in Li-ion batteries with Al anodes", *J. Mat. Chem. A*, 2, 20552, (2014)

2. C. Gong, D. Ruzmetov, A. J. Pearse, D. Ma, J. N. Munday, G. W. Rubloff, A. A. Talin³, "Surface/Interface Effects on High-Performance Thin-Film All-Solid-State Li-Ion Batteries", *ACS Appl. Mat. & Interfaces* 7, 26007 (2015)

(*corresponding authors).

Why is Si more stable than Al?

- Li is insoluble in Si and must react in the bulk. In Al the sparingly soluble Li diffuses to the surface to react with Al₂O₃ and decrease strain energy.
- Si surface diffusion at room temperature is negligible, and thus the formation of surface mounds and the associated trapped Li does not occur.

This work was supported as part of the Nanostructures for Electrical Energy Storage (NEES), a Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

NIST

MICHIGAN STATE
UNIVERSITY

Sandia
National
Laboratories

U. S. DEPARTMENT OF
ENERGY

