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Outline

e Tunable Metasurfaces: overview
e Control of Strong Coupling for tunable behavior

e Harmonic generation from metallic metasurfaces
coupled to intersubband transitions in semiconductor

quantum wells T
d‘cﬁ‘a“?

e Harmonic generation from all-dielectric metasurfaces.,




2D Metallic Metamaterials (“Metasurfaces” ) &=,
(for some applications, loss is a goczag thing)

3D
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Nature Photonics 8, 889 (2014)

Even for different shapes, many metallic resonators behave like LCR circuits
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Early Days of Tunable Metasurfaces
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Tunable Metasurfaces: Other Approaches

Phase transitions in vo,
Re-orientation of liquid crystals

MEMS approaches

¢

Pryce, NL (2010)
Ou et. al. (Zheludev), (2011). NL 11, 2142 (2011).
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Controlled Coupling as Tuning Mechanism

|
MM resonators create strong optical fields E

that lead to strong coupling Substrate
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Optical Phonons: Nano Letters 11, 2104 (2011)
Epsilon Near Zero modes: Nano Letters 13, 5391 (2013)
Intersubband Transitions:|Nature Communications 4, (2013)
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Strong Coupling to Intersubband Transitions in@ ot
Quantum Wells

Alex Benz
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Transmission

Rabi frequency depends on
simple parameters

Nature Communications 4, (2013)
Phys. Rev. B 89, 165133
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Electrically Tunable Strong Coupling
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Tunable Metasurfaces: Coupling to Epsilon
Near Zero Modes

Phys. Rev. B RC. 91, 121408 (2015)
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' .
b Outline

e Harmonic generation from metallic metasurfaces
coupled to intersubband transitions in semiconductor

quantum wells §§§ i’
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Nonlinear Metasurfaces: Harmonic Generation ()
from Metallic Resonators

. . Mode Matching:
 Harmonic generation has been observed Nature Nanotechnology 10, 412

from planar metamaterials (2015)
(“metasurfaces”) and plasmonic arrays. i

First reports: Science

502, 313 (2006) Other geometries:
= Fundamental = Second harmonic PhyS. REV. Lett. 1 03, 257404 (2009)
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How Metasurfaces on Semiconductors Can Be
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Used for Enhanced Optical Nonlinearities

-

phase-matching

I2a)~ (Ia) X(Z)L)Z

~

Conventional SHG, perfect

Cavity-enhanced

/ 2a)~Q2

05
27> Use resonant ‘% with
semiconductor heterostructures ~

10* enhancement in
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Metasurfaces Provide New Functionality
for Harmonic Generation

Metallic Metasurfaces have been used extensively for beam/phasefront/polarization
manipulation: this is all degenerate

LLLLLLLLL

LLLLLLLL Eaitiis == 4= (Shalaev, Capasso, Zhou, Zheludey, etc..)
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Resonant Optical Nonlinearities:
Intersubband Transitions in Quantum Wells
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Electronic levels and wavefunctions
can be engineered with
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Energy (eV)

Growth direction (nm)

Resonant optical nonlinearities can be engineered too:

0.6 ‘
(2) : |
w23 % (a)) oC . . S‘ 0 4 ,
W, (@“@12 —1T12X2w—@13 “lrm) Ca
z, o (P, R“Pj> g‘ Caveats:
Wy, %'? comes with x(*) too!
X(Z)Zzzonly
~250 nm/V - QWs Z direction [nm]

10s of pm/V - LiNbO,

F. Capasso, C. Sirtori, and A.Y. Cho, IEEE J. Quantum Electron. 30, 1313 (1994)
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Salvo Campione

Metasurfaces Coupled to Resonant x(?

Resonators are designed to have

“cavities” resonances at 30 & 60 THz (5&10um)
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E‘SHG: Power and Frequency Dependen@“""’“""’“
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flipping induces it phase shift

Uniform

Array / R
-50
-60
I | 2-in-1:
Period determines Source
angular separation +beam
splitter

Nature Communications 6, 7667 (2015)
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SHG Beam Manipulation Il

e Cavities radiate polarized light

v

3-in-1: u polarized
Source + Polarizer + Beam

Splitter héﬁr:(:@
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Scaling This Approach to Shorter
Wavelengths

Material 1 Material 2 Material 1

10um to 5um: AlInAs barriers
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“7  SHG (3.2um>1.6um) Using AlGaN/GaN QWs

Scaling of resonators
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e .
e Outline

é‘e?a??

e Harmonic generation from all-dielectric metasurfaces.,
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Dielectric Resonators for Metamaterials

Electric Magnetic

Magnetic dipole resonance: tailor p
Electric dipole resonance: tailor ¢

Images: A. Miroshnichenko

8. Zur Optik kolloidaler Metallésungen; (Ack: Ed Kuester
von R. Gans und H. Happel. ~ CU Boulder)
Annalen der Physik, 1909

Setzen wir (40’), (41) und (43) in die Gleichungen (44) und MATERIAL LOADED WITH
(45) ein, so ergibt sich die komplexe Dielektrizititskonstante ICLES*

77/ und Permeabilitit der kolloidalen Losung 1
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= 14 U
////%’; ,’,‘f‘"/ 1 k A OE Uf) by = 1L
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Some Recent Results with Dielectric
Metasurfaces (Linear)

2

Magnetic mirror

Tailoring scattering

Optica 2015
Fano resonances ACS Nano 7, 7824 (2013) Nat. Comm. 4, 1527 (2013)
zk’; b Y S,
S i Huygens Metasurfaces /J\ =
c 54 y
v i B
8
Nature Comm. 2014. Nano Lett. 15, 7388 (2015) A L, ',\

dipole
Adv. Optical Mater. 2015

A Magnetic
v dipole

Phase-front manipulation

Phase Retardation (rad/r)

Science 345, 2015
Nano Lett. 15, 5369 (2015) Nano Lett.15, 6261 (2015) Opt. Express 23, 22611 (2015)

26



Metasurfaces

Strong enhancement near magnetic dipole
resonance

(With ANU & Moscow State

Maxim R. Shcherbakov, Alexander S. Shorokhov, Dragomir

N. Neshev, Ben Hopkins, Isabelle Staude, Elizaveta V. Melik-
Gaykazyan, Alexander A. Ezhov, Andrey E. Miroshnichenko,
Igal Brener, Andrey A. Fedyanin, and Yuri S. Kivshar)

Nano Letters (2015)

27

Optical Nonlinearities (THG) in Si Dielectric

Third harmonic wavelength (nm)
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=~ Silicon is “limited” for Optical Nonlinearities

o Silicon is centrosymmetric = NO second order
nonlinearity

e Lots of IlI-V semiconductors have (2

B o e,
e Example, GaAs: R

How to obtain high index
dielectric nanoresonators with

l1l-V semiconductors??
n-v

low index

28



@ Fabrication of Al(In)GaAs Based Dielectric MMs & G,

B i

Etch mask Shenstiv
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GaAs Dielectric Resonators (1 layer)

GaAs disk height ~300nm
Different diameters
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|E|? enhancement for both
electric and magnetic dipole
resonance.

Z{microns)

(I,, proportional to | )

iz 006 000 0.06
*(microns)

T

pump

(x-pol)
There are only E, and E, 7
component inside the GaAs
resonators. GaAs

resonator

32
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Z{microns)

*¥{microns)

20 (2) Do Do
EX =2y PE°E

xxy ' x Tz

Orthogonal SHG polarization
compared to the pump is
expected
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E-dipole resonance [ & M-dipole resonance

16000
14000
12000
10000
8000
6000
4000
2000+
0+
2000
4000
6000
8000
10000
12000
14000
16000

SHG Intensity (Counts/second)

SHG Intensity (Counts/second)

This is not consistent with bulk x 2

What happens at the M-dipole resonance?
1. Surface nonlinearity changes symmetry to mm2

B2 =2y DECE!

XXZ

can be large, considering the large field enhancement at the surface for this mode.

2. SHG is above bandgap of GaAs, absorption favors SHG generated at the surface.

Not predicted: Carletti et al,: “Enhanced second-harmonic generation from magnetic resonance in

AlGaAs nanoantennas”, Optics Express, 23, 26544 (2015)
33
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Simultaneous SHG & THG....

4000F
——SHG
—— THG

_ 3000t H

5

s

£ 2000

o

[} L

»

1000} J
L)\ \

460 450 500 550 600 650 700 750 800
Wavelength (nm)

34



Sandia
m National
Laboratories

GaAs( 36nm)
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Summary & Acknowledgments

* Tunable Metasurfaces: overview

e Control of Strong Coupling for tunable behavior

 Harmonic generation from metallic metasurfaces coupled to
intersubband transitions in semiconductor quantum wells

* Harmonic generation from all-dielectric metasurfaces
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Outline

e Record optical nonlinearities in the infrared obtained
from metallic metasurfaces coupled to intersubband
transitions

e Progress in second harmonic generation from llI-V
semiconductor dielectric metasurfaces

e New Fano designs for all-dielectric metasurfaces

e Coupling of epitaxial quantum dot emitters to dielectric
resonators

37
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Fabrication

before
oxidation

ofp | det | mode HV W Wi mag O]
% | TLD | SE | 10.00kV | 5.18 um | 52 mm | 30° | 80 000 x

after
oxidation

SE 10.00kV | 8.29 ym | 4.9 mm
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PL Intensity (a.u.)
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Comparison to FDTD Modeling

5
~
=
< 4
| ——
7
53] ! .
7] I
t= ! :
e I |
- :
I |
2 : .
; |  =])360nm
; y  ==D340nm
i ;  ==D320nm
14 = e [)300nm
, ; — )2 80nm
; | —— )2 60nm
I i
0- T " T T T T T T T
1000 1100 1200 1300 1400

Wavelength (nm)

- 35-

5.54

4.0-

3.0-

5'0-/\/\—
4.5- ’

! ——D=280nm
R D=260nm

0.0-
1.0

41

11121314151.61.71.8
Wavelength (um)

Sandia
National
Laboratories



12000

i — )380nm

10000 e [)400nmM

- D420nm
8000
=: L
S 6000
- I

=9

4000 -
2000
O L

1000 1100 1200 1300 1400
Wavelength (nm)

The PL intensity enhancement is larger at electric dipole
resonance than at the magnetic dipole resonance.
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This is not Lasing!
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T=8K Results

At low powers it is quite easy to see
very narrow peaks
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Outline

e Record optical nonlinearities in the infrared obtained
from metallic metasurfaces coupled to intersubband
transitions

e Progress in second harmonic generation from Ill-V
semiconductor dielectric metasurfaces

e New Fano designs for all-dielectric metasurfaces

e Coupling of epitaxial quantum dot emitters to dielectric
resonators
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m ﬁgtnigirellal
This is a “Single Resonator” Behavior

BN
o

Transm'\ss'\o\‘\

Same Rabi splitting remains
down to a single resonator!

Trar\sm\ss\O\‘\

Nature communications 4, (2013)

Area of a resonator * carrier density ~1000-3000 electrons!
4646
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Phased Arrays

J
/

Identical point sources
+

Radiating with controllable phase difference

Full control over beam direction and shape

Image from Wikipedia
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sl SHG (3.2um>1.6um) Using AIGaN/GaN®%=-
Omri Wolf QWS

e Design: SHG 3 ym = 1.5 um (0.4 eV = 0.8 eV)
e Traditional band structure calculation not enough

AlGaN — Over estimation of IST

|
1!
> o :
o, O |
- c 0.95¢
o ® |
) =
L] = |
2—o-9 !
O I
0 2 4 6 8 I
Growth Direction [nm] 0.85¢ [
' ' ' ' |

. 2 0.4 0-6 0.8
Addlng S / Energy[eV]
interface > O
roughness T %/

i

o 2 4 6 8
Position (nm)

O. Wolf et al. APL 2015 48
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LC tunable dielectric MSs

magnetic electric
mode mode

EBL and dry etching
on Sol wafer o

1.37 1.4 1.43 1.46 1.49 1.52 1.85
Wavelength (um)
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ZEEN
(M=

2

Creating a Magnetic Mirror from a Collection
of Magnetic Dipoles

A perfect magnetic conductor does not exist in nature

Array of magnetic dipoles

Because the magnetic dipole responds in phase with the electric field, this
represents an artificial magnetic conductor

We can create magnetic dipoles with Dielectric Resonators

Magnetic
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Epitaxially grown multi-layer
GaAs/AlGaAs

Oxidation

ﬁ

_—
GaAs

Substrate Substrate

. AlGaAs

< Multilayer llI-V Dielectric Metamaterials
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Sample damaged by strong pump and SEM images showing dal@gent.oﬁ

Q)

'

Low damage threshold, maybe
due to etching induced defect
on the surface.
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Effect of Absorption on SHG ) i,

_ G’Zw

je(“ , o'=a

—1000cm-1
[O)] Y

2 —2000cm-1
500cm-1

S

0.5

= 2 ; T
{ez _ 1} 0.0F .
S~ 2 E) | 1'0 | 2IO | 310 | 4I0 | 5I0
(WJZ Length (um)

2 For a~1000cm™?, ‘effective length” (QxL)

Boyd, Ashkin, Dziedzic, & Kleinman, (1965). needs to be <few microns
Physical Review, 137(4A), A1305.

L,(ce™

Q~10
Field decay length (L) ~200nm
QxL~2um....
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Effect of Absorption on SHG ) 5.

(unavoidable when using resonant y(2))

o
o
o

E20(2)/E(0)
o
S

Conversion efficiency

0 10 20 30 40
Propagation distance:  Z[1/0y,]
Almogy&Yariv, Optics Letters (1994)

For a~1000cm™ (1/0~10um),
“effective length” (QxL) needs to
be <~10 microns

Dealt first by Boyd, Ashkin, Dziedzic, & Kleinman, (1965).
Physical Review, 137(4A), A1305.

“Cavity” with Q~10

Field decay length (L) ~200nm
QxL~2um.... >> OK,

We cannot gain too much more by
increasing Q!
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Reflectivity
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Normalized transmission

>/
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(c)

Energy (eV)

0.4 0.6 0.8
energy[eV]
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Position (nm)

> GaN

Inalll-N
heterostructure,
metamaterials increase
efficiency by over 2
orders of magnitude



