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Outline

•Tunable Metasurfaces: overview

•Control of Strong Coupling for tunable behavior

•Harmonic generation from metallic metasurfaces 
coupled to intersubband transitions in semiconductor 
quantum wells

•Harmonic generation from all-dielectric metasurfaces Al2O3

n~3.5 GaAs

n~1.6
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2D Metallic Metamaterials (“Metasurfaces”)
(for some applications, loss is a good thing)

Nature Photonics 8, 889 (2014)

Boeing RF NIM
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Early Days of Tunable Metasurfaces

This works by increasing the
damping (2).

16 mm

0.36 THz,4x4 SLM

Appl. Phys. Lett. 94, 
213511 (2009)

Nature 444, 597 (2006).

Appl. Phys. Lett., 104, 091115 (2014). 
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Tunable Metasurfaces: Other Approaches

MEMS approaches

Graphene-based modulation

Pryce, NL (2010)
Ou et. al. (Zheludev), (2011). NL 11, 2142 (2011). 

Phase transitions in VO2

T. Driscoll, Science (2009)

Re-orientation of liquid crystals

A. Minovich, APL (2012)

Huang et. al.(Atwater), arXiv:1511.09380

Part et. al. (Brongersma), Sci. Rep. 2015

Depletion/Accumulation ITO
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Controlled Coupling as Tuning Mechanism

MM resonators create strong optical fields 
that lead to strong coupling

Optical Phonons: Nano Letters 11, 2104 (2011)
Epsilon Near Zero modes: Nano Letters 13, 5391 (2013)
Intersubband Transitions: Nature Communications 4, (2013) 
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Strong Coupling to Intersubband Transitions in 
Quantum Wells

•Scalable (far IR to near
IR), Mature, Versatile

z
Opt. Express 20, 6584 (2012), 

APL 98, 203103 (2011)
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Strong Coupling Theory vs. Experiment

Geometry factor

Plasma frequency

Nature Communications 4, (2013)
Phys. Rev. B 89, 165133
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From Mid-IR to Near IR

Nature Communications 4, (2013)

InGaAs QWs (mid IR)
GaN QWs (near IR)

ACS Photonics (2014)

Alex Benz
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Electrically Tunable Strong Coupling

Appl. Phys. Lett. 103, 263116 (2013)
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Rabi Frequency vs. Geometry

•Larger capacitance leads to larger Rabi splitting
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Salvo Alex
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Tunable Metasurfaces: Coupling to Epsilon 
Near Zero Modes
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Phys. Rev. B RC. 91, 121408 (2015)
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Outline

•Tunable Metasurfaces: overview

•Control of Strong Coupling for tunable behavior

•Harmonic generation from metallic metasurfaces 
coupled to intersubband transitions in semiconductor 
quantum wells

•Harmonic generation from all-dielectric metasurfaces Al2O3

n~3.5 GaAs

n~1.6
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First reports: Science 
502, 313 (2006)

Mode Matching:
Nature Nanotechnology 10, 412 
(2015)

Other geometries:
Phys. Rev. Lett. 103, 257404 (2009)

Metamaterials Photonic 
Crystals:
Nature Photonics 9, 180 (2015)

Nonlinear Metasurfaces: Harmonic Generation 
from Metallic Resonators 

And many more….

Efficiencies have been very, very low!

• Harmonic generation has been observed 
from planar metamaterials 
(“metasurfaces”) and plasmonic arrays.
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I2~ (I 
(2)L)2

(2)

I2~Q2

(2)

Conventional SHG, perfect 
phase-matching

Cavity-enhanced

L Use resonant (2) with 
semiconductor heterostructures ~ 
104 enhancement in (2) 

How Metasurfaces on Semiconductors Can Be 
Used for Enhanced Optical Nonlinearities  

Coherent Inc.
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Metasurfaces Provide New Functionality 
for Harmonic Generation

Metallic Metasurfaces have been used extensively for beam/phasefront/polarization 
manipulation: this is all degenerate

(Shalaev, Capasso, Zhou, Zheludev, etc..) 




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Resonant Optical Nonlinearities: 
Intersubband Transitions in Quantum Wells

F. Capasso, C. Sirtori, and A.Y. Cho, IEEE J. Quantum Electron. 30, 1313 (1994)

~250 nm/V  - QWs

10s of pm/V - LiNbO3
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Metasurfaces Coupled to Resonant χ(2)

“cavities”

(2) media

Resonators are designed to have 
resonances at 30 & 60 THz (5&10um)
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Nature Communications 6, 7667 (2015) 

Omri Salvo
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flipping induces π phase shift

Period determines  
angular separation
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•Cavities radiate polarized light
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Scaling This Approach to Shorter 
Wavelengths
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10um to 5um: AlInAs barriers
InGaAs wells

2~ 0.24eV

How about 1.55um to 0.75um?
This requires a conduction band offset of ~1.6eV!!

III-Nitrides 

http://gorgia.no-ip.com/phd/html/thesis/phd_html/simone-jbook.html
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Outline

•Tunable Metasurfaces: overview

•Control of Strong Coupling for tunable behavior

•Harmonic generation from metallic metasurfaces 
coupled to intersubband transitions in semiconductor 
quantum wells

•Harmonic generation from all-dielectric metasurfaces Al2O3

n~3.5 GaAs

n~1.6
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Dielectric Resonators for Metamaterials

Electric Magnetic

Images: A. Miroshnichenko

Magnetic dipole resonance: tailor 
Electric dipole resonance: tailor 

Annalen der Physik, 1909

(Ack: Ed Kuester, 
CU Boulder) 
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Some Recent Results with Dielectric 
Metasurfaces (Linear)Magnetic mirror

Fano resonances

Huygens Metasurfaces

Tailoring scattering

Phase-front manipulation

Nano Lett.15, 6261 (2015)Nano Lett. 15, 5369 (2015) Opt. Express 23, 22611 (2015)
Science 345, 2015

Optica 2015

Nature Comm. 2014. Nano Lett. 15, 7388 (2015)

ACS Nano 7, 7824 (2013) Nat. Comm. 4, 1527 (2013)

Adv. Optical Mater. 2015
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Optical Nonlinearities (THG) in Si Dielectric 
Metasurfaces

(With ANU & Moscow State
Maxim R. Shcherbakov, Alexander S. Shorokhov, Dragomir
N. Neshev, Ben Hopkins, Isabelle Staude, Elizaveta V. Melik-
Gaykazyan, Alexander A. Ezhov, Andrey E. Miroshnichenko, 
Igal Brener, Andrey A. Fedyanin, and Yuri S. Kivshar )

Nano Letters (2015)

Strong enhancement near magnetic dipole 
resonance
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Silicon is “limited” for Optical Nonlinearities

•Silicon is centrosymmetric  NO second order 
nonlinearity

•Lots of III-V semiconductors have (2)

•Example, GaAs: 

atom.waterloo.ca

low index

How to obtain high index 
dielectric nanoresonators with 
III-V semiconductors??

III-V
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Etch maskEpitaxially grown: MBE, MOCVD

Etching

OxidationAl2O3

n~3.5 GaAs

n~1.6

Fabrication of Al(In)GaAs Based Dielectric MMs

Sheng Liu

1 μm

2 μm
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GaAs Dielectric Resonators (1 layer)

GaAs disk height ~300nm

Different diameters

• Extremely low loss below 
bandgap

• Crystalline
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Polarization, Selection Rules

GaAs 
resonator

pump
(x-pol)

z

y x

|E|2 enhancement for both 
electric and magnetic dipole 
resonance.

There are only Ex and Ez

component inside the GaAs
resonators.

Ey
2  2 xxy

(2)Ex
Ez



Orthogonal SHG polarization 
compared to the pump is 
expected 

(I2proportional to I
2)
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What happens at the M-dipole resonance?
1. Surface nonlinearity changes symmetry to mm2 

Ex
2  2 xxz

(2)Ex
Ez



can be large, considering the large field enhancement at the surface for this mode.

2. SHG is above bandgap of GaAs, absorption favors SHG generated at the surface.

Not predicted: Carletti et al,: “Enhanced second-harmonic generation from magnetic resonance in 
AlGaAs nanoantennas”, Optics Express, 23, 26544 (2015)

This is not consistent with bulk (2)

Sheng Liu
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Simultaneous SHG & THG….
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“Active” All-Dielectric Metasurfaces

GaAs
~870nm

InGaAs
~1025nm

InAs
~1250nm

QDs

after oxidation
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• Tunable Metasurfaces: overview
• Control of Strong Coupling for tunable behavior
• Harmonic generation from metallic metasurfaces coupled to 

intersubband transitions in semiconductor quantum wells
• Harmonic generation from all-dielectric metasurfaces
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Outline

•Record optical nonlinearities in the infrared obtained 
from metallic metasurfaces coupled to intersubband
transitions

•Progress in second harmonic generation from III-V 
semiconductor dielectric metasurfaces

•New Fano designs for all-dielectric metasurfaces

•Coupling of epitaxial quantum dot emitters to dielectric 
resonators 
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Active III-V Dielectric Resonators

GaAs
~870nm

InGaAs
~1025n
m

InAs
~1250nm



39

Fabrication

before 
oxidation

after 
oxidation
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Room Temperature PL

f

1134nm

1167nm



41

Comparison to FDTD Modeling
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The PL intensity enhancement is larger at electric dipole 
resonance than at the magnetic dipole resonance.
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This is not Lasing!
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T=8K Results
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Outline

•Record optical nonlinearities in the infrared obtained 
from metallic metasurfaces coupled to intersubband
transitions

•Progress in second harmonic generation from III-V 
semiconductor dielectric metasurfaces

•New Fano designs for all-dielectric metasurfaces

•Coupling of epitaxial quantum dot emitters to dielectric 
resonators 

45
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This is a “Single Resonator” Behavior
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Same Rabi splitting remains 
down to a single resonator!

Area of a resonator * carrier density ~1000-3000 electrons!

~

46

Nature communications 4, (2013)
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Identical point sources
+
Radiating with controllable phase difference 
==
Full control over beam direction and shape

Image from Wikipedia

Phased Arrays
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LC tunable dielectric MSs

EBL and dry etching 
on SoI wafer
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Creating a Magnetic Mirror from a Collection 
of Magnetic Dipoles

A perfect magnetic conductor does not exist in nature  

Array of magnetic dipoles

Because the magnetic dipole responds in phase with the electric field, this 
represents an artificial magnetic conductor

We can create magnetic dipoles with Dielectric Resonators
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Multilayer III-V Dielectric Metamaterials

Epitaxially grown multi-layer 
GaAs/AlGaAs

GaAs 
Substrate

Etch Mask

GaAs 
Substrate

Etch Mask

Oxidation

AlGaAsGaAs AlxOy

2 μm



52

Sample damaged by strong pump and SEM images showing damage.

Low damage threshold, maybe 
due to etching induced defect 
on the surface.
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Power Dependence
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Boyd, Ashkin, Dziedzic, & Kleinman, (1965). 
Physical Review, 137(4A), A1305. 

For ~1000cm-1, “effective length” (QxL) 
needs to be <few microns

Q~10
Field decay length (L) ~200nm
QxL~2um….

Effect of Absorption on SHG
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Effect of Absorption on SHG
(unavoidable when using resonant (2))

Almogy&Yariv, Optics Letters (1994)

Dealt first by Boyd, Ashkin, Dziedzic, & Kleinman,  (1965).
Physical Review, 137(4A), A1305. 

For ~1000cm-1  (1/10um),
“effective length” (QxL) needs to 
be <~10 microns

“Cavity” with Q~10
Field decay length (L) ~200nm
QxL~2um…. >> OK, 
We cannot gain too much more by 
increasing Q!
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SHG (3.2m>1.6m) Using AlGaN/GaN
QWs

In a III-N 
heterostructure, 
metamaterials increase 
efficiency by over 2 
orders of magnitude

Omri Wolf

AlGaN

GaN


