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Outline

•Electrically tunable metasurfaces

– Depletion: Thz

– Scaling to mid IR

– Tuning by controlling coupling

• Coupling to “epsilon near zero modes”

• Coupling to intersubband transitions

•Enhanced optical nonlinearities
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Metamaterials

• For RF (~3GHz), cm

• We need to create sub-
wavelength “inductors” and 
“capacitors”

~cm’s

http://www.multitel.be/newsletter/mn72005/image
s/nl3_Metamaterials_type1.jpg

http://discovermagazine.com

Negative Refraction & Perfect Lensing

www.sciam.com

Sir John Pendry
David Smith, etc

The promise of (IR)  applications was great:
• Wavefront control (Conformal optics, novel 

illuminators)
• Sub- Field Concentration
• Absorption / Emission engineering
• “Flat” optics (thin, lightweight)

Boeing RF NIM



A Non-Metallic Path to Low Loss 
Metamaterials: Dielectric Resonators
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Gustav Mie

First (Primary) resonance is 
magnetic dipole for most 
materials; Second is electric 
dipole

http://www.philiplaven.com/mieplot.htm
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Some Recent Results with Dielectric 
Metasurfaces (Linear)Magnetic mirror

Fano resonances

Huygens Metasurfaces

Tailoring scattering

Phase-front manipulation

Nano Lett.15, 6261 (2015)Nano Lett. 15, 5369 (2015) Opt. Express 23, 22611 (2015)
Science 345, 2015

Optica 2015

Nature Comm. 2014. Nano Lett. 15, 7388 (2015)

ACS Nano 7, 7824 (2013) Nat. Comm. 4, 1527 (2013)

Adv. Optical Mater. 2015



2D Metallic Metamaterials (“Metasurfaces”)
(for some applications, loss is a good thing)

Nature Photonics 8, 889 (2014)

Boeing RF NIM

3D 2D

(Bonn)

The “Split Ring Resonator”
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Resonant Frequency:

Even for different shapes, many metallic resonators behave like LCR circuits (or “antennas”)

Dogbone
High capacitance
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High capacitance

Jerusalem Cross
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• SRRs made on InSb substrates with different doping

• Experimentally observed doping dependent resonance with 
no appreciable damping.
o A resonance shift of 1.15 um (1 × 1016 cm-3 → 2 x 1018 cm-3)

Tuning Metasurfaces Using Semiconductors

Appl. Phys. Lett. 96, 
1 (2010)
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Tuning the Spectral Response by Depletion

Metal gate

Depletion 
region

n+ GaAs
(Nd = 5x 1018 cm-3)

Al0.3Ga0.7As  
(30 nm)

Increased reverse 
bias

(http://ecee.colorado.edu/~bart/bo
ok/mosintro.htm)



Electrically Switchable THz Metamaterials
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Nature 444, 597 (2006).

This works by increasing the
damping (2). Plasma frequency of
doped layer needs to match the MM
resonance frequency

16 mm

Bigger arrays

0.36 THz,4x4 SLM

Appl. Phys. Lett. 94, 213511 
(2009)



Ohmic contact 
Metal 
gate

* SRR array patterned by E-beam 
lithography (connected to Metal gate)

1 mm 
x 1 
mm

* Metal contacts patterned by optical lithography
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An Attempt to Scale These Active MMs 
to the mid-IR (from 1THz to 30Thz)
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Metal gate

Depletion region

n+ GaAs
(Nd = 5x 1018 cm-3)

Al0.3Ga0.7As  (30 
nm)



• Metamaterial transmission spectrum 
red-shifts with external bias (small..)
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Optics Express 20, 1903 (2012)



Depletion Region is Thin (because we work in IR)
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Outline

•Electrically tunable metasurfaces

– Depletion: Thz

– Scaling to mid IR

– Tuning by controlling coupling

• Coupling to “epsilon near zero modes”

• Coupling to intersubband transitions

•Enhanced optical nonlinearities
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More Tuning Options: Coupling
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MM resonators create strong optical fields that 
lead to strong coupling

Optical Phonons: Nano Letters 11, 2104 (2011)
Epsilon Near Zero modes: Nano Letters 13, 5391 (2013)
Intersubband Transitions: Nature Communications 4, (2013) 



Coupling Between Metamaterial Resonators 
and “Epsilon Near Zero” Waves
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Transmission vs angle (p-pol):
A sharp dip is observed in 
transmission, where ~0

Berreman, Physical Review 130 (6), 2193 (1963).
McAlister and Stern, Physical Review 132, 1599 (1963).

(“Berreman” dip)



• Berreman mode is very flat for a thin doped layer and leaky into air

• ENZ mode does not couple to free space

t = 30 nm

t = 60 nm

t = 200 nm

Berreman mode vs ENZ mode in n+ InAs
Berreman

“ENZ”

Greffet et al, PRL 109, 237401 (2012)

n+ InAs (Drude)
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Metal (MMs)

Al0.3GaAs 30nm

30 nm n+ GaAs (5e18)

Scale 1.2

Scale 1.4

Scale 1.6

Scale 1.8

Scale 2.0

FTIR transmission 

measurement

• Strong coupling between the MM 
resonance and ENZ waves!

What Happens when MMs Resonate 
with ~0 Layer?
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ENZ Strong Coupling (ND = 2e18 cm-3) 
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ND = 2e18 cm-3

Electrical Tuning the Coupling to the ENZ 
Mode

Fundamentally different than tuning just by changing a local permittivity!
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Strong Coupling to Inter-subband Transitions 
in Quantum Wells
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•Scalable (far IR to near
IR), Mature, Versatile

20

z
Opt. Express 20, 6584 (2012), 

APL 98, 203103 (2011)
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Alex Benz



Strong Coupling Theory vs. Experiment
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Geometry factor

Plasma frequency

Nature Communications 4, (2013)
Phys. Rev. B 89, 165133
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This is a “Single Resonator” Behavior

10 um
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Same Rabi splitting remains 
down to a single resonator!

Area of a resonator * carrier density ~1000-3000 electrons!

~
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Nature communications 4, (2013)



From Mid-IR to Near IR

23Nature Communications 4, (2013)

InGaAs QWs (mid IR)
GaN QWs (near IR)

ACS Photonics (2014)

Alex Benz



Electrically Tunable Strong Coupling

Appl. Phys. Lett. 103, 263116 (2013)
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Rabi Frequency vs. Geometry

•Larger capacitance leads to larger Rabi splitting
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Dogbone
High 
capacitance

Dumbbell
High 
capacitance

Jerusalem Cross
Low damping = high-Q

Circular SRR
High 
inductance

Physical Review B89, 165133 (2014)
NanoLetters (2015)

Salvo Alex
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I2~ (I 
(2)L)2

(2)

I2~Q2

(2)

Conventional SHG, perfect 
phase-matching

Cavity-enhanced

L Use resonant (2) with 
semiconductor heterostructures ~ 
104 enhancement in (2) 

How Metasurfaces on Semiconductors Can Be 
Used for Enhanced Optical Nonlinearities  

Coherent Inc.



Metasurfaces Provide New Functionality 
for Harmonic Generation

Metallic Metasurfaces have been used extensively for beam/phasefront/polarization 
manipulation: this is all degenerate

(Shalaev, Capasso, Zhou, Zheludev, etc..) 


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Resonant Optical Nonlinearities: 
Intersubband Transitions in Quantum Wells

F. Capasso, C. Sirtori, and A.Y. Cho, IEEE J. Quantum Electron. 30, 1313 (1994)

~250 nm/V  - QWs

10s of pm/V - LiNbO3
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Metasurfaces Coupled to Resonant χ(2)

“cavities”

(2) media

Resonators are designed to have 
resonances at 30 & 60 THz (5&10um)
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Salvo Campione
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• Max. conversion efficiencies of few % are possible
• Added functionality is the advantage

Nature Communications 6, 7667 (2015) 



Identical point sources
+
Radiating with controllable phase difference 
==
Full control over beam direction and shape

Image from Wikipedia

Phased Arrays



flipping induces π phase shift

Period determines  
angular separation
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Nature Communications 6, 7667 (2015) 



•Cavities radiate polarized light
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Scaling This Approach to Shorter 
Wavelengths
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2~ 0.24eV

How about 1.55um to 0.75um?
This requires a conduction band offset of ~1.6eV!!

III-Nitrides 

http://gorgia.no-ip.com/phd/html/thesis/phd_html/simone-jbook.html
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• Traditional band structure calculation not enough

– Over estimation of IST

O. Wolf et al. APL 2015
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InGaAs

GaN

GaAs

Metasurfaces in conjunction with semiconductor heterostructures can 
enhance and provide new functionality for linear and nonlinear optics:

• Field Concentration
• Electrically tunable spectral filters
• Enhanced and more functional optical nonlinearitiess



Metasurfaces for Improved Infrared 
Detectors

Top GaAs n+ Contact

Active Region

Bottom GaAs n+ Contact

GaAs Substrate

Top metal

Bottom metal

Metamaterials

Optics Communications 312 (2014) 31–34 

UNM (Krishna) & Sandia
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H
z”

(m)

f (THz)



Improved IR Responsivity

UNM & Sandia



Other Related Topics

• Equivalent circuit model in the strong coupling regime: Physical 
Review B89, 165133 (2014) 

• Strong coupling to intersubband transitions in the near IR: ACS 
Photonics 2014, DOI: 10.1021/ph500192v

• Maximizing strong coupling by changing the metallic resonators: 
Nano Letters Article ASAP, DOI: 10.1021/nl504815c

• Integration of MM resonators with IR detectors: Optics 
Communications 312, 31-34, 2014

• Enhancing strong coupling with a doped backplane: Optics Express 
21 (26), 32572-32581,2013 
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Other Related Topics

• Shaping PL from QDs: ACS Photonics  2, 172-177 (2015) (with ANU)

• Near field mapping of modes: ACS Photonics 2014, Article ASAP, DOI: 
10.1021/ph500232u (with ANU & UNM)

• Tuning Dielectric metasurfaces with Liquid Crystals: ACS Nano 2015, 
DOI: 10.1021/acsnano.5b00723, (with ANU)

• Chiral and high Q Fano metasurfaces: Nature Communications 5, 
(2014), doi:10.1038/ncomms4892 (with UT)

• Third harmonic from Si metasurfaces: ACS Photonics Article ASAP, 
DOI: 10.1021/acsphotonics.5b00065, Nano Letters 14, 6488-6492 
(2014). (with ANU+Moscow State)

• Near field modes, THz Mie resonances: Optics express 22, 23034 
(2014)  (with UCL)
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