SAND2016- 0046PE

Active Infrared Metasurfaces: Strong
Coupling, Spectral Tuning and Optical
Nonlinearities

Igal Brener

Sandia National Labs &
Center for Integrated Nanotechnologies (CINT)

ibrener@sandia.qov, (505) 844-8097

SAND2015-10658 C

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Sandia
National
Laboratories


mailto:ibrener@sandia.gov

Sandia
II" National
Laboratories

(0= ,
b Outline

e Electrically tunable metasurfaces
— Depletion: Thz
— Scaling to mid IR
— Tuning by controlling coupling
e Coupling to “epsilon near zero modes”
e Coupling to intersubband transitions

e Enhanced optical nonlinearities
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The promise of (IR) applications was great: sinis Metamaterial_type1 e

«  Wavefront control (Conformal optics, novel * For RF (¥3GHz), A~cm
illuminators)

Sub-A Field Concentration * We need to create sub-

« Absorption / Emission engineering wavelength “inductors” and

* “Flat” optics (thin, lightweight) “capacitors”
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A Non-Metallic Path to Low Loss
Metamaterials: Dielectric Resonators

Electric Magnetic

Intensity (a%;u.)
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Images: A. Miroshnichenko

First (Primary) resonance is

magnetic dipole for most

materials; Second is electric
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THE ELECTRICAL CONSTANTS OF A MATERIAL LOAD
SPHERICAL PARTICLES*

By L. LEWIN.}
(The paper was first received 4th March, and in revised form 27th September, 1946.)
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Some Recent Results with Dielectric
Metasurfaces (Linear)
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Tailoring scattering

Optica 2015
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Nano Lett. 15, 5369 (2015) Nano Lett.15, 6261 (2015) Opt. Express 23, 22611 (2015)



2D Metallic Metamaterials (“Metasurfaces” ) &=,
(for some applications, loss is a goczag thing)

3D

c

Nature Photonics 8, 889 (2014)

Even for different shapes, many metallic resonators behave like LCR circuits (or “antennas”)
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¢ Experiment
—— Simulation

Carrier Concentration (cm™)

e SRRs made on InSb substrates with different doping

e Experimentally observed doping dependent resonance with
no appreciable damping.

o A resonance shift of 1.15 um (1 x 101 cm= - 2 x 108 cm3)

Appl. Phys. Lett. 96,
1(2010)

A/l/ﬁ ~ 10.8%
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Electrically Switchable THz Metamaterials
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Nature 444, 597 (2006).
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Frequency (THz)

0.36 THz,4x4 SLM

Bigger arrays

(2009)

Appl. Phys. Lett. 94, 213511
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Split gap

This works by increasing the
damping (e,). Plasma frequency of
doped layer needs to match the MM
resonance frequency

A
v

9 16 mm



An Attempt to Scale These Active MMs ) .
to the mid-IR (from 1THz to 30Thz)

* Metal contacts patterned by optical lithography Al,;Ga,,As (30

n+ GaAs
(Ny = 5x 1018 cm?3)

Depletion region

20! _ * SRR array patterned by E-beam

4 3 2 4 0 1 lithography (connected to Metal gate)
Gate Bias [V] 10
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Experimental Results

Theory | | Expgrimgnt
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e Metamaterial transmission spectrum
red-shifts with external bias (small..)

Optics Express 20, 1903 (2012)
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Depletion Region is Thin (because we work in IR)

Large changes in € happen
near the plasma frequency a)P oC

1/2
2e,, ., &
Wdepletion = |: A (_¢s):|
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Large N implies thin W40, Interaction |

Where ¢, is a surface potential which
is related to the gate voltage:
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e Electrically tunable metasurfaces
— Depletion: Thz
— Scaling to mid IR
— Tuning by controlling coupling
e Coupling to “epsilon near zero modes”
e Coupling to intersubband transitions

e Enhanced optical nonlinearities
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More Tuning Options: Coupling

MM resonators create strong optical fields that
lead to strong coupling
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Optical Phonons: Nano Letters 11, 2104 (2011)
Epsilon Near Zero modes: Nano Letters 13, 5391 (2013)
[ Intersubband Transitions: N}ature Communications 4, (2013)
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“" Coupling Between Metamaterial Resonators
and “Epsilon Near Zero” Waves

Transmission vs angle (p-pol):
P-pol A sharp dip is observed in
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Berreman, Physical Review 130 (6), 2193 (1963).

McAlister and Stern, Physical Review 132, 1599 (1963). 15



n+ InAs (Drude)

|

Berreman mode vs ENZ mode in n+ InAs

Berreman
”ENZ”

n+|m‘3\s,ND=1e19|cm‘3
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e Berreman mode is very flat for a thin doped layer and leaky into air
e ENZ mode does not couple to free space
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16 Greffet et al, PRL 109, 237401 (2012)



What Happens when MMs Resonate

with €~0 Layer?

Al; ;GaAs 30nm

30 nm n+ GaAs (5e18)

Transmission

2

Strong coupling between the MM
resonance and ENZ waves!
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FTIR transmission
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ENZ Strong Coupling (N, = 2e18 cm™3)

FTIR Transmission spectra
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Electrical Tuning the Coupling to the ENZ

Mode

VB581, Scale 2.4

Np = 2e18 cm3
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Fundamentally different than tuning just by changing a local permittivity!
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in Quantum Waells

&7 Strong Coupling to Inter-subband Transitions
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Transmission

Rabi frequency depends on
simple parameters

Nature Communications 4, (2013)
Phys. Rev. B 89, 165133
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This is a “Single Resonator” Behavior

BN
o

Transm'\ss'\o\‘\

Same Rabi splitting remains
down to a single resonator!

Trar\sm\ss\O\‘\

Nature communications 4, (2013)

Area of a resonator * carrier density ~1000-3000 electrons!
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From Mid-IR to Near IR

InGaAs QWs (mid IR)
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GaN QWs (near IR)
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2.625 um
2.625 um

<

Frequency (THz)

2 3
Bias (V)

Appl. Phys. Lett. 103, 263116 (2013)
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Electrically Tunable Strong Coupling
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Rabi Frequency vs. Geometry
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Physical Review B89, 165133 (2014)
NanoLetters (2015)

e Larger capacitance leads to larger Rabi splitting
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e Electrically tunable metasurfaces
— Depletion: Thz
— Scaling to mid IR
— Tuning by controlling coupling
e Coupling to “epsilon near zero modes”
e Coupling to intersubband transitions

e Enhanced optical nonlinearities
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How Metasurfaces on Semiconductors Can Be
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Used for Enhanced Optical Nonlinearities

-

phase-matching

I2a)~ (Ia) X(Z)L)Z

~

Conventional SHG, perfect

Cavity-enhanced

/ 2a)~Q2

GO&
e
Yk Use resonant y? with
semiconductor heterostructures ~

10* enhancement in
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Metasurfaces Provide New Functionality
for Harmonic Generation

Metallic Metasurfaces have been used extensively for beam/phasefront/polarization
manipulation: this is all degenerate

Sn/4 3n/2

SHRSNANEEAS  (Shalaev, Capasso, Zhou, Zheludey, etc..)

LLLLLLLLLY

N

T
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Resonant Optical Nonlinearities:
Intersubband Transitions in Quantum Wells

-_J Electrons __‘
5 1

0 15 20 25

Electronic levels and wavefunctions
can be engineered with
semiconductor heterostructures

Energy (eV)

Growth direction (nm)

Resonant optical nonlinearities can be engineered too:

0.6 ‘
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~250 nm/V - QWs Z direction [nm]
10s of pm/V - LiNbO,

F. Capasso, C. Sirtori, and A.Y. Cho, IEEE J. Quantum Electron. 30, 1313 (1994)
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" ':‘ Metasurfaces Coupled to Resonant x(?

Salvo Campione

Resonators are designed to have

“cavities” resonances at 30 & 60 THz (5&10um)
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APL 104, 131104 (2014)



® Experiment
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Saturation is an issue
Max. conversion efficiencies of few % are possible
Added functionality is the advantage
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Nature Communications 6, 7667 (2015)
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Phased Arrays

ldentical point sources

Radiating with controllable phase difference

Full control over beam direction and shape

Image from Wikipedia
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< = “edge-fed
= dipole”

0

flipping induces it phase shift

Uniform

Array S
250
60
I | 2-in-1:
Period determines Source
angular separation +beam
splitter

Nature Communications 6, 7667 (2015)
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Scaling This Approach to Shorter
Wavelengths

Material 1 Material 2  Material 1

10um to 5um: AlInAs barriers

I ' InGaAs wells
—J>—Q; 20 ~ 0.24eV
._J
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o _1'5 '_ 2 25 How about 1.55um to 0.75um?
Growth direction (nm) This requires a conduction band offset of ~1.6eV!!
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sl SHG (3.2um>1.6um) Using AIGaN/GaN®%=-
Omri Wolf QWS

e Design: SHG 3 ym = 1.5 um (0.4 eV = 0.8 eV)
e Traditional band structure calculation not enough

AlGaN — Over estimation of IST
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O. Wolfetal. APL 2015



Sandia
72 ICS National
ﬁmﬁ i) s

“7  SHG (3.2um>1.6um) Using AlGaN/GaN QWs

Scaling of resonators

) T11.0
-7 + QWs + MM _
10 = Fit to sin’ g
w
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In a llI-N heterostructure, metamaterials
increase efficiency by over 2 orders of
magnitude
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Summary & Acknowledgments

Metasurfaces in conjunction with semiconductor heterostructures can
enhance and provide new functionality for linear and nonlinear optics:

* Field Concentration
* Electrically tunable spectral filters
* Enhanced and more functional optical nonlinearitiess
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Metasurfaces for Improved Infrared
Detectors
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Improved IR Responsivity

» da
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Other Related Topics

e Equivalent circuit model in the strong coupling regime: Physical
Review B89, 165133 (2014)

e Strong coupling to intersubband transitions in the near IR: ACS
Photonics 2014, DOI: 10.1021/ph500192v

e Maximizing strong coupling by changing the metallic resonators:
Nano Letters Article ASAP, DOI: 10.1021/nl504815c

e Integration of MM resonators with IR detectors: Optics
Communications 312, 31-34, 2014

e Enhancing strong coupling with a doped backplane: Optics Express
21 (26),32572-32581,2013
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Other Related Topics

e Shaping PL from QDs: ACS Photonics 2, 172-177 (2015) (with ANU)

e Near field mapping of modes: ACS Photonics 2014, Article ASAP, DOI:
10.1021/ph500232u (with ANU & UNM)

e Tuning Dielectric metasurfaces with Liquid Crystals: ACS Nano 2015,
DOI: 10.1021/acsnano.5b00723, (with ANU)

e Chiral and high Q Fano metasurfaces: Nature Communications 5,
(2014), doi:10.1038/ncomms4892 (with UT)

e Third harmonic from Si metasurfaces: ACS Photonics Article ASAP,
DOI: 10.1021/acsphotonics.5b00065, Nano Letters 14, 6488-6492
(2014). (with ANU+Moscow State)

e Near field modes, THz Mie resonances: Optics express 22, 23034
(2014) (with UCL)
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