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Turbulence Simulations

How complex of a model
do | need?
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How well can | do with DNS
any given model?
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RANS

RANS

= Most widely used turbulence model
= Relies on modeling assumptions—=> Model form uncertainty
=  Sometimes accurate, sometimes inaccurate

= Very difficult to assess model form uncertainty

= |dea: Use machine learning to detect regions of high uncertainty based
on when specific model assumptions are violated




Machine Learning
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Set of data-driven algorithms for regression, classification, clustering

E.g.: linear regression, support vector machines, neural networks

Have been broadly applied in finance, software engineering, retail

Challenge: how to incorporate domain knowledge into machine

learning algori

= These technigues have a range of physics applications
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For this application: use binary classifier to flag regions of high

RANS uncertainty on a point-by-point basis
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Random Forests
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Binary Decision Trees:
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= Simple, easy to understand and use

= Tendency to overfit, poor performance with non-linear behavior
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= Ensembles of Decision Trees:
= Much more robust

= Random Forests are a type of ensemble of decision trees

4




Classifier Development ) g,

Database of Training Train

Flows: data Machine
High Fidelity ﬁ Learning
and RANS Validation | Cross- Validate Classifier
Results data

Evaluate

performance .
Predictions of

Regions of High
Uncertainty




Classifier Development )

Contours of velocity magnitude

Database of Angled jet in crossflow

Flows:

High Fidelity —— |j— ——_ e

and RANS L - . Classifier
Results e Jet in crossflow

Flow over wavy wall
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Flow around square

Flow around cube

= Have database of canonical “building block” flows
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= Split data base into training and validation sets
= Train classifier
» |nput: Local flow variables from RANS
=  Qutput: Binary flag— “on” if RANS assumption violated, “off” otherwise 7
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= Use classifier to make predictions on validation set
= Evaluate classifier by comparing to high fidelity results
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Classifier Development ) g,
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» Cross-validate to ensure generalization




' Nanore
Assumptions Tested ) e,
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1. Non-negativity of eddy viscosity —utl Sy + 2k64;Si;

" 25Kk
= (Classifier should be “on” when LES/DNS eddy viscosity goes negative

= Can extract eddy viscosity from LES/DNS

2. lsotropy of Reynolds stresses

= Classifier should be “on” when second invariant of anisotropy tensor
exceeds a set threshold
3. Linearity of Boussinesq hypothesis
= Extract linear and cubic eddy viscosity from LES/DNS data
= |f these values differ significantly, then uncertainty associated with
linearity assumption is high

Inputs:

= Non-dimensional, rotationally invariant local flow variables
from RANS
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Applications of Classifiers ),

= Can quickly post-process RANS simulation to determine whether it’s
reliable in region of interest

= Don’t have to wait around for validation data set

= Can determine what corrections to implement

= Can enable adaptive corrections during run time

= Experimental design

= Design experiments to provide the strongest validation

= LES-RANS hybrids

= Use classifiers to inform switching function




The Status Quo

Contours of velocity magnitude
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A Better Option

Contours of velocity magnitude
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Blue: Regions where classifier predicts isotropy assumption violated
Green: Regions where classifier predicts linearity assumption violated
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Classifier Performance rh) e

1.0 . : [ l
Non-negativity: white cross-hatching
Isotropy: no cross-hatching
O Linearity: Gold cross-hatching

>l R |
@
©
o Z
v 06 W .
2 .
]
%
& 0.4
3 o2
=

02 -AA A A SVM |

® ® Adaboost DT
B B Random Forest
D_D ] | | |
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
14




Classifier Performance ) o
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® True Positive
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Classifier Confidence

Uncertain classifications
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Comparison against State of the Art ) .

Machine Learned Classifier Physics-based Classifier of Gorle et al.

True Negative
® False Negative
® True Positive
® False Positive

Cross-validation Cross-validation
Error rate: 11% Error rate: 33%

» Cross-validated classifier error rate: 11%
» 3 X more accurate than current state of the art physics-driven classifier
of Gorle et al.
» Gorle et al.’s classifier is used as an input to the ML classifier 18




Impacts h

» Classifiers for RANS model uncertainty can transform the way
RANS results are post-processed and understood
= Clarify when RANS simulations are predictive
= Enable adaptive modeling corrections

» Develop techniques for using machine learning algorithms on
physical systems

= Leverage domain knowledge and physical constraints to develop
smarter models

= Use data-driven models to learn about the physical system
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Rule Extraction rih) s

= Random Forests are much more robust and high-performance
than single decision trees, but what have we lost?

= Clarity—how can we understand these machine learned models?

= Representer Trees

Database of Flow

Simulation S Random Forest S Manufactured

Results Classifier Data
L Representer Physical Simple Model
—> : > :
Tree Insights Correction

®= Trained a representer decision tree based on Random Forest that
predicted when the Boussinesq isotropy assumption was invalid
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Representer Decision Trees ),

= Surprising result: the representer tree has better
performance and is more stable than a tree trained on the
original tra  °3°r

— Random Forest
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®= Trained a representer decision tree based on Random Forest that
predicted when the Boussinesq isotropy assumption was invalid



Analyzing the Representer Tree ) e

= |Look for consistent branches

x[2] <= 1.6857
x[1] <= 00265 x[5] <= 0.0127
N ' // | i \ . .
x[4] <=0.7545 '
x[5] <= 0.9825 x[5] <= 0.0004 x[11]<=-00004 | | x[0]<=-02896
y=[ 72. 161{_[111_ 21| |y=171. 191},;_[322. 31| |y=127. 15_]{3;_[94_ 21| |y=122. 00| |y=r11.39]
Boundary layers Perturbed Coherent

Boundary layers structures




Analyzing the Representer Tree

x[1] <= 0.0265

x[8] <= 0.0038
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First split is on x[2], which is

x[2] <= 1.6857

X[5]<=0.9825

x[5] <= 0.0004

\

x[5] «=0.0127

:

X[4] <= 0.7545

non-dimensional distance to
/ the nearest wall

\

i

x[11] <=-0.0004

x[0] <= -0.2896

W

y=[ 72. 161{_[111_ 24

y=[T71. l9l>y-[322. 73]

y=[27. lﬁj{y—[%- 2]

y=[22. 0]

y=[11. 39.]

Boundary layers

Perturbed
Boundary layers

Coherent
structures
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Analyzing the Representer Tree

x[2] <= 1.6857
x[1] <= 00265 x[5]<=0.0127
* x[4] <=0.7545 Tt
x[5] <=0.9825 x[5] <= 0.0004 x[11]<=-0.0004 x[0] <=-0.2896
' ! l I
y=[ 72. 16190 | |y=r(111. 247 | |y=171.191] y=[322. 73] y=[27.15] y=[9. 2] y=[22. 0] y=[11.39]
Boundary layers Perturbed Coherent
Boundary layers structures

= Can determine physical regimes where assumptions are violated
= Can see that different mechanisms cause assumption to break down in near

wall region than in free stream 54
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=  Machine learning was used to detect when RANS assumptions break down

= These data-driven methods achieved significantly improved classification
accuracy by leveraging the high-dimensional data

=  Rule extraction techniques were then used to regain physical intuition
from the machine learning classifiers
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