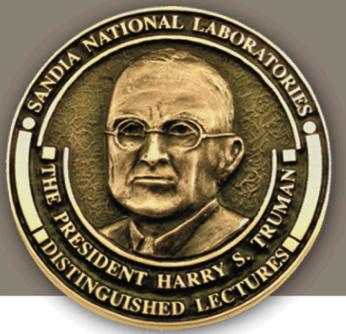


*Exceptional service in the national interest*



## SANDIA NATIONAL LABORATORIES

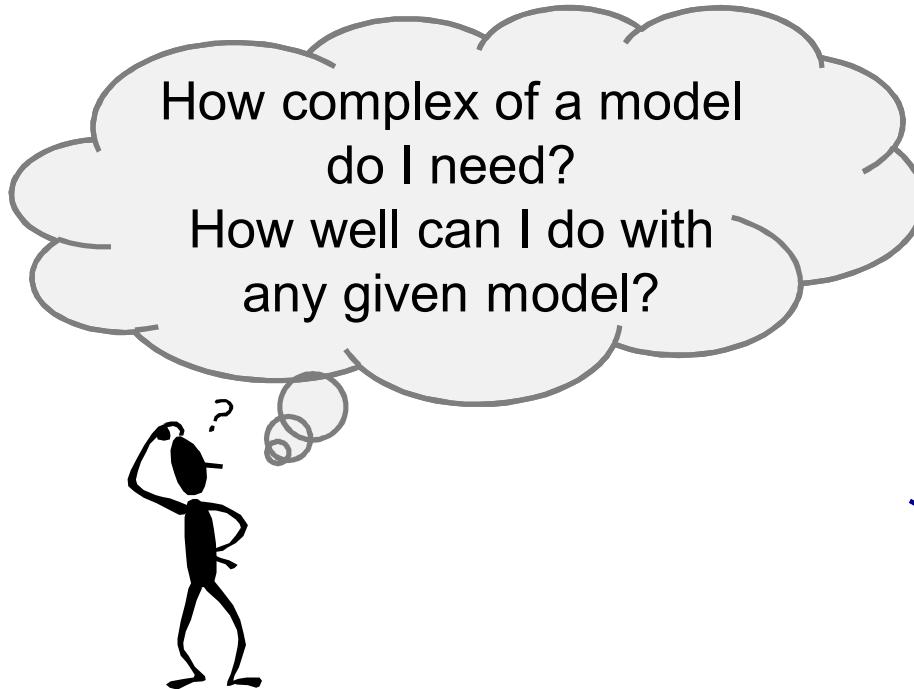
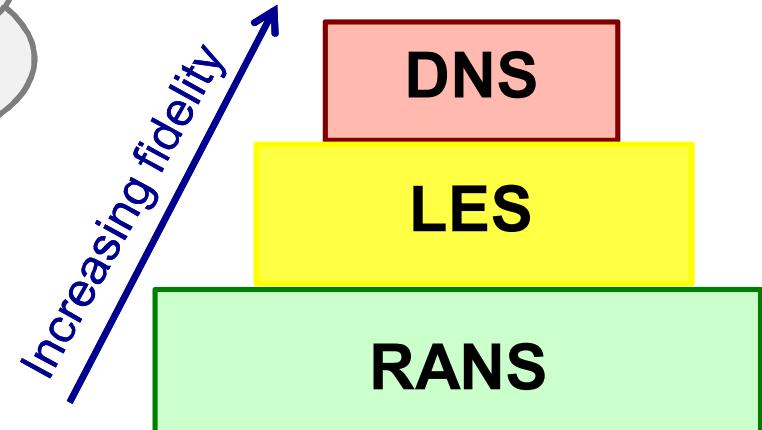
### President Harry S. Truman Fellowship in National Security Science and Engineering

# Machine Learning for Uncertainty Quantification in Turbulent Flow Simulations

Julia Ling, Jeremy Templeton

Apr 2016

# Turbulence Simulations

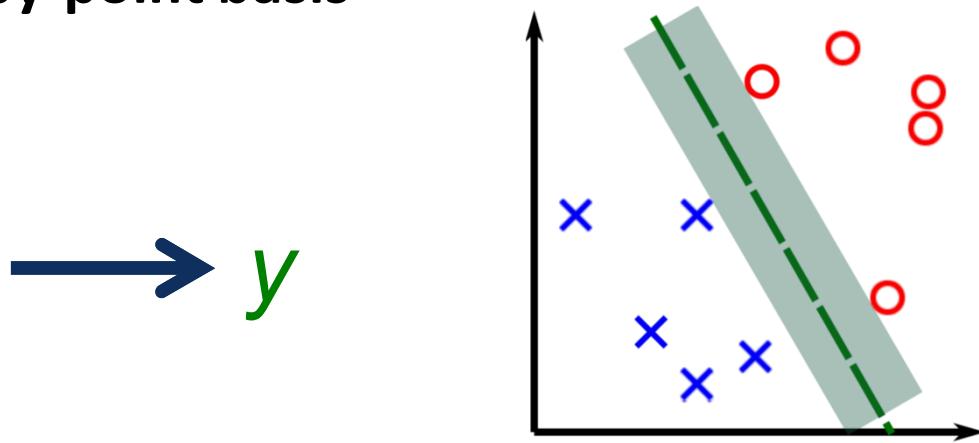


## RANS

- Most widely used turbulence model
- Relies on modeling assumptions → Model form uncertainty
- Sometimes accurate, sometimes inaccurate
  - Very difficult to assess model form uncertainty
- **Idea: Use machine learning to detect regions of high uncertainty based on when specific model assumptions are violated**

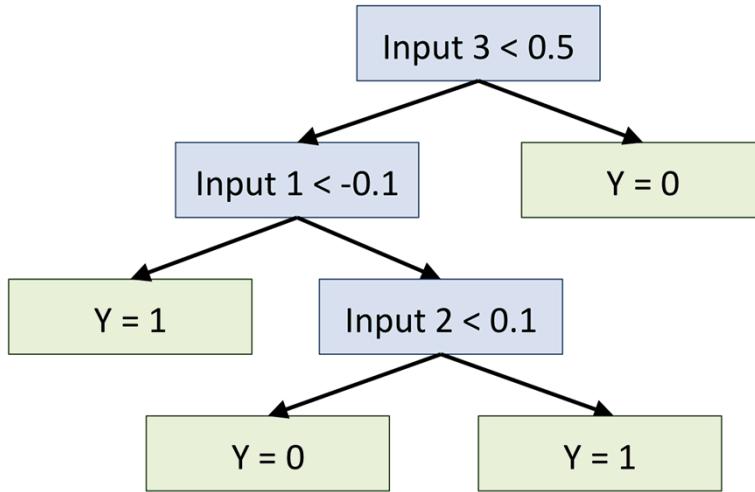
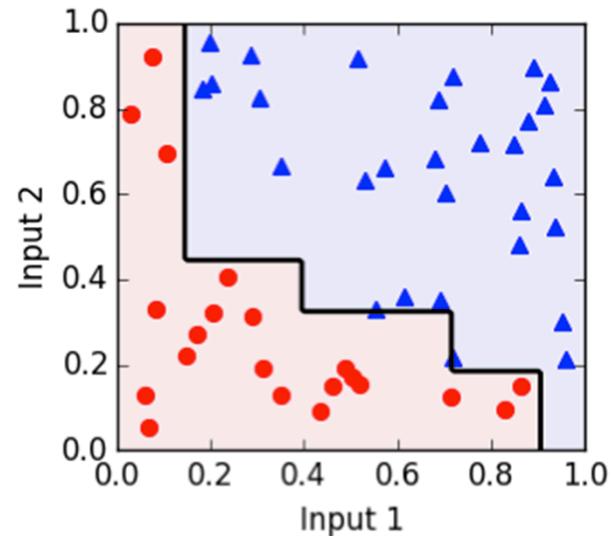
# Machine Learning

- Set of data-driven algorithms for regression, classification, clustering
- *E.g.*: linear regression, support vector machines, neural networks
- Have been broadly applied in finance, software engineering, retail
- Challenge: how to incorporate domain knowledge into machine learning algorithms
  - These techniques have a range of physics applications
- **For this application: use binary classifier to flag regions of high RANS uncertainty on a point-by-point basis**



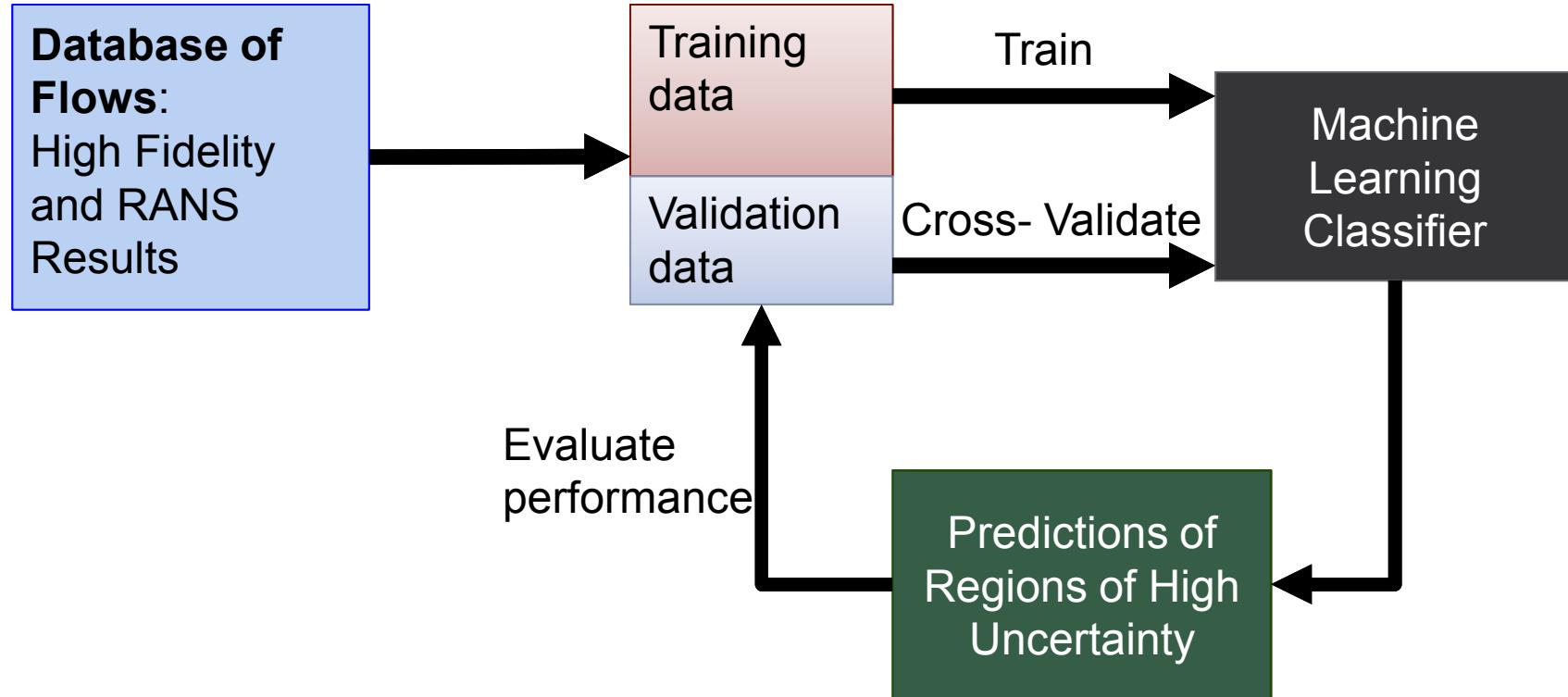
# Random Forests

- Binary Decision Trees:
  - Simple, easy to understand and use
  - Tendency to overfit, poor performance with non-linear behavior



- Ensembles of Decision Trees:
  - Much more robust
  - Random Forests are a type of ensemble of decision trees

# Classifier Development



# Classifier Development

**Database of Flows:**  
High Fidelity and RANS Results

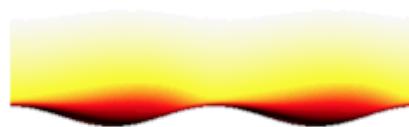
Contours of velocity magnitude

Angled jet in crossflow

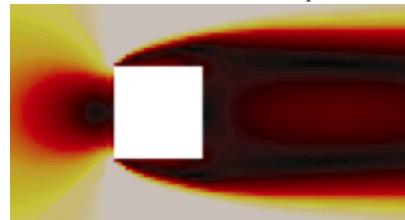


Jet in crossflow

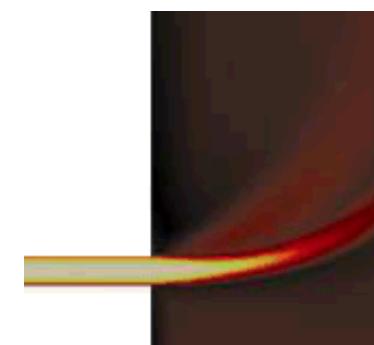
Flow over wavy wall



Flow around square



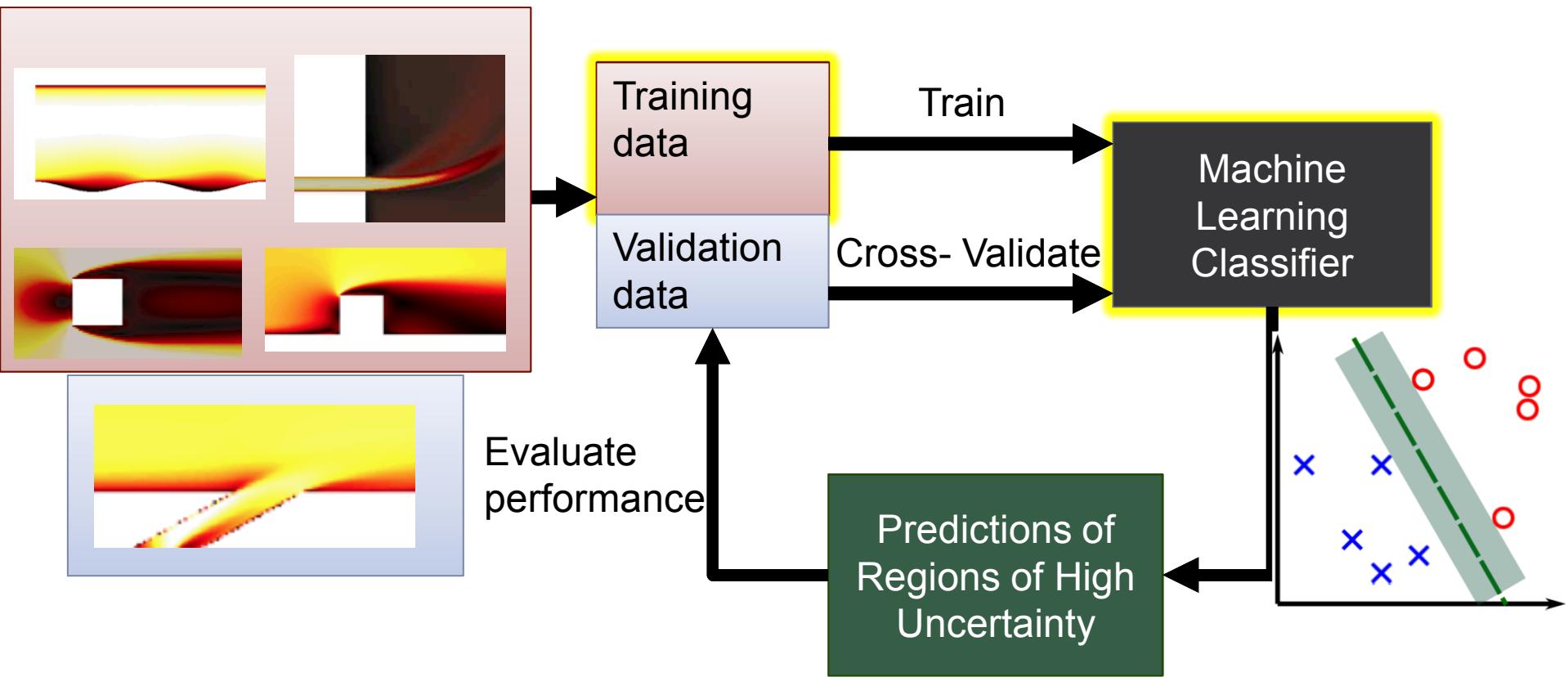
Flow around cube



Machine Learning Classifier

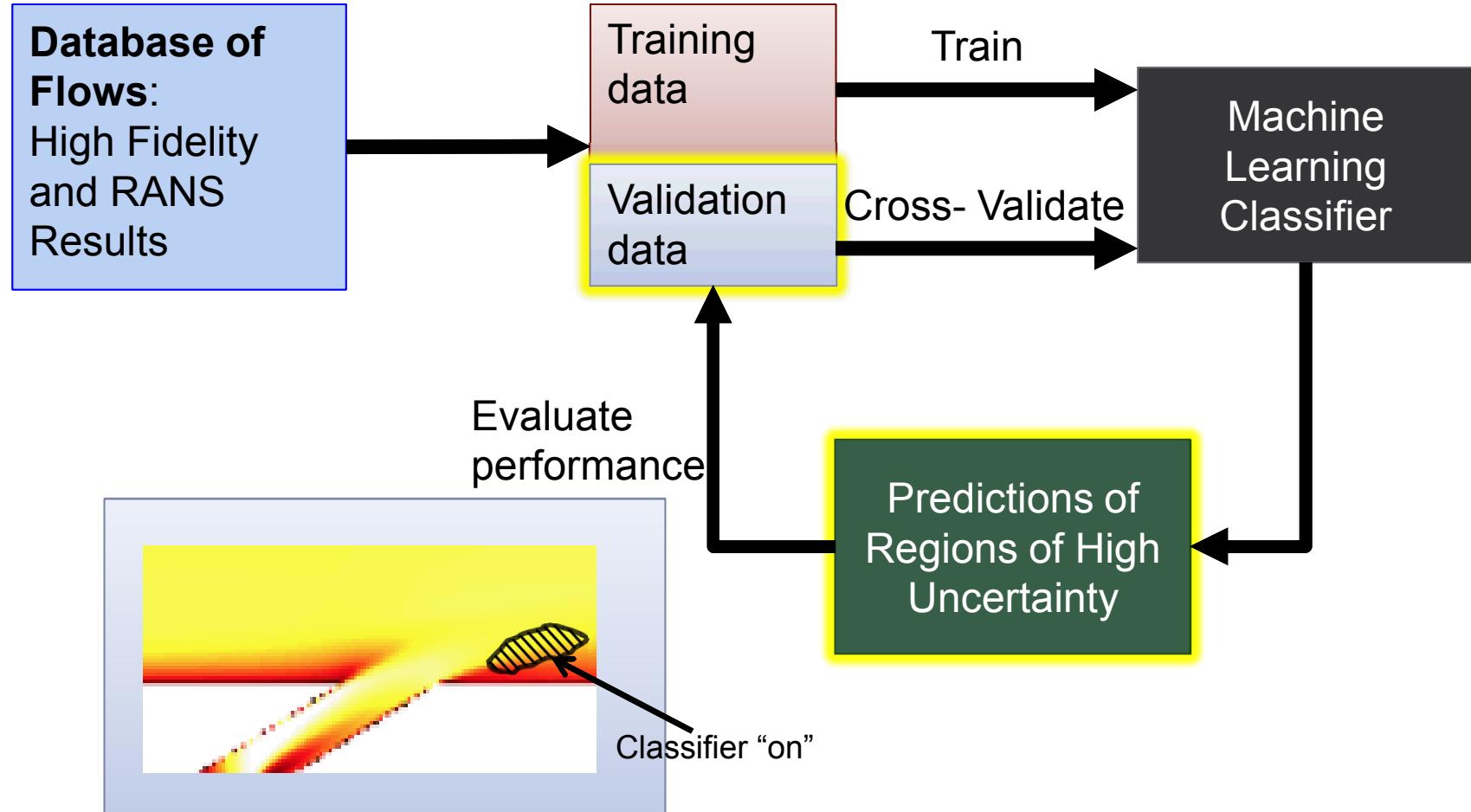
- Have database of canonical “building block” flows

# Classifier Development



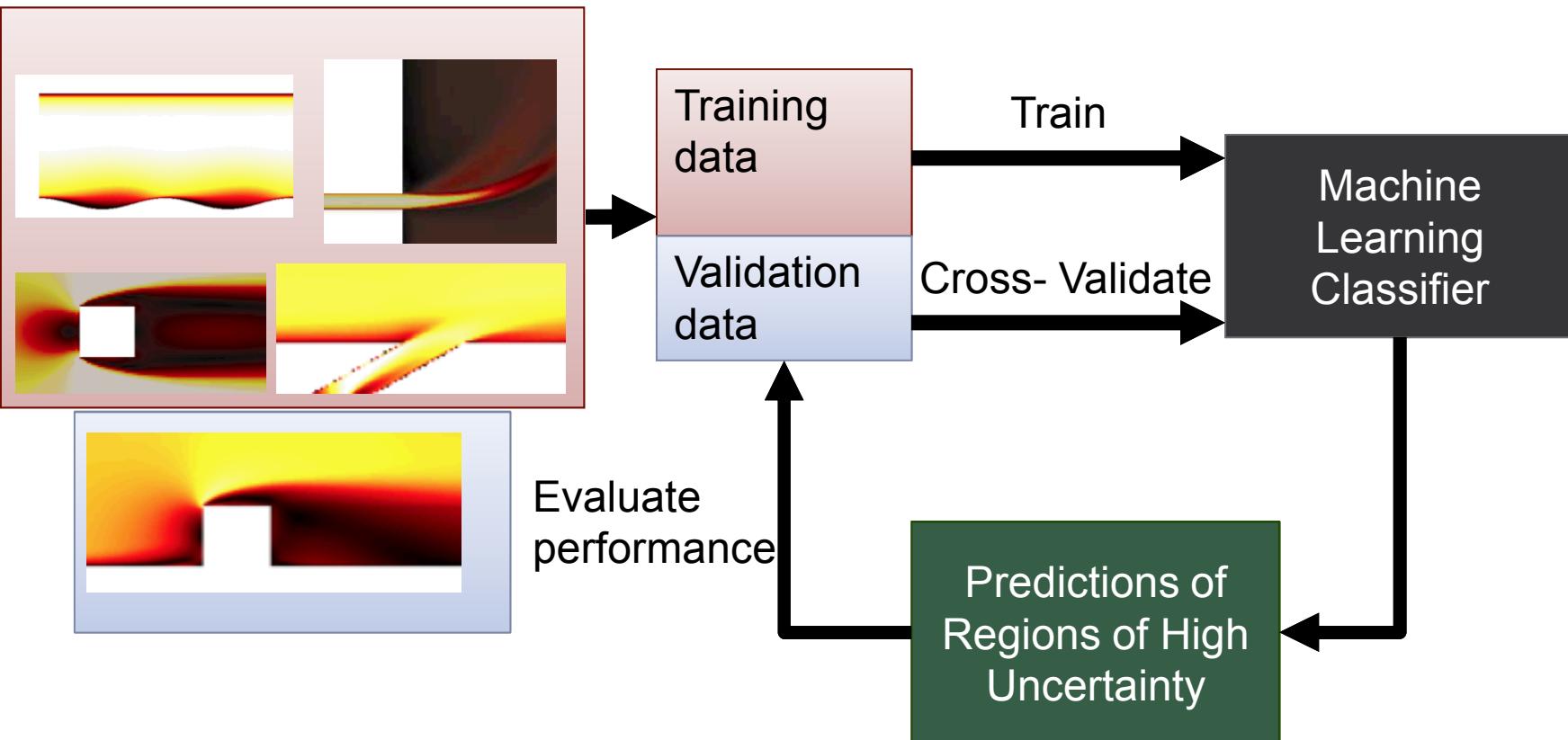
- Split data base into training and validation sets
- Train classifier
  - Input: Local flow variables from RANS
  - Output: Binary flag—“on” if RANS assumption violated, “off” otherwise

# Classifier Development



- Use classifier to make predictions on validation set
- Evaluate classifier by comparing to high fidelity results

# Classifier Development



- Cross-validate to ensure generalization

# Assumptions Tested

$$\overline{u'_i u'_j} = \frac{2}{3} k \delta_{ij} - 2 \nu_t S_{ij}$$

## 1. Non-negativity of eddy viscosity

- Can extract eddy viscosity from LES/DNS
- Classifier should be “on” when LES/DNS eddy viscosity goes negative

$$\nu_t = \frac{-\overline{u'_i u'_j} S_{ij} + \frac{2}{3} k \delta_{ij} S_{ij}}{2 S_{kl} S_{kl}}$$

## 2. Isotropy of Reynolds stresses

- Classifier should be “on” when second invariant of anisotropy tensor exceeds a set threshold

## 3. Linearity of Boussinesq hypothesis

- Extract linear and cubic eddy viscosity from LES/DNS data
- If these values differ significantly, then uncertainty associated with linearity assumption is high

## Inputs:

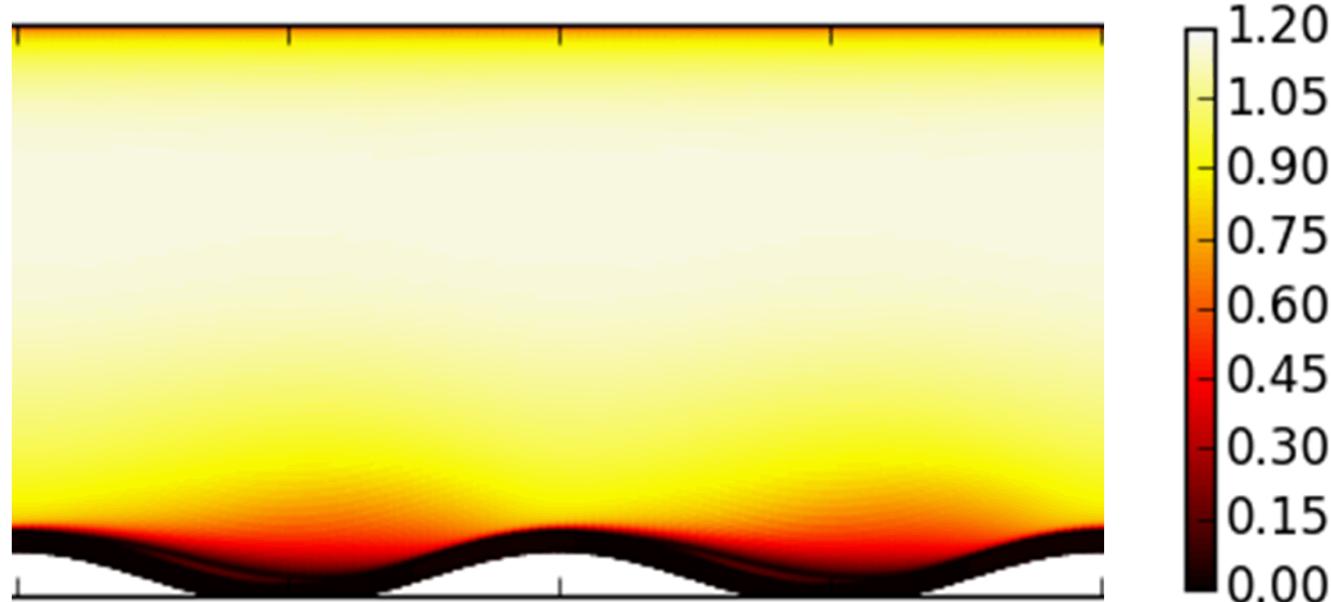
- Non-dimensional, rotationally invariant local flow variables from RANS

# Applications of Classifiers

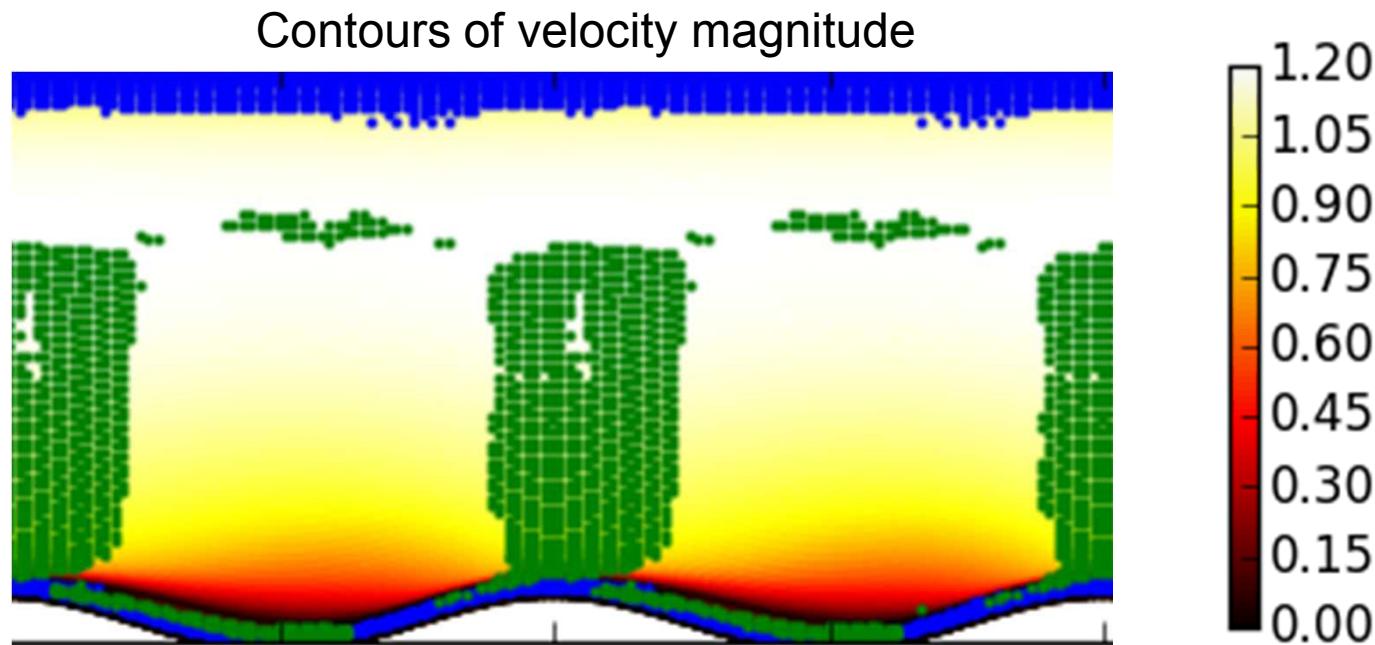
- Can quickly post-process RANS simulation to determine whether it's reliable in region of interest
  - Don't have to wait around for validation data set
  - Can determine what corrections to implement
- Can enable adaptive corrections during run time
- Experimental design
  - Design experiments to provide the strongest validation
- LES-RANS hybrids
  - Use classifiers to inform switching function

# The Status Quo

Contours of velocity magnitude

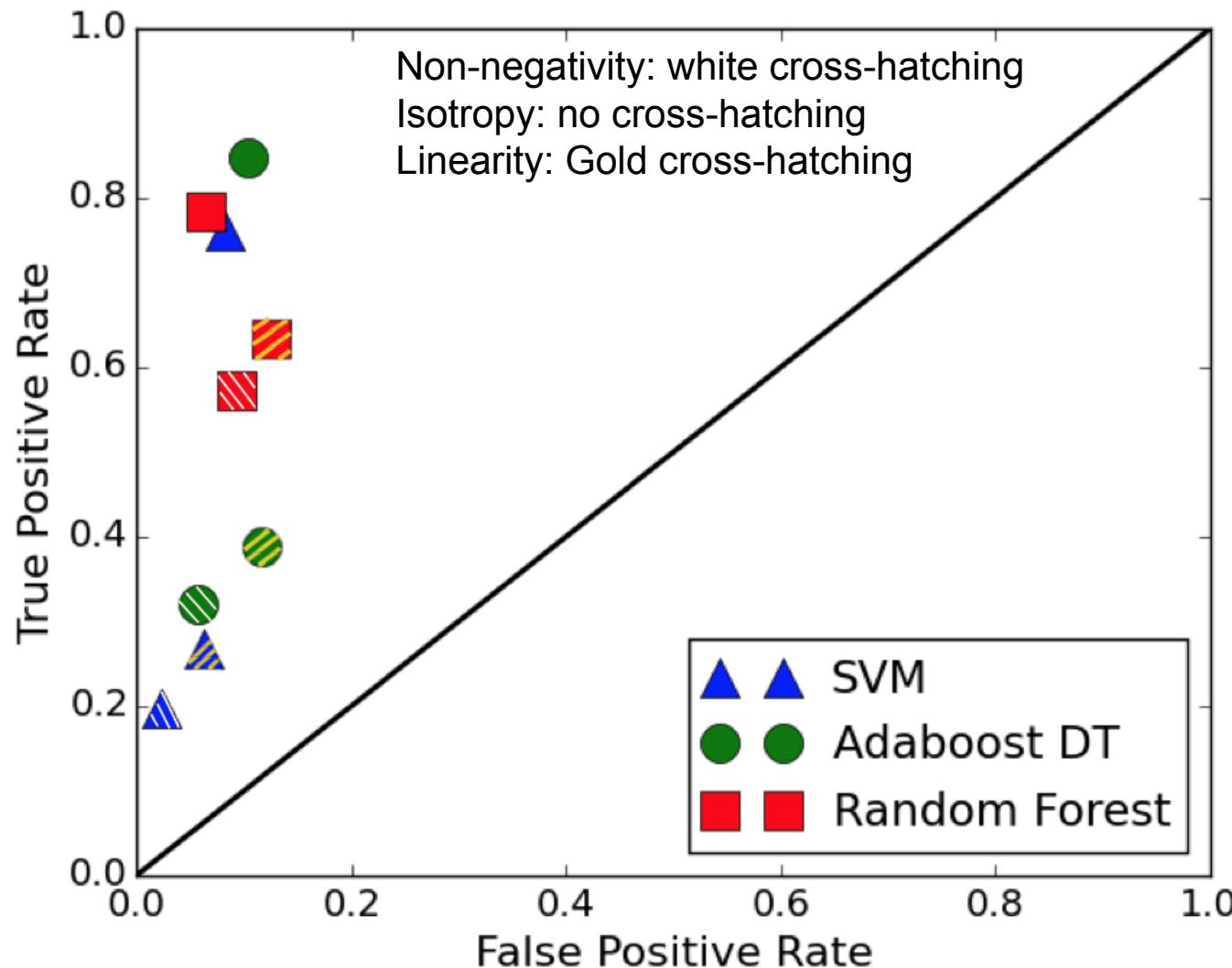


# A Better Option

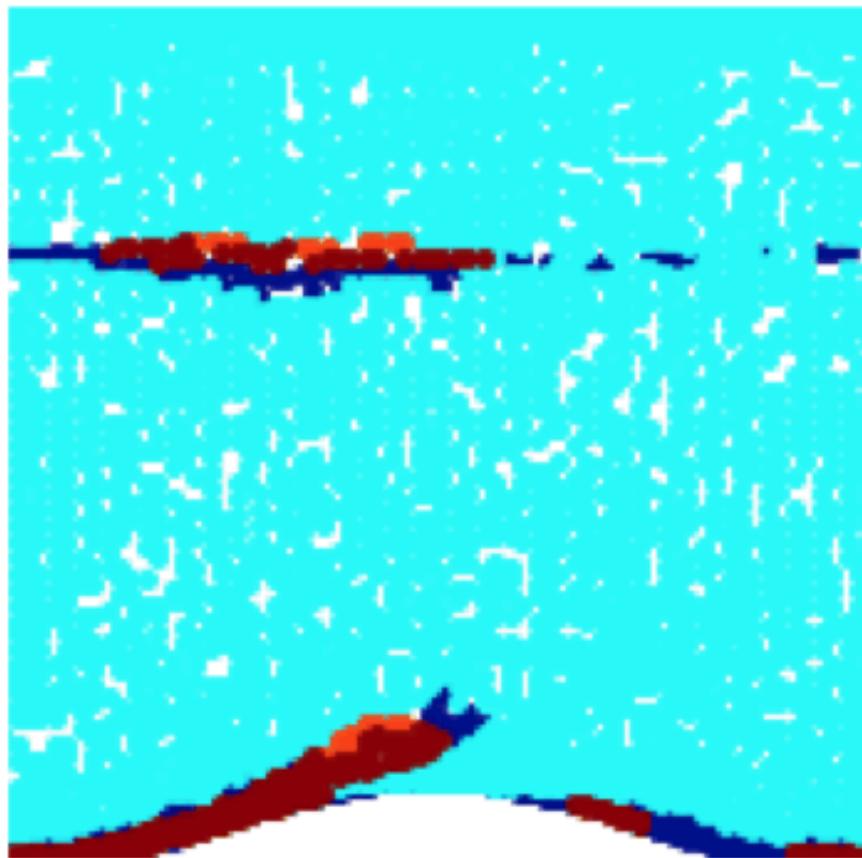


Blue: Regions where classifier predicts isotropy assumption violated  
Green: Regions where classifier predicts linearity assumption violated

# Classifier Performance



# Classifier Performance

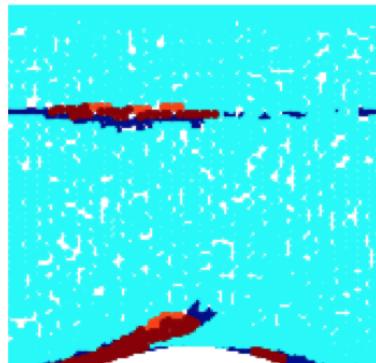
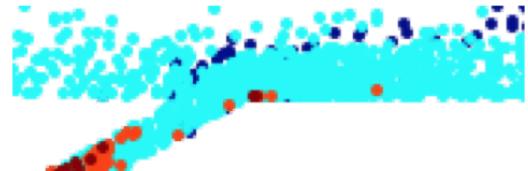


- True Negative
- False Negative
- True Positive
- False Positive

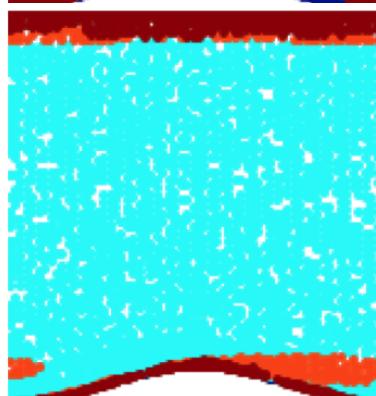
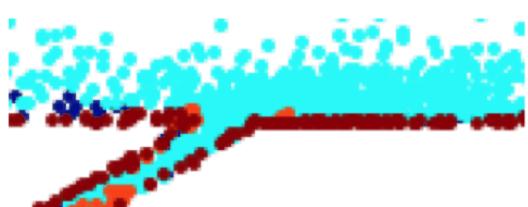
(a) Case 1, Marker 1:  
Negative  $\nu_t$

# Classifier Performance

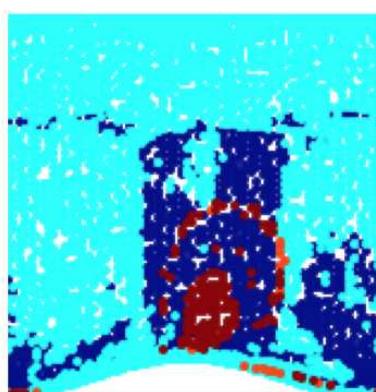
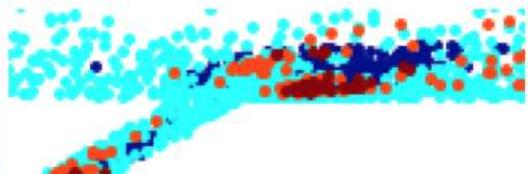
Non-negativity  
assumption



Isotropy  
assumption



Linearity  
assumption

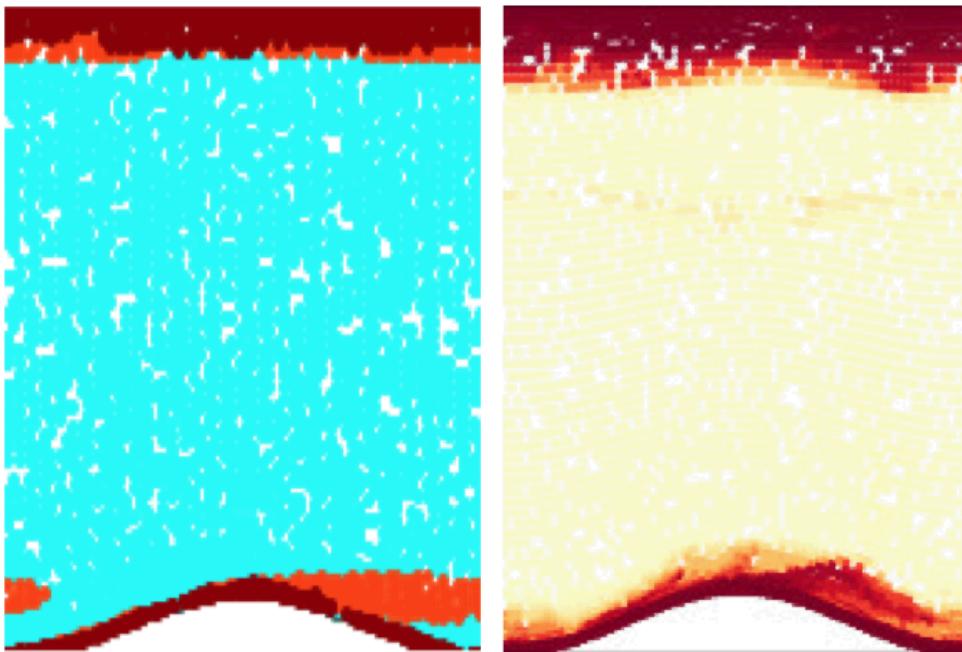


Legend:

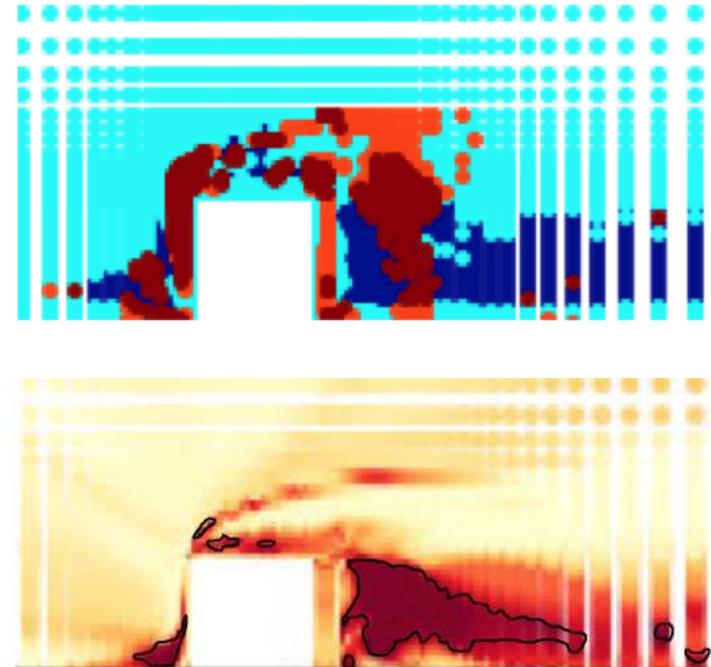
- True Negative (cyan)
- False Negative (red)
- True Positive (dark red)
- False Positive (dark blue)

# Classifier Confidence

Uncertain classifications

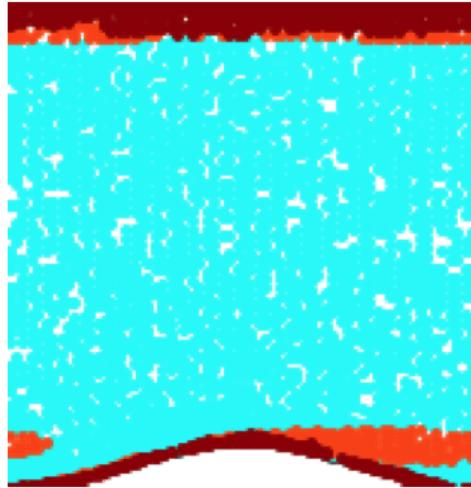


Extrapolation Detection



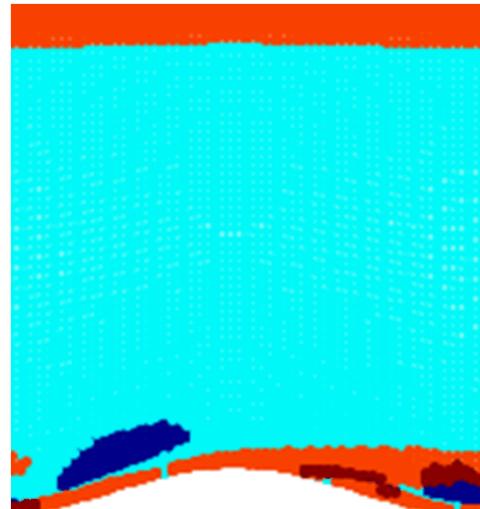
# Comparison against State of the Art

Machine Learned Classifier



Cross-validation  
Error rate: 11%

Physics-based Classifier of Gorle et al.



Cross-validation  
Error rate: 33%

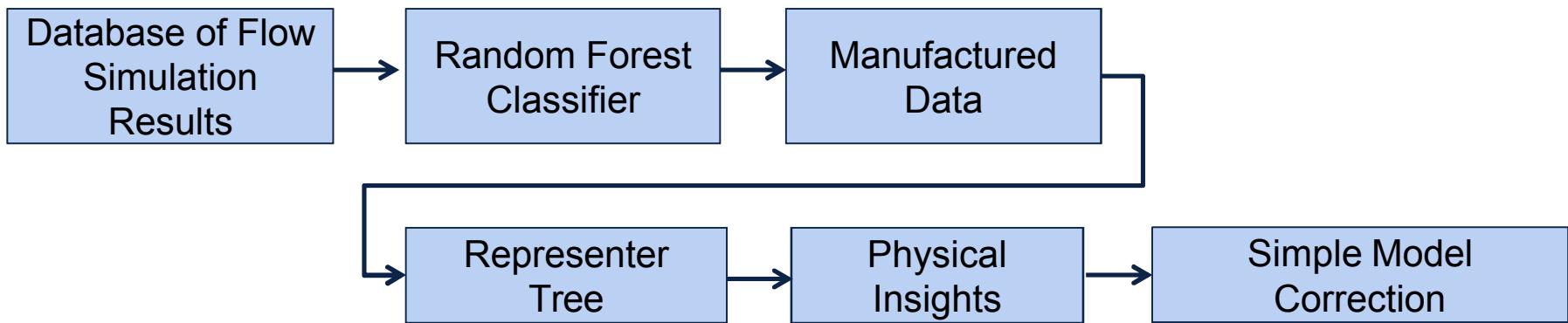
- Cross-validated classifier error rate: 11%
- 3 X more accurate than current state of the art physics-driven classifier of Gorle et al.
- Gorle et al.'s classifier is used as an input to the ML classifier

# Impacts

- Classifiers for RANS model uncertainty can transform the way RANS results are post-processed and understood
  - Clarify when RANS simulations are predictive
  - Enable adaptive modeling corrections
- Develop techniques for using machine learning algorithms on physical systems
  - Leverage domain knowledge and physical constraints to develop smarter models
  - Use data-driven models to learn about the physical system

# Rule Extraction

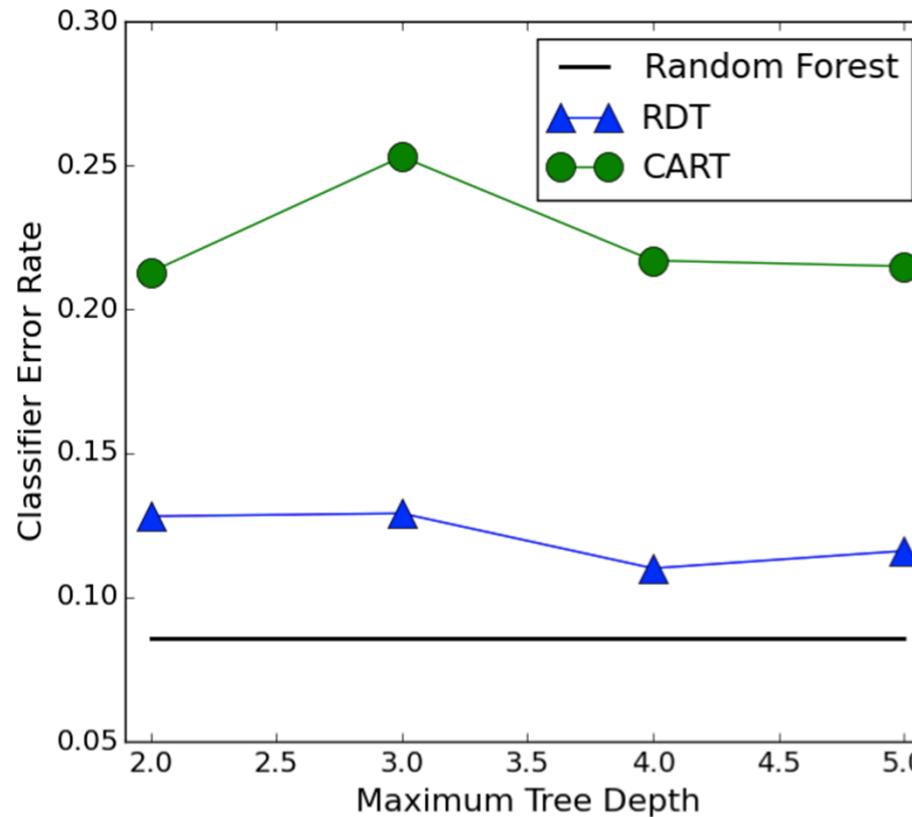
- Random Forests are much more robust and high-performance than single decision trees, but what have we lost?
  - Clarity—how can we understand these machine learned models?
- Representer Trees



- Trained a representer decision tree based on Random Forest that predicted when the Boussinesq isotropy assumption was invalid

# Representer Decision Trees

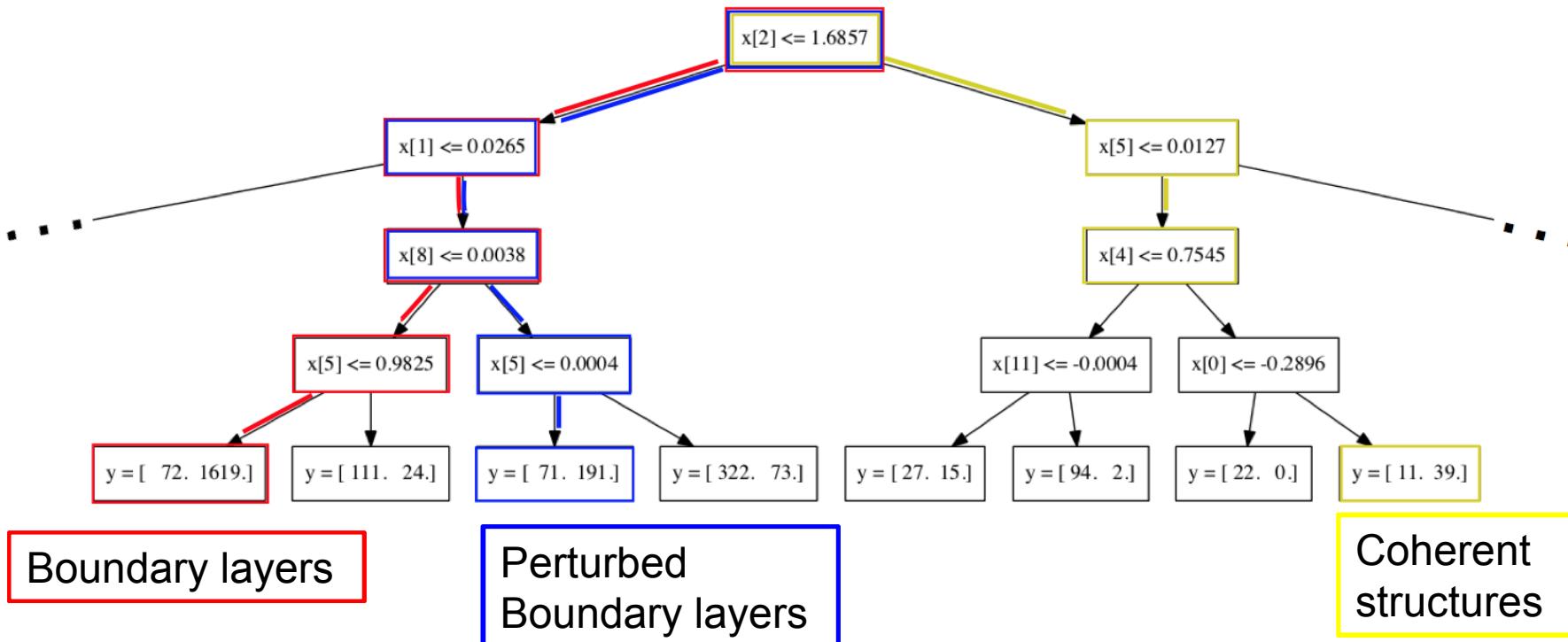
- Surprising result: the representer tree has better performance and is more stable than a tree trained on the original tra



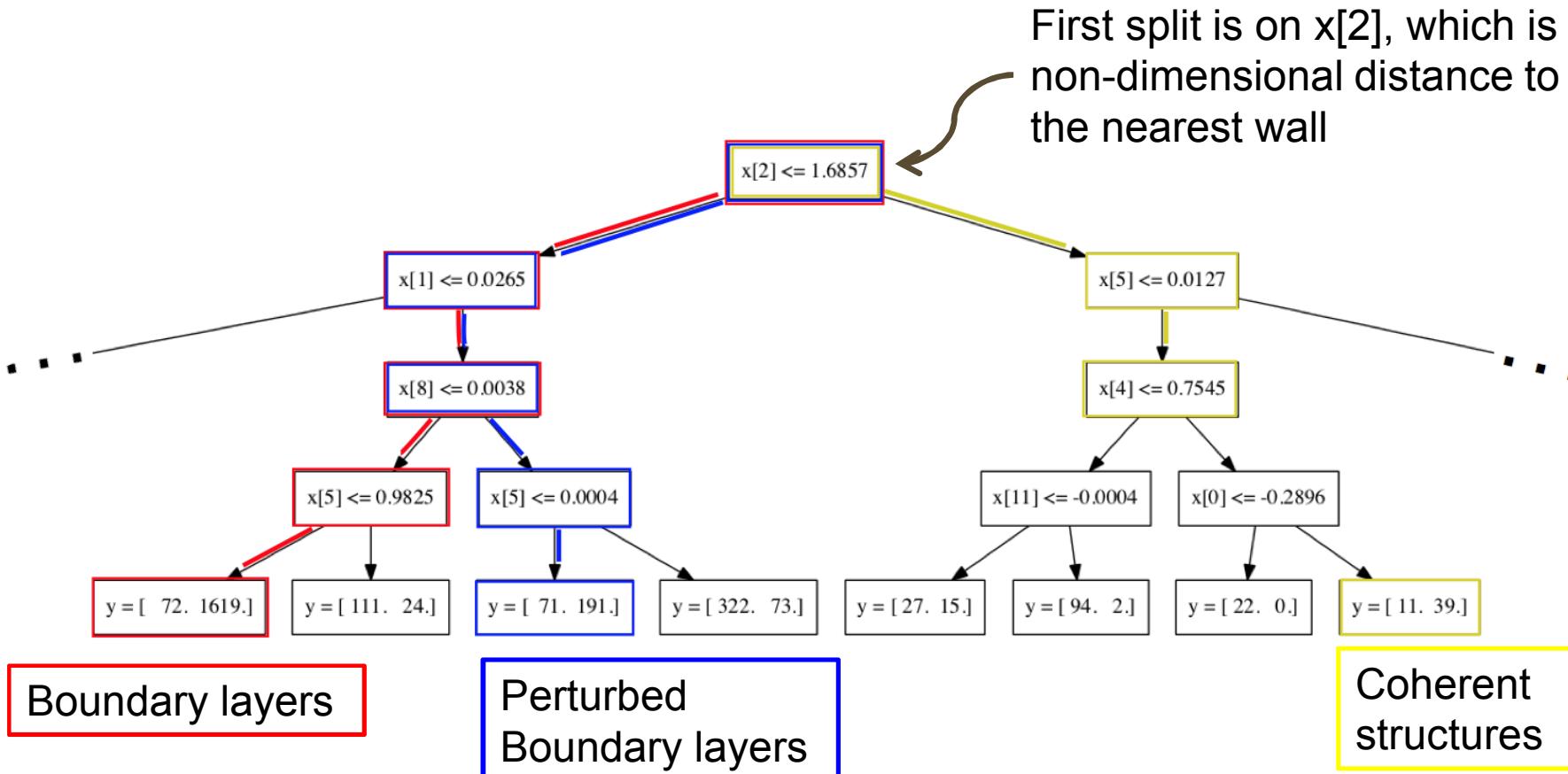
- Trained a representer decision tree based on Random Forest that predicted when the Boussinesq isotropy assumption was invalid

# Analyzing the Representer Tree

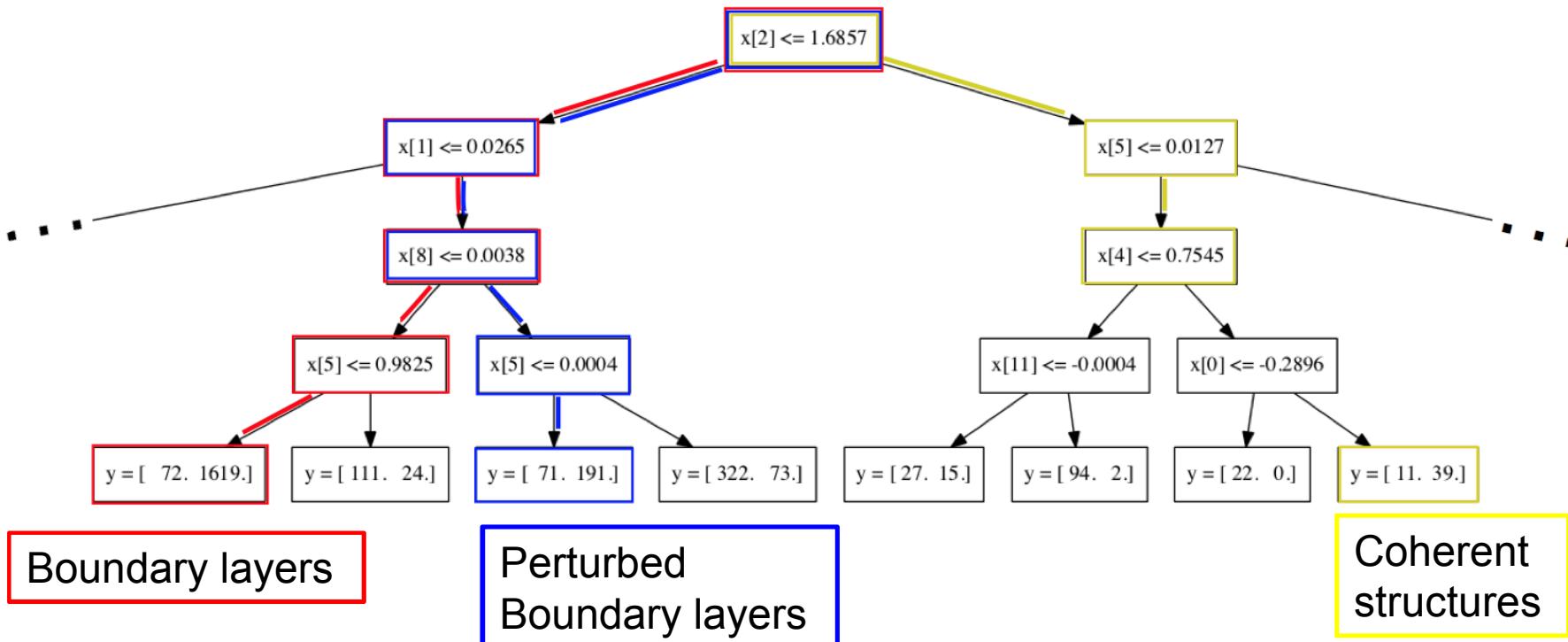
- Look for consistent branches



# Analyzing the Representer Tree



# Analyzing the Representer Tree



- Can determine physical regimes where assumptions are violated
- Can see that different mechanisms cause assumption to break down in near wall region than in free stream

# Conclusions

- Machine learning was used to detect when RANS assumptions break down
- These data-driven methods achieved significantly improved classification accuracy by leveraging the high-dimensional data
- Rule extraction techniques were then used to regain physical intuition from the machine learning classifiers

## Acknowledgments

Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND

## References

J. Ling and J. Templeton, "Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty," *Physics of Fluids*, (2015).

J. Ling, "Using Machine Learning to Understand and Mitigate Model Form Uncertainty in Turbulence Models," *ICMLA*, (2015).

C. Gorle, J. Larsson, M. Emory, G. Iaccarino, "The deviation from parallel shear flow as an indicator of linear eddy viscosity model inaccuracy," *Physics of Fluids*, (2014).