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Turbulence Simulations

DNS

LES

RANS

How complex of a model 
do I need?

How well can I do with 
any given model?
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RANS
 Most widely used turbulence model 

 Relies on modeling assumptions Model form uncertainty

 Sometimes accurate, sometimes inaccurate

 Very difficult to assess model form uncertainty

 Idea: Use machine learning to detect regions of high uncertainty based 
on when specific model assumptions are violated



Machine Learning
 Set of data-driven algorithms for regression, classification, clustering

 E.g.: linear regression, support vector machines, neural networks

 Have been broadly applied in finance, software engineering, retail

 Challenge: how to incorporate domain knowledge into machine 
learning algorithms
 These techniques have a range of physics applications

 For this application: use binary classifier to flag regions of high 
RANS uncertainty on a point-by-point basis
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Random Forests
 Binary Decision Trees:

 Simple, easy to understand and use

 Tendency to overfit, poor performance with non-linear behavior

 Ensembles of Decision Trees:
 Much more robust

 Random Forests are a type of ensemble of decision trees
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Classifier Development
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Classifier Development
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 Split data base into training and validation sets
 Train classifier 

 Input: Local flow variables from RANS
 Output: Binary flag– “on” if RANS assumption violated, “off” otherwise

Cross- Validate



Classifier Development
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Classifier Development
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Assumptions Tested

1. Non-negativity of eddy viscosity
 Can extract eddy viscosity from LES/DNS

 Classifier should be “on” when LES/DNS eddy viscosity goes negative

2. Isotropy of Reynolds stresses
 Classifier should be “on” when second invariant of anisotropy tensor 

exceeds a set threshold

3. Linearity of Boussinesq hypothesis
 Extract linear and cubic eddy viscosity from LES/DNS data

 If these values differ significantly, then uncertainty associated with 
linearity assumption is high
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Inputs:
 Non-dimensional, rotationally invariant local flow variables 

from RANS



Applications of Classifiers

 Can quickly post-process RANS simulation to determine whether it’s 
reliable in region of interest
 Don’t have to wait around for validation data set

 Can determine what corrections to implement

 Can enable adaptive corrections during run time

 Experimental design
 Design experiments to provide the strongest validation

 LES-RANS hybrids
 Use classifiers to inform switching function
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The Status Quo
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Contours of velocity magnitude



A Better Option

Blue: Regions where classifier predicts isotropy assumption violated
Green: Regions where classifier predicts linearity assumption violated 
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Contours of velocity magnitude



Classifier Performance
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Non-negativity: white cross-hatching
Isotropy: no cross-hatching
Linearity: Gold cross-hatching 



Classifier Performance
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Classifier Performance
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Classifier Confidence
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Uncertain classifications Extrapolation Detection



Comparison against State of the Art
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Physics-based Classifier of Gorle et al.Machine Learned Classifier

Cross-validation 
Error rate: 11% 

Cross-validation 
Error rate: 33% 

 Cross-validated classifier error rate: 11%
 3 X more accurate than current state of the art physics-driven classifier 

of Gorle et al.
 Gorle et al.’s classifier is used as an input to the ML classifier



Impacts

 Classifiers for RANS model uncertainty can transform the way 
RANS results are post-processed and understood
 Clarify when RANS simulations are predictive

 Enable adaptive modeling corrections

 Develop techniques for using machine learning algorithms on 
physical systems
 Leverage domain knowledge and physical constraints to develop 

smarter models

 Use data-driven models to learn about the physical system
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Rule Extraction

 Random Forests are much more robust and high-performance 
than single decision trees, but what have we lost?
 Clarity—how can we understand these machine learned models?

 Representer Trees
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 Trained a representer decision tree based on Random Forest that 
predicted when the Boussinesq isotropy assumption was invalid



Representer Decision Trees
 Surprising result: the representer tree has better 

performance and is more stable than a tree trained on the 
original training data
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 Trained a representer decision tree based on Random Forest that 
predicted when the Boussinesq isotropy assumption was invalid



Analyzing the Representer Tree

 Look for consistent branches
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Analyzing the Representer Tree
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First split is on x[2], which is 
non-dimensional distance to 
the nearest wall



Analyzing the Representer Tree
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Boundary layers Coherent 
structures

Perturbed 
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 Can determine physical regimes where assumptions are violated
 Can see that different mechanisms cause assumption to break down in near 

wall region than in free stream



Conclusions
 Machine learning was used to detect when RANS assumptions break down

 These data-driven methods achieved significantly improved classification 
accuracy by leveraging the high-dimensional data

 Rule extraction techniques were then used to regain physical intuition 
from the machine learning classifiers
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