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Abstract—Remote Direct Memory Access (RDMA) is expected
to be an integral communication mechanism for future exascale
systems – enabling asynchronous data transfers, so that appli-
cations may fully utilize all CPU resources while simultaneously
sharing data amongst remote nodes. In this paper we examine
network-induced memory contention (NiMC), the interactions
between RDMA and the memory subsystem when applications
and out-of-band services compete for memory resources and
NiMC’s resulting impact on application-level performance. For
a range of hardware technologies and HPC workloads, we
quantified NiMC and show that NiMC’s impact grows with
scale resulting in up to 3X performance degradation at scales
as small as 8K processes even in applications that previously
have been shown to be performance resilient in the presence
of noise. We also evaluated three potential techniques to reduce
NiMC’s performance impact, namely hardware offloading, core
reservation and software-based network throttling. While all
three of these solutions show promise, we provide guidelines that
help select the best solution for a given environment.

Keywords-Measurement; Performance; Memory Contention;
Network Contention; Networks;

I. INTRODUCTION

On today’s high-performance computing (HPC) systems,
standard communication mechanisms are synchronous, re-
quiring active sender and receiver participation in message
transmission – expending resources and time on both ends.
On emerging exascale-class systems, projected to comprise
several orders of magnitude more processing elements than
today’s fastest systems, synchronous operation is expected to
become a prohibitive bottleneck [9]. As systems and application
researchers investigate novel approaches to reduce applica-
tion synchronization, asynchronous communication widely
is considered to be a part of the exascale system design
solution. We expect that this emerging trend toward less
synchronous computational paradigms and services, along with
improvements to one-sided communications in MPI-3 [19] and
new network technologies will lead to increased popularity for
asynchronous communication.

*Sandia National Laboratories s a multiprogram laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

Remote direct memory access (RDMA), also called one-
sided communication, is a popular and useful mechanism for
implementing efficient asynchronous communication. RDMA
allows a node’s local memory to be read or written by a remote
node without involvement of the local operating system or CPU.
Such out-of-band communication incurs no direct overhead on
the target machine. There are many attractive use cases for
RDMA, such as to overlap an application’s communication
and computation phases in non-bulk synchronous parallel (non-
BSP) computational paradigms, for in-memory asynchronous
checkpointing and for in-situ analytics. However, little is known
about the potential indirect application interference of the ad-
ditional memory contention caused by RDMA communication.
Consider, for example, uncoordinated checkpoints that are
staged in the memory of remote nodes before being moved
to stable storage, as in SCR [17]. Memory traffic from a
remote node writing a checkpoint will contend with the memory
transactions of a local memory-bound application. Generally,
memory contention between local operations and out-of-band
network operations can cause significant decreases in memory
and thus application performance. We refer to this phenomenon
as network-induced memory contention (NiMC1).

Further exacerbating the situation, many-core technologies
will be a fundamental part of the exascale system design
solution. However, a greater number of hardware threads
means a greater demand for shared resources such as the
network and memory sub-system. As shown in Figure 1, while
the total off-chip bandwidth has been increasing, per-core
memory bandwidth has not been increasing as significantly.
Coupling these trends with the increased interest in one-sided
communication, it becomes critical that we understand the
potential application performance impact of NiMC. While
researchers have explored the memory subsystem as an area
of concern for extreme scale systems [27], [3], the concept of
NiMC has not been characterized previously.

In this work, we studied the application performance impact
of NiMC on a variety of hardware architectures and evaluated
three candidate solutions. The results show that NiMC can

1nim is an English form of the German word nehmen meaning “to take or
steal”. Using ’C’ as “cycles”, NiMC (\′nim−′ sē\) can also mean ”to steal
cycles” – the net result of network-induced memory contention.
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Fig. 1: A 10 year history of network and memory bandwidths.
While total bandwidth has been increasing, per-core network
and memory bandwidth have not significantly increased. The
result is increased contention for the shared network and
memory resources.

degrade single node memory bandwidth by 59.6%. Fur-
thermore, for an application that is performance-resilient to
system noise, we show NiMC can increase runtime by up
to a factor of three (at our tested scales).

The specific contributions of this paper are:
• a comprehensive analysis of NiMC and its isolated effects;
• a quantification of the performance impact of NiMC for

a range of systems and applications;
• a characterization of the system and application attributes

that exacerbate NiMC; and
• evaluations of three candidate NiMC solutions;
NiMC is characterized on many different systems and found

to exist on most of them in §IV. Further investigations in §V,
show the impact from NiMC on applications and mini-apps for
one of the evaluated systems, showing an approximately 2X
runtime increase for 5 of 7 of the studied workloads. We then
prove that NiMC is an issue for some systems at scale with a
real application in §VI. Work in §VII then demonstrates the
effectiveness of our three proposed solutions at scale with tests
conducted on two large systems comprising a total of 160,000
core hours worth of runtime. Throughout these investigations,
evidence is provided showing that the slowdowns attributed
to NiMC are not due to contention for compute or network
resources. Finally, our work concludes with related work and
final conclusions in §VIII and §IX, respectively.

II. NETWORK-INDUCED MEMORY CONTENTION

Remote memory operations can induce memory contention
in two ways: (1) RNICs (RDMA-enable network interface
controllers) producing memory traffic in offloaded networks
and (2) CPU-to-memory traffic when the CPU is used for
onload network processing. For onloaded RDMA, not all traffic
necessarily flows through CPU cores before being placed in

memory. However, programming the DMA engines on the
RNIC requires CPU intervention and causes some data to
be transferred from the RNIC to the core to facilitate DMA
requests. While there is ongoing debate for onloaded versus
offloaded networking, this study reveals that NiMC should be
an important consideration in this debate.

As Figure 1 illustrates, total network bandwidth is now
much greater than per-core memory bandwidth. For future
exascale systems, this relationship is expected to become
more pronounced [14], compounding the memory contention
caused by RDMA operations. Trends away from traditional
BSP programming models toward finer-grained, asynchronous
models that admit higher levels of concurrency also will lead to
to greater demands on the memory subsystem and the network.
Lastly, other exascale requirements, for example application
resilience, in-situ data analysis and uncertainty quantification,
will generate additional local and remote memory traffic asso-
ciated with activities only indirectly related to the application.
NiMC can be particularly troublesome when caused by traffic
not directly related to the computation.

RDMA traffic that causes NiMC has the potential to also
impact application performance through congestion on the
network fabric [26] (rather than memory). Therefore, this study
uses methods of introducing NiMC that are realistic usage
scenarios, but also ones that do not create additional contention
on the network. Specifically, (1) the examination of NiMC
impact on single node jobs (§V) does not utilize the network
for application communication. (2) in §VII-B we show that
the observed slowdowns at scale are caused by NiMC on the
node, rather than in the fabric.

III. EVALUATION METHODOLOGY

Our approach to study NiMC is straightforward: for each
application and hardware configuration under test, we injected
remote memory operations into the compute node(s) and
measured the resulting application perturbation by comparing
application performance with and without RDMA traffic.

First, we used a memory-bandwidth benchmark to establish
a baseline for application perturbation. These experiments
were executed on multiple architectures to observe the NiMC
impact for different hardware configurations. Our subsequent
experiments then helped us to assess NiMC impact for real
applications in single node and distributed contexts.

A. Injecting RDMA Operations

We used ib write bw from the Open Fabric Enterprise
Distribution (OFED) Performance Tests [20] to generate
network traffic streams. The OFED Performance Tests are a set
of tests that use InfiniBand’s user-level verbs API to measure
IB performance. The ib write bw test uses RDMA writes to
perform a series of operations between two connected nodes.
As previously described, compared to traditional send/recv
tests, the benefits of one-sided tests are that message delivery
and synchronization are decoupled: after memory registration,
writes do not significantly involve the CPU on the target node.
We chose write operations as the overhead of performing read



operations on the nodes running the applications potentially
would perturb the tests through use of compute cores to create
and issue the read requests. Write requests do not have this
issue, as the source node bears the burden of creating and
issuing the network requests. An illustration of the flow of
traffic to an individual node is presented in Figure 2.

B. The Workloads

1) STREAM: The STREAM memory benchmark [15] per-
forms a small set of memory benchmarking kernels (copy,
sum, scale, triad) that perform a small number of reads,
arithmetic operations and a write back to memory. We used
these operations to measure the sustainable memory bandwidth
and corresponding computation rates by working with data
sets significantly larger than the available cache. We used the
STREAM triad test, a(i) = b(i) + q ∗ c(i), which is the most
representative of a typical workload.

2) CNS: CNS [4] is a ”simple stencil-based proxy-app
for computing the hyperbolic component of a time-explicit
advance for the Compressible Navier-Stokes equations using
8th order finite differences and a 3rd order, low-storage TVD
RK algorithm in time.” [8] CNS is intended to mimic the stencil
operations of more realistic combustion applications, it does
not mimic a typical problem found in combustion applications.

3) HPCCG: HPCCG [11] is an unstructured implicit finite
element application, which calculates the conjugate gradient
for a 3D chimney domain, running on an arbitrary number of
processes. HPCCG creates a 27-point finite difference matrix,
for which each MPI rank is designated a user-defined sub-block.
This mini-app is generally considered to be memory-bandwidth
bound, using from 25% to 75% of the total system memory.
HPCCG is a designed to provide excellent weak scaling.

4) LAMMPS: LAMMPS [23], the Large-scale
Atomic/Molecular Massively Parallel Simulator, is a
molecular dynamics code modeling particles in different states.
LAMMPS provides excellent weak scaling with the majority
of communication occurring among nearest neighbors. In this
work, we used a benchmark problem/data set to model the
melt of a 3D Lennard-Jones system, using a weak scaled
problem of a similar size to studies published by the authors
of LAMMPS (32,000 atoms per core) [29].

5) LULESH: LULESH [13] represents shock hydrodynam-
ics code solving a simple Sedov blast problem, illustrating the
behavior of such solvers in ALE3D. This proxy-app distributes
the spatial domain onto a set of volumetric elements defined
by a mesh, where each intersection of mesh lines represents
a node. Within the LULESH proxy-app, there are a variety
of kernels, of which some subset are memory bound. One
constraint of LULESH is that it must run with a cubic number
of MPI Ranks. Therefore, for our experiments we extracted
additional parallelism by leveraging OpenMP (OMP) on any
unused cores.

6) SNAP: SNAP [32] models the performance of a modern
discrete ordinates neutral particle transport application. This
proxy-app does not employ any real physics in its calculations.
Instead, SNAP produces the computational workload, memory

requirements, and communication patterns that match the
Los Alamos National Laboratories application, PARTISN. To
distribute larger problem sizes, SNAP spatially decomposes its
3D mesh and maps it onto a 2D domain of MPI ranks. MPI
ranks send and receive data following wave propagation which
limits the weak scaling of the proxy-app.

7) XSbench: XSBench [28] is a proxy-app which represents
the most significant kernel (85% of runtime) in a robust
nuclear reactor core Monte Carlo particle (neutron) transport
simulation. This variety of simulation can have significant
data usage requirements and the proxy-app is considered to be
memory-intensive. XSBench focuses on modeling intra-node
performance characteristics of OpenMC and is not intended
to be run at scale, as communication is limited to a single
reduction at the end of a run.

C. The Platforms

Our study used nine different platforms from the Sandia
National Laboratories and the Texas Advanced Computing
Center consisting of a variety of architectures. We provide a
concise description in Table I for the reader’s convenience.

For a subset of the machines (Westmere, Lisbon, and
Piledriver-1600/1866), we performed our experiments with
varied memory frequencies, allowing us to see the impact
available memory bandwidth has on NiMC. Westmere and
Lisbon required BIOS option changes, whereas the Piledriver
systems are separate nodes with different memory modules.

All of the systems, other than Haswell-X2 and Sandy-Bridge-
X2-FDR-offload, utilize an InfiniBand QDR network with
a maximum speed of 32 Gbit/s. Within the Table I in the
network column on and off signify whether the NIC is an
onload or offload NIC. The observed bandwidth of these
systems varies with the physical network topology and the
degree of contention. The general observation is that larger
production clusters (e.g. Sandy Bridge-X2-FDR-offload) tend to
have a larger variability in observed bandwidth, since network
resources are shared among multiple jobs which may compete
for bandwidth. However this topic is beyond the scope of this
paper and we refer the reader to [2] for further discussion of
performance degradation due to nearby jobs.

IV. A MEMORY-BOUND BENCHMARK

In our first NiMC experiments, we used the memory-bound,
synthetic benchmark, STREAM (§III-B). These experiments
were used to assess NiMC impact for worse-case memory
intensive applications and to evaluate what architectural features
can lead to increased NiMC impacts.

STREAM used one OMP thread per core in order to
saturate the available memory bandwidth. A first-touch memory
allocation policy was used to optimize memory utilization
within the NUMA hierarchy. Each experiment comprised 10
STREAM executions with 300 iterations of the triad kernel per
execution. The average sustained bandwidth was then calculated
based on the the average time to complete a triad operation.

To measure the impact NiMC has on memory bandwidth, we
re-executed the same set of experiments; this time, our origin
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TABLE I: Evaluated Architectures

machine nodes kernel CPU cores channels DRAM DRAM GB/s Network

Westmere@(800 MHz, 1066 MHz) 1 3.2.0 (Ubuntu12) Intel E5620 4 2 16GB 12.8, 17.1 QDR IB off
Lisbon@(800 MHz, 1066 MHz, 1333 MHz) 1 3.13.6 (UN12) AMD 4170 HE 6 2 16GB 12.8, 17.1, 21.3 QDR IB off

Piledriver-1600 70 2.6.32 (RHEL6) AMD A10-5800K 4 2 16GB 25.6 QDR IB on
Piledriver-1866 2 2.6.32 (RHEL6) AMD A10-5800K 4 2 64GB 29.9 QDR IB on

Sandy Bridge-X2-FDR-offload 6400 2.6.32 (Cent6.3) 2× Intel E5-2680 8 4 64GB 85.3 FDR IB off
Sandy Bridge-X2-onload 1196 2.6.32 (RHEL6.2) 2× Intel E5-2670 8 4 64GB 102.4 QDR IB on

Xeon-Phi (on-chip bandwidth) 49 2.6.38.8+mpss3.1.2 Xeon Phi 3120P 57 12 6GB 240 QDR IB off
Haswell-X2 33 3.14.23 (RHEL6.5) Intel E5-2698 16 4 128GB 136 FDR IB off

node continuously injects 64 KiB of data (using ib write bw
as described in §III) into a buffer allocated on the different
target node on which the STREAM benchmark was running.

The results, shown in Table II, illustrate varied NiMC
behavior, dependent on the underlying architecture. This
performance degradation ranged from 0% to 60%. On all
systems other than Xeon-Phi, Sandy Bridge-X2-FDR-offload
and Haswell-X2, STREAM experienced significant (greater
than 20%) memory bandwidth degradation due to NiMC. The
Piledriver-1600 system and Sandy Bridge-X2-onload stand
out by exhibiting a 60% and 51% performance degradation,
respectively. The increased 9% degradation on Piledriver-1600
is expected due to a higher network bandwidth to memory
bandwidth ratio compared to the Sandy Bridge system. We
observe that all three of the systems with variable memory
frequency see a decreased impact from NiMC as available
memory bandwidth increases.

Of greater interest, our Sandy Bridge systems demonstrated
how NiMC might impact onload versus offload networks
differently. Both systems utilize Sandy Bridge CPUs, but Sandy
Bridge-X2-FDR-offload utilize Mellanox offload network cards,
whereas Sandy Bridge-X2-onload uses QLogic onload NICs.
There are stark differences between the STREAM Triad results
of these two machines. While the offload system sees no
performance degradation, we see a 51% performance penalty
to the onload system’s Triad performance. We observe that the
onload-NIC systems (Piledriver-1600/1866 and Sandy Bridge-
X2-onload) are the most impacted by competing RDMA flows.

Examining the four offload NIC systems in isolation, we
see a bimodal impact of NiMC. When the CPU fully utilizes
close to the theoretical memory bandwidth (as is the case of

Westmere and Lisbon), competing RDMA traffic can degrade
the Triad performance by 16-25%. Westmere and Lisbon, show
effective memory bandwidth of 98% and 93% the theoretical
memory bandwidth, respectively. This compares to Sandy
Bridge and Haswell, which only achieve 74% and 85% effective
memory bandwidth, respectively. The decrease to percentage
effective memory bandwidth in Sandy Bridge and Haswell
leaves additional headroom for the RDMA traffic, so that we
see no impact of NiMC. However, as increases to theoretical
memory speeds slow down, chip designers must increase their
effective utilization in future systems. Furthermore, network
speeds are increasing rapidly, with 4X EDR InfiniBand reaching
speeds of 12 GBps so that we will again see larger network to
memory bandwidth ratios. For these reasons, we cannot rule
out the resurgence of NiMC in future offload systems.

For the Intel Xeon Phi system, we observed a small (4%)
memory bandwidth decrease. This is due partially to the Phi’s
unique memory architecture (as compared to traditional CPUs).
For instance, all other systems under tests had a single memory
controller. The Phi system has eight controllers that control
16 channels of GDDR5 memory. Each core has 64K of L1
cache and a 512k fully coherent L2 cache, which are connected
over a bi-directional ring interconnect. Additionally, the Phi
runs its own operating system, requiring a dedicated core for
OS services. By leaving this reserved core open, we may be
leaving additional memory-bandwidth-headroom into which
the RDMA traffic can fit.

In summary, we saw that NiMC impacts a range of architec-
tures spanning multiple vendors and hardware generations.
Of importance, the NIC architecture (onload vs offload)
appears to play a significant role determining the impact



TABLE II: STREAM Triad Bandwidth with and without RDMA-NiMC

machine Triad no RDMA (GB/s) Triad + RDMA (GB/s) diff. (GB/s) diff. %

Westmere @ 800 MHz, 1066 MHz, respectively 12.9, 16.8 9.7, 12.8 3.2, 4.0 -25%, -24%,
Lisbon @ 800 MHz, 1066 MHz, 1333 MHz, respectively 14.0, 17.9, 19.7 10.8, 14.3, 16.5 3.2, 3.6, 3.2 -23%, -20%, -16%

Piledriver-1600 12.4 7.4 5 -60%
Piledriver-1866 12.7 5.6 7.1 -44%

Sandy Bridge-X2-FDR-offload 77.8 77.6 -0.2 0%
Sandy Bridge-X2-onload 73.4 36.1 37.3 -51%

Xeon-Phi (on-chip bandwidth) 126.4 121.7 4.7 -4%
Haswell-X2 116.6 116.9 0.3 0%

of NiMC, as every system utilizing an onload NIC saw
significant degradation. Additionally, as one might expect, the
results suggest that increased available memory bandwidth
reduces NiMC interference, while decreased available memory
bandwidth increases NiMC interference.

V. PROXY-APPS ON A SINGLE NODE

While STREAM illustrated NiMC effects for worst-case
memory-bound applications, STREAM is not necessarily
reflective of typical HPC applications. By mimicking the
operations of a variety of important scientific problems, the
DOE proxy applications (described in §III-B) are more accurate
HPC workload representations. We now describe our use of
the proxy apps to understand NiMC effects on a single node
for realistic workloads with worst-case network traffic.

We used single node experiments to study NiMC effects in
isolation from other potential network interference, for example
due to application network communication. The applications
use Open MPI v1.8 for inter-process communication. Addition-
ally, LULESH and XSBench use OMP for increased on-node
parallelism. For these latter hybrid applications, we used the
highest performing combination of MPI processes and OMP
threads2. Once again, we measured application execution times
with and without injected RDMA traffic. Reported results are
the averages of 10 runs with error bars displaying the standard
deviation. For the experiments in §V and §VI, we used the
Sandy Bridge-X2-onload system.

Table III shows the application time-to-solution results in
the absence and presence of NiMC, and Figure 3 shows the
application performance slow-down due to NiMC. These results
illustrate several interesting behaviors. First, out of six proxy-
apps, we observed significant performance penalties in five,
but CNS exhibited almost no performance degradation. Second,
three proxy-apps exhibited a performance degradation within
30% of that seen in STREAM. This was unexpected because
we selected STREAM as a worst-case indicator of NiMC, due
to its intensive memory usage. Furthermore, our pre-experiment
hypothesis was that memory-intensive proxy-apps, like HPCCG,
would experience the most interference among the proxy-apps;
however HPCCG exhibited the second least relative interference.
These results suggested that additional sources of contention,
beyond the memory-channel bandwidth, may be influencing
performance. Accordingly, our next set of experiments were
aimed at uncovering these additional contention effects.

2For LULESH this was 8 MPI ranks (4 per socket) with 2 OMP threads
per rank and for XSBench this was 16 Ranks with 1 OMP thread per rank.

TABLE III: Application Performance with and without RDMA

Application Run time Run time
no RDMA (s) w. RDMA (s)

CNS 8.75 8.89
HPCCG 4.08 6.07

LAMMPS 177.21 372.04
LULESH 23.07 44.08

SNAP 3.17 5.97
XSbench 72.92 146.44
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Fig. 3: Normalized impact of NiMC on single node runs.

A. In-Depth Memory Analysis

It can be hard to decipher precisely what is happening in a
system with regards to NiMC. Often, to maintain competitive
advantages, hardware vendors do not publicly share the details
of components such as memory-controllers or network drivers.
While it can be difficult to determine NiMC root causes, we
glean insights by profiling application activity as measured
by available hardware counters (PMCs). In this case, we use
OpenSpeedShop (OSS) [25], which can provide PMC collection
and analysis for large parallel applications. Using OSS, we
found that for all but CNS (the sole application that did not
exhibit a NiMC-based performance degradation), with RDMA
traffic, NiMC impacted one core more than the other cores.

To understand why this process was performing much
slower under RDMA activity, we used OSS to measure the
performance of the L1, L2 and L3 caches as well as the total
number of stalled cycles in the presence and absence of RDMA
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Fig. 4: Comparing performance counters for single node runs of benchmarks and proxy-apps with and without NiMC.

traffic. These results are shown in Figures 4(a) – 4(f)3. These
results generally show increased L1 cache misses and, to a
lesser extent, increased L2 cache misses. Ultimately, there is
a significant increase in the number of stalled cycles in the
presence of RDMA traffic. The relationship between cache
misses and stalled cycles is consistent with Figure 3 in that
proxy-apps that have reasonable cache efficiency experience
the worst NiMC interference. At the same time, applications
with poor cache utilization are less affected by additional cache
misses since their cache efficiency is low to begin with. These
results also help to explain why only one application process
experienced significant performance degradation: the largest
differences in cache behavior were observed at cache levels
not shared by other cores.

Among the proxy-apps, CNS is an outlier in that it experi-
ences almost no interference from NiMC. CNS demonstrates
that the slowdown seen in other runs is not primarily due to
CPU (core) perturbance, as CNS receives identical amounts of
RDMA traffic and services it in the same manner as the rest
of the benchmarks, but observes only a 1.6% slowdown from
RDMA traffic processing overhead. In Figure 4(f) we can see
that CNS achieves much better cache performance than the
other proxy-apps, particularly when contending for resources
with a separate flow of RDMA traffic. Specifically, we observe
almost no difference in L1 or L2 cache utilization across runs
and a negligible number of L3 misses. This is because in
CNS, each MPI process utilizes an extremely small amount
of memory (approximately 4 MB). Such a small working set

3total cache misses/hits/accesses (TCM/H/A), idle cycles (ICY)

of memory leaves space for both the one-sided RDMA and
the proxy-app to effectively utilize cache. As a result, there is
only a minor increase in the amount of idle cycles as we add
interference from the network.

As Figure 2 illustrates, as a DMA transfer is serviced by
an onload NIC, some amount of data is distributed throughout
the cache hierarchy. This data takes up a larger proportion of
space in L1 cache than L2 and L3, which is why we would
see a greater impact on the performance at lower levels of the
cache. When sending data synchronously, it makes sense that
the application would want that information in cache so that
the CPU may service communication events faster. However,
when this data is sent asynchronously, we do not know when
the application will require the written data (if it does at all).
In the asynchronous case, loading the data into cache can be
benign (as seen with CNS) or create significant bottlenecks
(as seen in the other proxy-apps).

1) Correlation Analysis: Our discussion above, based on
the performance data shown in Figures 4(a)–4(f), presumes
some relationships between the slowdown seen with RDMA
traffic and CPU stalled cycles. To determine the strength
of these relationships, we performed a correlation analysis
between runtime and stalled cycles and cache misses as well
as between the number of stalled cycles and the cache related
counters. We used Pearson’s r for correlation,which measures
linear correlation between two variables. The analysis results
(Table IV) show that without additional RDMA traffic, the
application runtimes are very strongly correlated to L1/L2/L3
misses but are not correlated with stalled cycles. Stalled



TABLE IV: Performance Monitoring Counter Correlations
Across All Applications

Corr. Metric Stalled Cycle L1 Miss L2 Miss L3 Miss

No RDMA Time -0.04 0.941 0.946 0.930
Stalled Cycles N/A 0.086 0.030 0.068

RDMA Time 0.912 0.959 0.978 0.925
Stalled Cycles N/A 0.870 0.973 0.997

cycles for the non-RDMA case do not meet required levels of
significance to assert that a relationship exists. For the RDMA
traffic case in Table IV a very strong correlation exists between
runtime and stalled cycles with a 95% certainty. We see that
there is a very strong correlation between the stalled cycle
count and the cache misses, particularly L3 misses, showing
that the stalled cycle increase is almost certainly due to misses
throughout the cache hierarchy and requests to main memory.
This correlation coupled with the large rise in stalled cycles that
occurs when introducing RDMA traffic leads us to conclude
that the increase in runtime observed is due to time waiting
for the memory subsystem.

Though cache pollution from RDMA is correlated with an
increased number of stalled cycles, it is not necessarily the only
factor contributing to NiMC. Other contributing factors can
include: the policy and scheduling of the memory controller(s),
such as open-page row-buffer management, the degree of
concurrent operations the memory controller(s) can handle, the
number of memory channels, and how these memory channels
are written to, for example, ganged or unganged. In order to
fully model the impact of NiMC and offer mitigating solutions,
these factors must also be considered.

VI. LARGE SCALE EVALUATION

0
1000

2000
3000

4000
5000

6000
7000

8000
9000

Application node count

100

200

300

400

500

600

700

R
u
n
ti

m
e
 (

s)

Impact of NiMC on LAMMPS (64-8k)
(SandyBridge-X2-onload)

RDMA_Daly

RDMA_0.2

No RDMA

Fig. 5: Impact of NiMC on LAMMPS for an onload system.

From the previous studies, we gained a better understanding
of the underlying causes of application interference in the
context of a single, isolated node targeted with an unlikely
high volume of RDMA traffic. Our final study examined NiMC
for applications at scale with realistic RDMA traffic volumes.

TABLE V: Number of concurrent RDMA writes

Application Writes/s (Daly) Writes/s (Daly) Writes/s (0.2%)
node (rank) count QDR-onload FDR-offload

64 0 0 0
512 1 1 1
1024 2 2 2
2048 5 6 4
4096 15 17 8
8192 42 47 16

As with our single node experiments, we use the Sandy
Bridge-X2-onload cluster executing a series of weak scaling
LAMMPS experiments. We selected LAMMPS for the large
scale runs for multiple reasons. First, of all our workloads,
LAMMPS is the only real application: it is not a proxy app nor
a contrived benchmark. Second, LAMMPS scales very well for
the size of system under study. Finally and most importantly,
LAMMPS is widely regarded as an application that is resistant
to external interference [18]. Therefore, LAMMPS represents a
good challenge when trying to realize performance degradation
due to external perturbations like RDMA traffic.

As in our previous experiments, in addition to the target
nodes running our application, we reserved an additional set
of origin nodes that push our RDMA traffic to the target
nodes. However, unlike in our previous experiments, we limit
concurrent writes to a small subset of the total nodes. We also
limit the duration of each write operation. We use a hypothetical
uncoordinated, in-memory or disk-less checkpointing protocol4

to shape our RDMA traffic pattern. Since there is no known
optimal checkpoint interval for uncoordinated checkpointing,
we use Daly’s estimate [5] to derive optimal coordinated
checkpoint intervals. We use Daly’s estimate to compute
the average number of processes simultaneously taking a
checkpoint using a five year mean time to interrupt, and use
this number as the number of concurrent writers, shown in
Table V. We compute RDMA write duration by optimistically
assuming that all checkpoints take 46 thousand message
iterations (equivalent to ≈1s for 4X-QDR IB and ≈0.5s for
4X-FDR IB). Each data point in Fig 5 represents the minimum
runtime of 5 runs. We chose the minimum because (1) the
minimum is the hardest metric to overcome, when showing
the existence of NiMC at scale. (2) it shows the impact of
NiMC rather than the impact of contention on the network or
I/O subsystem from other jobs that are outside of our control.

The results in Figures 5 show that as we scale up the
number of application processes the impact of NiMC becomes
significant. Despite the fact we decreased write duration
to a single second, scaling up the number of application
processes greatly amplified the magnitude of interference.
This is similar to phenomena seen in the research of OS
noise, where scale amplifies the magnitude of the overall
perturbence [12], [22]. Even with a constant 0.2% of total
nodes as simultaneous writers, time-to-solution nearly doubles

4Contemporary approaches for in-memory checkpointing use a coordinated
protocol in which all processes take a checkpoint simultaneously. However,
for next generation systems there is a concern that coordination at massive
scale can become prohibitively costly.



at scale due to NiMC. While we’ve increased the pressure on
the network by introducing additional RDMA writes, we will
show in §VII-B that this additional traffic is not responsible
for the increase to runtimes.

VII. SOLUTIONS FOR NIMC

We evaluated several approaches for reducing the impact of
NiMC, specifically: (1) offload hardware, (2) core reservation,
and (3) software based network throttling. All of these
techniques have been applied in other areas of research [6], [10],
[16], [1] but this work is the first to evaluate their effectiveness
in mitigating NiMC. For the results in Figs 6(a) and 6(c) we
present the best (min) baseline LAMMPS runtimes and the
median runtimes for NiMC based on Daly’s volume. For the
platforms evaluated, the difference between the minimum and
the median for Daly’s volume runs was negligible.

A. Offload NICs as a solution

In § IV, it was shown that NiMC did not negatively impact
the performance of the most recent offload systems for the
benchmark STREAM. In this section we show that offload
NIC’s continue to provide a solution to NiMC at scale for real
applications. In Fig 6(a) we ran LAMMPS on the Sandy Bridge-
X2-FDR-offload system, weak scaling up to 8192 processes.
Comparing the results of No RDMA and Daly, it is evident
that NiMC does not have any observable impact on offload
system performance at scales of up to 8192 processes. From
these results, we conclude that offload NICs provide a solution
for modern systems that would otherwise experience NiMC.
The main drawback to offload NICs is their greater monetary
cost compared to their onload equivalents. However, this is not
a guarantee that future systems will be unaffected by NiMC as
the disparity between network and memory bandwidth shrinks.
Even though none of the most recent offload systems were
impacted by NiMC – on slightly older systems (Westmere and
Lisbon) we observed a 16-25% decrease to STREAM Triad
performance due to NiMC. We believe the future viability of
an offload solution is dependent on how fully CPUs utilize
memory bandwidth and by future network bandwidth increases.

B. Core Reservation

Dedicating a core to service communication is another
possible solution to mitigate NiMC. This reduces the memory
throughput of the CPUs, and sets aside separate cache resources
for handling network data. The downside to core reservation
is that in the absence of RDMA communication the reserved
core is wasted. To test the effectiveness of core reservation,
we repeated the STREAM and LAMMPS tests of §IV and §VI
while reserving one core per node to process communication,
binding the QIB driver to the reserved core. Additionally, we
evaluated core reservation for a modified version of STREAM
which uses array sizes designed to fit entirely in last level cache
(LLC). The modified STREAM allows us to evaluate LLC
performance, with respect to NiMC. Both of these tests can be
seen in Figs 6(b) and 6(c). Interestingly, Fig. 6(b) presents an
intersection near 400-500 MBps on the x-axis, where a core

reservation strategy begins to provide a performance benefit.
As the RDMA bandwidth increases towards 3000 MBps we
see performance gains by setting aside a core. This suggests
that a dynamic strategy for reserving a core to service the
network may be an attractive approach for future systems.

In Fig 6(c), we use identical input files as the previous
section, however we only utilize N-1 cores per node for
the application. These results show that core reservation
continues to be an effective strategy to prevent NiMC at scale,
independent of the volume of RDMA traffic. These results
clearly demonstrate that contention on the network is not a
factor in the increase to runtime seen in § VI, Fig 5. This can
be observed in Fig 6(c), where the cases with and without
RDMA traffic have only a 0.1% difference in runtime, despite
contention on the fabric that would be present in the RDMA
results. This allows for a quantification of the induced network
contention due to the RDMA streams, which is much less than
the observed contention due to NiMC. Of minor note, there
is a 10% increase to the runtime of the runs that utilize 480
processes compared to the runs of 60 and 960 processes. After
discussion with LAMMPS developers it was determined to be
the result of increased communication due to a less efficient
domain decomposition for 15 cores per node. Overall, the
results suggest that core reservation incurs a runtime increase
of 6.4% compared to 16-core to 15-core runs of LAMMPS
without RDMA traffic. While a 6.4% increase to runtime is
costly, it costs significantly less than the 330% increase without
core reservation (Fig. 5).

C. Software-based Solutions

There are several methods for throttling or shaping the traffic
sent over the network. One such method is to artificially throttle
the throughput of the network so that the same total volume
of traffic is sent over a longer time period. The practicality
of throttling is partially dependent on the significance of the
network data to the application. It is important to remember
that traffic throttling increases the time to deliver the data, but
makes more memory bandwidth available to the CPU. If the
network data is part of the application’s critical path and the
application is executing faster (due to the increase in available
memory bandwidth), throttling may leave the application stalled.
In Fig. 6(b) we plot the impact that varying network speeds
have on STREAM DRAM and LLC performance. Performing
a least square linear regression shows that for every bit per
second (bps) of RDMA bandwidth we add we slow the DRAM
performance by 14 bps. When considering LLC, this tradeoff
becomes even more expensive as 1 bps of RDMA bandwidth
reduces LLC bandwidth by 22 bps. On modern HPC systems
where memory performance is a highly valued commodity, the
large disparity of this tradeoff makes network throttling less
appealing as a solution compared to a hardware offloading.
Additionally, for the system evaluated, software-based throttling
is only effective if you can reduce the amount of network traffic
to under 500 MBps. If an RDMA service requires more than
500 MBps network bandwidth, core reservation becomes a
better solution.
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Fig. 6: Fig 6(a) highlights the performance of offload cards at scale for the application LAMMPS. Fig 6(b) shows the relationship
between RDMA traffic and available memory bandwidth in DRAM and LLC using N and N-1 cores. Every bit per second
of RDMA traffic reduces DRAM and LLC bandwidth by 14 and 22 bits per second, respectively. Fig 6(c) demonstrates a
core-reservation solution at scale for the application LAMMPS.

In summary these results show that a hardware offload
solution is ideal for modern systems, Though (as Westmere and
Lisbon demonstrate) future effectiveness is dependent on trends
in CPU memory bandwidth utilization and network speeds.
Secondly, many systems utilize lower cost onload NICs. For
these systems there are two approaches to mitigate NiMC.
The first approach of throttling the network is limited in its
effectiveness. Specifically there is a crossover point where the
amount of network traffic becomes large enough that core
reservation becomes a better solution. This crossover point will
vary system to system but was 500 MBps for our evaluated
platforms. Lastly, core reservation allows for unthrottled
RDMA bandwidth but at a base-level increase to runtime
of 6.4%. Though we provide general guidelines, determining
the best solution for each system requires a knowledge of the
application, services and underlying hardware.

VIII. RELATED WORK

Memory contention has existed in many platforms over
time, and tools have been developed to help understand its
impacts [7]. Concerns about the ability of memory technologies
to keep up with the bandwidth requirements of ever greater
numbers of cores have been expressed [24]. However, code
developers also deal with this issue through optimizing their
code for cache use [21].This motivated investigations into the
causes of off-chip memory contention [30] on modern systems
for parallel applications, providing insight into the behavior of
core heavily optimized for cache performance and those that
are less tuned. Given that architectures are designed to balance
memory bandwidth with the ability of the cores to saturate
said bandwidth, the impacts of NiMC can push a system on
the edge, degrading optimized code performance.

Concerns over memory subsystem performance at extreme
scale, particularly with the expected growth in core counts, have
prompted investigations into memory bandwidth reductions [27]
and contention [3]. Tiwari et al. [27] proposed a model for
studying the anticipated reduction in per-core bandwidths
expected in the Exascale time frame by varying the memory

frequency on a single node of the Gordon supercomputer as
SDSC. While Tiwari et al.’s model was motivated by a desire
to explore the per-core memory bandwidth reduction expected
for future extreme-scale systems, it was developed and tested
on a single compute node. As such, the model does not account
for any source of memory traffic from the network.

Casas and Bronevetsky’s work [3] is the closest to this work
in terms of memory contention studies. Like the Memory
Bandit tool [7], they seek to create “memory bandwidth
interference” in order to observe the impact on application
performance. Unlike the Memory Bandit [7] work, Casas and
Bronevetsky can purposefully perturb different levels of cache
while introducing threads that create memory traffic unrelated
to the executing application. They present methodology to
introduce main memory traffic with minimal cache impact
for studying off-chip memory contention. Their observations
of application slowdown in the worst case of 20%-35% is
inline with was observed from the STREAM/RDMA single
node tests in this paper. This is expected as their method
of introducing interference for the application created main
memory contention. However, the main difference between this
work and ours is the source of the memory contention. While
Casas and Bronevetsky introduce the contention from cores,
they do not account for RDMA traffic.

To the best of the authors’ knowledge, this the the first
work to consider memory contention due to asynchronous
communication. While these topics have been studied separately
before, no prior studies have investigated the impact of NiMC.

IX. CONCLUSIONS

In this work, we introduced the concept of NiMC and
demonstrated its impact for a variety of current HPC system
architectures. We showed that NiMC is a concern for both
onloaded and offloaded networking hardware, with the onloaded
hardware observing the largest performance impact. For all but
one of our applications, we observed significant performance
impact on modern onload systems due to NiMC, and we
showed that the observed NiMC impact was not significantly



attributable to CPU contention or network contention. Using
real applications at large scale, we showed that NiMC can lead
to significant performance degradations even in applications
like LAMMPS that have previously demonstrated performance
robustness in the presence of other types of system noise.
While this work only examined InfiniBand based networks,
such networks are relevant for HPC as evidenced by the recent
$325 million CORAL procurement [31], a 150 petaFLOP IB-
based system.

We explored several causes of NiMC – results which will
inform future system design in both the existence of NiMC as
well as the potential methods to reduce its performance impact.
In addition, this study offers evidence to system software and
application developers that NiMC should be taken into account
when developing software that may be co-located with other
applications or services that consume network bandwidth, even
for small durations of time.

Lastly, we evaluated three strategies to mitigate NiMC,
namely offload NICs, core reservation, and network throttling.
Our results suggest that Offload NICs appear to provide the best,
albeit most expensive, solution to NiMC on modern systems,
provided there is sufficient headroom between theoretical and
observed CPU memory bandwidth. In the event a cluster
utilizes an onload NIC, setting aside a CPU core to service
the network is a viable solution for onload systems, but incurs
a runtime penalty proportionate to the processing power of
the core (6.4% in our study). The current disparity in the way
memory bandwidth is provisioned between RDMA and the
CPU makes the third solution (network throttling) attractive
only if the required RDMA bandwidth is below specified
thresholds (Fig 6(b)).
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