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DOE uses computer models to understand, predict, and verify complex systems in high
consequences analyses that would be difficult or even impossible by other means.

Numerical parts Model

HNM

7

N\

Complex systems require
diverse “mathematical
parts”: PDEs, integral
equations, classical DFT,
potential-based atomistic...

Diverse math models
require diverse “numerical

parts”: mesh based (FE,
FV, FD), meshless (SPH,
MLS), implicit, explicit,

Eulerian, Lagrangian...

HNM = Collection of
dissimilar numerical parts
from multiple disciplines
functioning together as a
unified simulation tool

Challenges: beyond compatible methods

The parts must functlon We must be able
together as a unified to solve our

simulation tool (HNM) HNMs efficiently

1801

Property-Preserving
Methods

HNMs must be stable,
accurate and
preserve key

physical properties

Parts must be stable,
accurate and
preserve key
physical properties.

=)

We carry out a comprehensive
research effort to address these
challenges




Taxonomy of challenges iL

1. Achieving Stability & Accuracy (Structural aspects)
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« Game changer: Homological techniques: FE exterior calculus (DEC), mimetic FD,...

« Typically achieved by topological means:

- Careful placement of the variables on the mesh.
- Special grid structure, e.g., topologically dual grids.

« Challenges:
1. Models that don’t fit EC structure, e.g., heterogeneous methods: FEM+cDFT
2. Stable and accurate does not imply property preserving...

2. Preserving Physical Properties (Qualitative aspects)

« Maximum principles, local bounds, symmetries, Geometric Conservation Laws,...
« Correlations between variables, e.g., between two passive tracers.
« Challenges: conventional ways to preserve these properties are either

- Restrictive: Cartesian mesh, angle conditions, etc, and/or,
- Entangle accuracy with the property preservation, e.g., limiters.

 Game changer?




Taxonomy of challenges ) e

3. Assembling Diverse Numerical Parts into HNMs and solving them

[~ “Exascale computing will enable consideration of new classes of multiscale problems
in which different types of discretizations, appropriate to a particular scale in different
portions of the domain, are employed and models which treat distinct phenomena in
different parts of the domain, such as ocean-atmosphere coupling...”

IS~ “Effective models must be hierarchical and include multiple sub-models that represent
different phenomena with vastly differing scales.”

“As this type of simulation expands, there
is a critical need to develop systematic
approaches for coupling across the range
of scales and quantification of the
properties of these types of coupling

e Strategies”

A Multifaceted

Level 3

Tavelid Physics A

‘ Input File A ‘ ‘ Input File B Input Fil

Mathematical Approach

for Complex Systems LIME nghtwelght |ntegl’atlng
= Global Earth System Model  Multiphysics Environment (CASL)

Traditional monolithic and operator-splitting modeling approaches
fall short of meeting the crosscutting challenges; see Multifaceted
Mathematical Approach for Complex Systems.

Game changer?

SAND2015-4936 PE




Game changer? )

The use of optimization ideas to couple heterogeneous numerical methods
and to preserve the relevant physical properties could be a game changer.

Optimization-based operator coupling Optimization-based operator splitting
* Local-to-Nonlocal couplings Abstract decomposition theory
(D’Elia talk, Tuesday) Application to the Navier-Stokes egs.
« Atomistic-to-Continuum Application to advection-diffusion
* Interface problems: equations
Friday, 11:20, AUD1.

Property-Preserving
Methods

Optimization-based property-preserving methods
« Semi-Lagrangian transport of passive tracers
* Volume correction (Geometric Conservation Law)

* Property-preserving data transfer (rema
Thanks to: e ’ remen

* M. D’Elia, P. Kuberry, D. Littlewood, M. Perego, K. Peterson, D. Ridzal (SNL), M. Shashkov (LANL)
* M. Gunzburger (FSU), A. Shapeev (SkolTech), S.Moe (U. WA), M. Luskin, D. Olson (U. MN) 5
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The optimization approach in a nutshell @i

Couch assembly of numerical parts and preservation of properties into an optimization problem:

Minimize
2 2
Coupling mismatch H”lh —uQH + ‘ Enuf‘ —M,T" I Target mismatch
i=1,2
Subject to
Component physics - o Physical properties
N\ J

@ Reverses the roles of the coupling conditions and the models.
= Divide and conquer approach:
- separates numerical parts: facilitates merging of heterogeneous methods.
- separates accuracy from physical properties (local bounds, conservation, etc..)




Part 1




National

Optimization-based operator splitting @

In Part 1 we consider application of optimization to operator splitting.
Minimize
Coupling mismatch Hul - qu2

Subject to

Component physics

This case study highlights the use of optimization ideas for the design
of robust and efficient solvers for multiphysics problems.

Related work: Lions (2001), Quarteroni (2000), Gunzburger (2000), Du (2001) — applications to PDEs, Oden (2011 —
Atomistic to Continuum), Discacciati (2013 — heterogeneous domain decomposition), Karniadakis (2014-Stochastic PDE) 8§
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Abstract additive operator-splitting the oy .

Model problem

U,V,H - Hilbert spaces, V' -dual of V, s.t. {V,H ,V*} is Gelfand triple

Q(.’.) -UxV —R weak form of a “multiphysics” operator

Assumptions

Q(u,v)

sup———>=y|lu|, and supQ<u’v) 0

= _ 7>
Jrev |, v, = ull, s=lIf1l,-

\Q(u,v)577||u||U YueU,VvevV

Sufficient for a well-posed variational formulation

P. Bochev and D. Ridzal, Optimization-based additive operator decomposition of weakly coercive problems
with applications, CAMWA, 2016.
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Abstract additive operator-splitting theo@l”aaﬁ%‘iﬂ?éﬁes

Assumptions

o O(u,v)=0(uyv)+0,(u,y) with weakly coercive component forms:

sup Q. () = Y,||uf, and sup 0, () >0
] vev ‘VHV o = ‘MHU = Qi(u,v) = <f,v> is well - pOSGd
0,(wv)=<T|, VuEUNVvEV

* Component problems are easier to solve that the monolithic problem
Reformulation of Q(u,v)=(f,v) as a constrained optimization problem

minimize J(u,u,) = %Hul - ”2“121

< : Ql(ul’vl) _(H’Vl)v N <f,v1> Vv, €V > U,U,— the states
subject to

Qz(uz Vz) + (0 Vz) ~0 Vv, EV v @ — virtual (distributed) control
b b 1%

Optimization exposes the constituent components of the multiphysics operator, ,
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Abstract additive operator-splitting theo@l”aaﬁ%‘iﬂ?éﬁes
Lagrange multiplier solution: saddle-point optimality system

(1~ .y~ 1) +0,(820) + Q5. = Vi i, EU

0 (11 + 0 (s 4,

Theorem (Bochev & Ridzal, 2015)

The optimality system is well-posed problem with a unique solution (u;,1,,6,A,,A,).

Moreover, if u is a solution of the original variational equation, then u=u,=u,

Notable facts

o Control penalty is not required for well-posedness of the optimality system!

> As a result, original and reformulated problems are completely equivalent

There’s no splitting error! "
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Abstract additive operator-splitting theo@l”aaﬁ%‘iﬂ?éﬁes

Discretization

Assume U" CU, V" CV is a pair of LBB-stable spaces for the form O:

>0

sup Q(uh,vh) zzHuhHU and sup Q(uh’v}l)

h h
ver v et |
U

This turns out to be sufficient for the well-posedness of the discrete reformulated problem

Theorem (Bochev & Ridzal, 2015)

4 \
The KKT optimality system is well-posed with a unique solution (u ,u5,0", A", A))

Discrete reformulated and monolithic problems are equivalent: u" = u' = u}

The following quasi-optimal error estimate holds:
\. J

EHulh—ulH +E A -A| =C infz V' —u, +inf2
U \% Uh U Vh

i=1,2 i=1,2 i=1,2 i=1,2

Mh _)Li

U

12




Abstract additive operator-splitting theo@t"fﬁ%‘?'a‘%ﬂes

Solving the KKT system

Sandia

Monolithic problem U -U 0 Q u | [0 Can we really solve
-U U 0 0 u, 0 this 5X larger problem
(Q+Q,)u=f m—p O 0 0 -V 6 |=| 0 faster and more
Q 0 -V O A f efficiently than the
KKT 0 Q V 0 A |0 monolithic one?
Theorem (Bochev & Ridzal, 2015)
s “
Let (u,,u,,0,A,,A,) be the solution of the full KKT system. Then
« A=A=0and u=u,=u,
* The triple(u,,u,,0) solves the reduced KKT system
\ J
Q 0 -V i f This system provides a foundation
0 Q, \4 u, |= 0 for an efficient iterative procedure for
0 0 Q'+Q;)V || o -Q'f the solution of the KKT system

13




Additive splitting == solution algorithm .

National

1. Use GMRES to solve the reduced space equation (Ql‘1 +Q;1)V0 =-Q'f

Application of (Q{1 + Q;l) decouples trivially into linear system solves with Q, and Q,.
By assumption sub-problems are easier to solve that the monolithic problem:

= Q,, Q, are easier to invert than (Q1 +Q2)

2. Recover the state by solving either Qu, =f+V6 or Q,u,=-V0

|

Since u=u, =u, both yield the solution of the monolithic problem!
Note that this also allows to further simplify the KKT system to

In principle one could bypass optimization

f
0 ] ) and derive the split via auxiliary variables

Q] -V
Q Vv

u,

0

However, derivation of this system is not obvious at first!
The variational setting and its discretization are left to a guesswork and serendipity.

Optimization automates and formalizes the discovery of decompositions.
14
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Application to the Navier-Stokes equatiofg-

Focus on the Oseen equations

-vAu+(b-V)u+Vp=£f in Q Result from linearization of the Navier-
V-u=0 in Q Stokes equations (NSE) by fixed point or a

u=0 on T Newton-type method

= Availability of robust solvers with optimal complexity is prerequisite to solve the NSE
« Convergence should be at best independent of the mesh size and the viscosity
* Formulation of such solvers remains a challenge. Existing approaches include
- physics-based splitting: vector Laplacian + convection term (Hamilton et al NLA, 2010)

- dimension-based splitting: 1D scalar advection-diffusion (Benzi et al, ANM 2011)
- Iterative algorithm design must be tailored to the splitting employed

«  We apply optimization-based splitting to develop efficient solvers for Oseen equations
« Approach is agnostic to the type of splitting used, only requires well-posed subproblems
« Could in principle apply it with the same splitting as above

15
|



Specialization to the Oseen equations W&z

Variational setting for the monolithic problem
O(u,p;v,q)=v(Vu,Vv)+(b-Vu,v)—-(p,V:v)+(q,V-u)

U=V=H(QxL(Q); H=L(Q)

(w, p;v,q), =(Vu,Vv)+(p,q);

u,pl, =[Vull, +[,

Additive splitting: QO(u,p;v,q)=0,(u,p;v,q)+Q,(u, p;v,q)

O,(u,p;v,q) 5G(Vu,Vv) +(b-Vu,v)-2(p,V-v)+2(q,V-u)

Q,(w,p;v,q) = (v 4@)(Vu,VV) +(p,V-v)-(q,V-u)

Additive splitting: strong form

iAu+(b-V)u+2Vp N ﬁ—v)Au—Vp _ f
2V-u -V-u| |0
“Easy” Oseen Stokes

National

Q is weakly coercive on UXV.
the monolithic problem
satisfies our assumptions

Choosing a sufficiently large
splitting parameter o ensures
that each subproblem is
dominated by the Laplacian

Each subproblem is weakly
coercive on UxV: the split
satisfies our assumptions

16
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Specialization to the Oseen equations W&z

Optimization reformulation

minimize J(u,,p;;u,,p,)= %(HVu1 - Vqué +||p, - szi) Virtual distributed control

< . O (w,piviq)-(&vy), —(ra), =(f-v)Vv.q, EU  0={Er}EH)(Q)x L (RQ)
L. 0,(u,,p,:v,.9,)+(&.v,), +(r.q,), =0 Vv,,q, EU

Interpretation via auxiliary variables

—oAu+(b-V)u+2Vp-A§
2V u.

+[(o—v)Au—Vp+A§}_[f}

—V°u. 0

As in the abstract case

» Derivation of this system is not obvious at first!
« The variational setting and its discretization are left to a guesswork and serendipity.

« Optimization automates and formalizes the discovery of decompositions.
17




Numerical examples i)

Backward facing step channel
geometry and a typical mesh

0.5

Equivalence of reformulated and monolithic problems

Pressure PDE Velocity PDE
F H F F H F
5 6 7 8
F F F - E
5 6 7 8
F F F - E
5 6 7 8

Solutions of optimization-based decomposition
match monolithic solution to within the GMRES
tolerance set to 1.0E-08

18




Numerical results )t

Optimization-based solver is independent of the mesh size

Mesh level # cells #DoF #GMRES Parameters

—10-6
2 1,408 6.619 39 GMRES tol=10

v=5x10"

8 22,528 102,499 40
o=1

Optimization-based solver is mildly dependent on viscosity

Visc. 1E+2 1E+1 1E-1

Viscosity decreases by five orders of magnitude.
lterations increase by a single order of magnitude.

19




Numerical results
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Optimization-based vs. preconditioned monolithic solver

Mesh scaling

90

80 s
J/‘

Parameters
GMRES tol=10%, v =5x107, o=1.

w 70 /
S
'-E 60 /
Q
= 50
30

Monolithic solver
(Q1+Q2) preconditioned by Q,:

~oAu+(b-V)u+2Vp] “Easy”
L ov-u| Oseen

1 2 3 4 5
=#=Optimization “*~Monolithic

20



Numerical results
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Optimization-based vs. preconditioned monolithic solver

1000
900
800
700
600
500

Iterations

300
200
100

Viscosity scaling

Parameters
GMRES tol=10%, o =1, Level 8 mesh.

Monolithic solver
(Q1+Q2) preconditioned by Q;:

~oAu+(b-V)u+2Vp] “Easy”
L ov-u| Oseen

0.1 0.01
=#=Optimization

0.001 0.0001

Monolithic

These preliminary results do not explore
further tuning of the optimization solver by

virtue of the splitting parameter




References rh)

1. D. Olson, M. Luskin, A. Shapeev and P. Bochev, Analysis of an optimization-based atomistic-to-
continuum coupling method for point defects. ESAIM, 2015. SAND2014-18401J.

2. D. Olson, P. Bochev, M. Luskin and A. Shapeev. An optimization-based atomistic-to-continuum
coupling method. SIAM. J. Num. Anal.. Vol. 52, Issue 4, pp.2183-2204 (2014)

3. D. Olson, P. Bochev, M. Luskin and A. Shapeev. Development of an optimization-based atomistic-
to-continuum coupling method. In. Lirkov, Wasniewski, editors, Large-Scale Scientific Computing,
Vol. 8353, LNCS, pp. 33-44, Springer Berlin, Heidelberg, 2014.

4. M. D’Elia and P. B. Bochev. Optimization-based local-to-nonlocal coupling method, Sandia
Technical Report, No. SAND2014-17373J (2014).

5. M. D’Elia and P. B. Bocheyv, Optimization-Based Coupling of Nonlocal and Local Diffusion Models.
Materials Research Society Proceeding, (2014) .

6. M. D’Elia and P. Bochev, Formulation, analysis and computation of an optimization-based local-to-
nonlocal coupling method. Submitted to SIAM. J. Num. Anal. SAND2014-17373J.

7. P.Bochev and D. Ridzal, An optimization-based approach for the design of robust solution
algorithms.  SIAM J. Num. Anal., vol. 47, No. 5, pp.3938-3955, 20009.

8. P.Bochev and D. Ridzal, Additive Operator Decomposition and Optimization-Based Reconnection
with Applications. Proceedings of LSSC 2009, Springer Lecture Notes in Computer Science,
LNCS 5910, 2010

9. P.Bochev and D. Ridzal, Optimization-based additive operator decomposition of weakly coercive
problems with applications, CAMWA, 2016.

22



Sandia
Il'l National
Laboratories

Part 2

23



Sandia
m National
Laboratories

Case study 2: Transport schemes

In Part 2 we apply optimization ideas to develop property-preserving
methods for transport of passive tracers in climate models.

Minimize

Target mismatch

Subject to
Target definition C,=Cu/' <C;
. v Physical properties
Bu! =b
L J

This case study highlights application of optimization ideas for the
preservation of relevant physical properties in numerical methods.

P. Bochev, D. Ridzal, M. Shashkov, Fast optimization-based conservative remap of scalar fields, J. Comp. Phys. 246 (2013)

P. Bochev, D. Ridzal, K. Peterson, Optimization-based remap and transport: A divide and conquer strategy for
24

feature- preserving discretizations, J. Comp. Phys. 257, (2014) 1113 — 1139.
- "
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sport of passive tracers ..

An ubiquitous problem in geosciences and climate modeling

a N
d_l(t’+v.pu=o ; P - density
[ - % +u-Vg=0 where: q - tracer mixing ratio
opq ot :
— +V:-pgqu=0 u - velocity

Key requirements

1.

2.
3.
4

/>M=fpdV Q= [ pgav

Preservation of local bounds for g and p: ——> "™ < p, < p™ g™ <gq,<q

Conservation of mass and total tracer:

Preservation of linear correlations between tracers:

Preservation of constant tracers, i.e., “compatibility”. q,(x)=aq,(x)+b

Semi-Lagrangian schemes are the method of choice in these
communities because they allow for time steps much larger than the

CFL-li

mited time steps in Explicit Eulerian methods. This is even more

critical for recent high-order nodal schemes deployed in climate models.

25



Why SL + SE? ) i,

We begin Part 2 by developing a new scheme, which combines
+ Spectral elements (SE) for spatial discretization. :
« Semi-Lagrangian (SL) approach for time stepping.

« Optimization for enforcing conservation and local bounds.

Advantages cubed-sphere mesh
« SE: Diagonal mass matrix + Spectral accuracy

« SL: avoids severe CFL restrictions of high-order methods

« SL+SE: Simple, efficient and accurate!

« HOMME (High Order Modeling Environment) uses SE and
DG on fully unstructured quadrilateral meshes on the sphere

HOMME is a community model supported by the NSF and the DOE
with contributions from NCAR, DOE laboratories and universities.

HOMME is the default dynamical core of the Community Atmosphere
Model (CAM) and the Community Earth System Model (CESM)

The new SL-SE scheme for tracers is motivated
by and implemented in HOMME.

Dennis J, Edwards J, Evans K, Guba O, Lauritzen P, Mirin A, St.-Cyr A, Taylor M, Worley P. 2012. CAM-SE: A scalable
spectral element dynamical core for the Community Atmosphere Model. IJHPCA. 26:74-89. 26
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A generic nodal SL transport scheme

Key idea: convert PDEs into ODEs along Lagrangian particle paths

é)—p+V-pu=O o &—p+u-Vp=—pV-u @=—pV-u
ot ot dx Dt
12 P F=> —=u(x(?),r) = D
ﬂ+V-,0qu=0—> —q+u-Vq=O d 2 _

| ot ot ) | Dt

Arrival pt.
Step 1: solve the “final value™ problemin [z .z, ,]:

=x(l‘n+l)

I 3 Departure pt.
E=u(x(t),t) and X(tn+1)=p —> p=x(tn)

p=x(1,)
Step 2: solve the initial value problems in [z,.z,, ,]:
Dp . P B ODE solution at ¢,, ,= PDE
Dq - Initial value at 7,= PDE
—=0 and 1 )= N —> ’tn+ = tn+ . ;
Dt 9(,)=4,(P-1,) 9 Pola) = 40n) solution at departure pt.

27
|



Combine with SE reconstruction

Step 1: solve the “final value” problem in [z ¢, . ,]:

dx
= =u(x(?),t) and x(7,,)=p; e
S e ®
{pij} —> Arrival points = Gauss-Lobatto points /"//n" -4
| o !
3 | — _9&~
{pij} —> Departure points
Step 2: solve the initial value problems in [z,.z, . ,]:
D -
_p=_pv.u and p(tn)=ph(pz]’tn) ’’’’’’’’’ .
Dt \ < <,
Fjl =0 and ¢(t,) = q,(p;»?,) > [

Sandia
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2,(p;»t,)

Initial values = spectral element reconstruction at Gauss-Lobatto departure points

28
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Example: rotation ) ..

dx
* ok * % * % ¥ % * ok
7 =u(x(z),t) and x(z,)=p; .,
! * ok * ok * 0k wox * %
0.8
* ok * % * ok * %
0.5- 0.7
u(x(t),t)= Y * ok * % * % * %
05-x 0.6
* ok * % * 0k * % * %
0.5
¥k * * % * 0k * ok

Solved by RK4
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Generic SE+SL scheme scorecard LUf

Recall the advantages:
« Diagonal mass matrix

» Spectral accuracy
» Avoids severe CFL restrictions of high-order methods
« Simple!! (compare, e.g., to tent-pitching schemes)

However, the generic scheme
« Does not conserve mass and total tracer

« Does not preserve local solution bounds il PhySica|I

_—
i

\','u”u”
Wh’l
;M W
! III

' bounds

Critical for physically consistent tracer transport, since high- o
order spatial schemes are prone to unphysical oscillations:

Solution: combine the generic SE+SL scheme with optimization to

« Conserve mass and total tracer
* Preserve local solution bounds

30



Optimization-based SE-SL scheme iL

Start with a generic SE+SL scheme:

1. Determine GL departure points — p, = x(,)

Sandia
National _
Laboratories

2. Determine solution at arrival points  —> e,(p;-t,..)=p,) and q,(p;,.t,.)=q(,.,)

Then proceed as follows to find the tracer at ¢, , (density is similar)

3. Set optimization target to SE+SL solution: q:= qh(Pl-j,t,Hl)

max

4. Determine local solution bounds: q;in <q(P;.t,.1)=q; —> TBD later!

5. Set solution at the new time step by solving

qgdx=[gq,dx €—— Conservation
4, = argminq - c}Hé subject to q @ Q
q€Q"

n max

q; <4, =4 <— Local bounds

31



The optimization problem ) ..

Algebraic form

w'q=w'q, <€ Conservation

ax

q,, =argminq' Mq+c'q+¢, subjectto { " .
q =q=q  <€—— Local bounds

q

M= f 0,0, dx =diag(M)); ¢=-2Mq; c¢,=q'Mq; w— Gauss-Lobato weights
Q

== Example of a “singly linearly constrained QP with simple bounds”
= QP structure admits a fast O(N) optimization algorithm.

Theorem (Existence of optimal solutions)

The feasible set of the optimization problem for the solution transfer is
non-empty. The problem has a unique optimal solution.

32
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Fast Optimization Algorithm ) &

. A \2
Without the equality constraint the |g;;,,, =argmin M, (ql.j — ql.j) -
QP splits into N one-dimensional % » q,,.=med(q;".q;.9; )

QPs with simple bounds: subject to qlf]l_“m <q, < q;ax

The Lagrangian

L(q’kuulnuz) = E Mij (ql'j - C}ij)z - )LE Wi (qij - qij,n) - E Aul,ij (ql'j - qir;in) - E luz,ij (sz - q,;'nax)

node node node node

The Karush-Kuhn-Tucker (KKT) conditions
q,; = éij +A+ Ui — Moy
mn g < g™
i U =4 Without the equality constraint the KKT

w,;z0, u,; =0 and 2 W, (q,-j — ql-j,,,,) =0  conditions are fully separable and can
node be solved for any fixed value of A.

J\o

lul,ij (qZ'j - q;mn) = 09
(M (ql'j - qir;ax) =0

33




Fast Optimization Algorithm ) e

Step 1: solve the first set of KKT conditions to find q as a function of A

q;=q;+A w; =05 w,,; =0 if CI,-rfin <g;+As= qirjnax
1q,=q;" My =0; w,=q,-q;—A if g;"=q,+A ) q,;(A)=med(q;" .4, + A.q;™);
9;=qy > ;=05 =G, —q,+A if G;+Azq;" Trivial, communication-free

O(N) computation

Step 2: solve the single equality constraint for A

Solve 2 w; (CIU(M —~ qij’n) =0 » : A

node

- Piecewise linear, monotonically increasing function of single scalar variable A

- Can solve to machine precision by a simple secant method

- Globalization is unnecessary: A,=0 is an excellent initial guess: ;%) =med(q;".G;.q;");
- %j(%) solves the QP without the equality constraint, i.e., “almost” a solution

- Locality = qij(lo) barely violates the mass conservation constraint

34



Local solution bounds: V -u =0 i

For solenoidal fields local bounds are easy:

D 5
F€=O = p(x(t)at)=C0nSt —> ph(pl'j’tnﬂ):p(tnﬂ):p(tn)=ph(pij’t”)
Dqg D
E=0 = q(x(t),t)=const —» q,(P;-t,.)=9(,)=q,)=q,/P;t,)

Solution is constant along Lagrangian paths = taking min/max in a neighborhood
of the departure points is sufficient to determine solution bounds:

B KX, KA,
A ian
. IR AT

T A it
A A R

I
) TRl R S .
S\\x‘:*\\ £ o M A

xxxxxxxxxxxxxxxx .,

] o ., R SONORE R AR
3 = R S R AN
RN AR .

IRy Attt it AThO Tl

vz A

B P *‘q\w‘\x ]

% R %\x“‘i\x\:\}m

R SRR

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

) A

o
A S Y

q;" = ming(p;.,)
max Tight bounds Loose bounds
q;  =maxq(p;.l,)
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Rotational flow: LeVeque’'s combo iL

05-y
05-x

Zalesak cylinder, cone and a smooth hump u(p,?) =(
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80x80 bi-cubic elements; CFL=0.7

R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 627-665.
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Deformational flow: cosine bell

q(x,t)=0.5(1.0+cos(xr,));

0.1

0.2

0.3

0.4

0.5

0.6

h= Iiner, o) u(p,r) =

" —sin(mwry)’ sin(2x)cos(mt / T)

0.9

0.8

10.7

10.6

10.5

10.4

0.3

0.2

0.1
0.7 08 0.9 1

80x80 bi-cubic elements; CFL=0.7

h

sin(zzx)” sin(2wy)cos(st / T)

R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 627-665.
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Convergence rates: Gaussian hill ) 52

0 L, Convergence Rates for Limiters With Deformational Flow o L+ Convergence Rates for Limiters With Deformational Flow

10

10

—+# - No Limiting —+# - No Limiting

—3% - QM Interp-Loose Bounds —» - QM Interp-Loose Bounds
—% - QM Interp-Tight bounds — % - QM Interp-Tight bounds
—* - QM Reconstruction —* - QM Reconstruction

) | T
NN

1
Tight
Loose

15.5489 25.1‘189 39.5;107 63.6957 15.5489 25.1‘189 39.5;107 63.6957 3 — \3\\:\ - — \"Q&\:
A SE+SL method with limiters would typically truncate the :\\}Q\%ﬁi‘% R
order of convergence to 2 even for L1 errors. l‘:\k\ N

\
We see essentially no degradation in the 3 order L1 error A K\\I“:“ \
38

rate (compared to “raw” solution convergence). S




Long-time accuracy ) e

O

o

0 0.2 0.4 086 0.8 1 0 0.2 0.4 0.6 0.8 1

CFL=7.04 CFL=14.08

60x60 bi-cubic elements; 20 full revolutions.
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Local solution bounds: V -u #0 LUf

ForV -u # 0 the density equation is a balance rather than a conservation law.

= The density is not constant along Lagrangian paths.
= Taking min/max in a neighborhood of the departure points is not appropriate.

Solution: combining the Geometric Conservation Law and the balance law

dV ]
GC Law: —+u'VV=VV-u

ot Lo PV avony=0 = [PV,
Balance law: i)—p+u-Vp=_pV.u ot Dt

t J

yields a new conservation law for the point “mass” distribution M = pV.

The idea is to associate and track an arbitrary initial volume V, and “mass” with
every GLL point and use these quantities to provide bounds for the density. This
resembles what we do in a finite volume semi-Lagrangian scheme (next topic).
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Local solution bounds: V -u#0 LUf

Assume V,and M, are given at ¢, :

n+1
4a. Solve the GCL in |1 . ] 6 . i

%_VV uand V@)=V, — |V, =V(,.)
t

4b. Determine local bounds for the point masses:

™
M.‘T“n—mmM(pU,t ) M.‘Tla"—maxM(pU,t ) \%\)
IR
4c. Determine local bounds for the density:
min _ Mmin pmax ~ Mmax
Vi Via M;™ = maxM(p;.t,)
4d. Solve the mass law in [z,.¢,, ] M;" = mmM (p;-t,)
DM

——=0 and M(t,)=M,
Dt
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—sin(rx)* sin(27(y - 0.5))cos(w(y —0.5)* cos(mwt / T)
ll(p,t) =

%sin(nx)cos(n(y ~0.5))’ cos(t/T)

80x80 bi-cubic elements; CFL=0.7 "
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A finite volume semi-Lagrangian (SL) scheme f-

Why do we care about finite volume schemes?

» Cell-centered schemes are ubiquitous in DOE codes. However,

- These schemes use monotone reconstruction, i.e., limiters to control bounds.
- Limiters use local “worst case” scenarios when enforcing the bounds.

- Limiters entangle accuracy with preservation of bounds, which obscures
sources of discretization errors.

* Besides getting a better scheme we will have another chance to showcase the
use of optimization to preserve physical properties!

Cell-centered discretization of density and tracer

C(L(1))

u, = fdx Cell area
G

m.
—> Pi=u—l Cell average density

m, =fpdx Cell mass
G

—> (, =;i Cell average tracer
Q. =f,0qu Cell tracer i
G
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A generic finite volume SL scheme )

For Lagrangian volumes Dukowicz and Baumgardner (2000) JCP

C(Q(t + Ar))

di f pdx=0 —> m,(t+At)=m.(t) @
I'e

%qudx=0—> Q.(t+Ar)=0Q,(1)

Step 1: Trace back cell vertices to find the Lagrangian (departure) grid C(Q(1))

Step 2: Remap Lagrangian quantities from arrival to departure grid:

pd min ~ max ﬁli = fﬁl dX
* Reconstruct ,?,- such that p; | = /?,- =p; Lagrar!qian ] c,
 Reconstruct ¢; suchthat ¢, =¢,=<q quantities Q= f .4, dx
¢ ¢,
Step 3: Update values on the Eulerian (arrival) grid C‘(Q(t))
_ i, . o
m(t+A)=m;, —> pi=; Q(t+A)=0, —> g, =—
j m

44




Optimization-based finite volume SL scheme

Step 1: Trace back cell vertices to find the Lagrangian (departure) grid C’(Q(t))

Step 2:

Remap Lagrangian quantities from arrival to departure grid:

Reconstruct 0; without applying bounds

Reconstruct ¢; without applying bounds

targets QT

N
} . Lagrangian 4 C
I

Solve two quadratic programs (QP) for the Lagrangian quantities:

min > (i~ ) subject to
.

<m, =m""

l 1

Eﬁ%:M; and m™"
Ci

nléin 2 (Q —Q.T)z subject to

C

Eéi — Q, and Qimin < Qi < Qimax
G

Step 3: Update values on the Eulerian (arrival) grid é(Q(t))

m(t+Af) =i, —s P =t
122

0t+An=0, —> ¢ -2
mi

h
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Advantages

The solution is a globally optimal state that also satisfies the bounds:
- By definition it is the best possible solution satisfying the bounds!

The solution provably preserves linear tracer correlations.

The two QPs have the exact same structure as in the SE-SL case:

- We have a fast, scalable optimization algorithm!
- Solution times are essentially the same as for conventional limiters:

Timings for Leveque’s combo example.

Cells

128x128

512x512

Time

FCT

steps (sec)

810

3,220

47.60

5802.05

Van Leer

48.35

5804.66

48.78

5655.00

1.0

0.9
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Conve rgence teSt: m Laboratories

Smooth Gaussian hills on a cubed sphere mesh

OBT* Unlimited | ot
mesh steps I loo l2 loo | :::33;
30 600 0.386 0.465 0.368 0.425 el
1.5° 1200 0.182 0.268  0.172 0.225
0.75° 2400 0.0626 0.113  0.0559 0.0843
0.375° 4800 0.0167 0.0425 0.0144 0.0233

Rate  1.51 1.16 1.56 1.40

107

3 1.5 0.75 0.375

Using optimization to enforce bounds does not lead to degradation of accuracy!
47
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Linear tracer correlations ) e,

Initial tracer distributions: two linearly correlated cosine bells
q1 q2

ZZ @ @ q,=-0.8¢,+0.9

” Correlation t = 2.5

Optimization formulation provably preserves linear tracer correlations

04 05 06 07 08 09
a

48
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However, ... Lfr

Do you think there’s anything wrong with this result?

2.1

2.0

1.7

0, 02 04 0.6 08 1

Everything! Exact solution (density) is constant in time!

All we did was switch from RK4 to a forward Euler. Clearly Euler is less
accurate but it is still supposed to preserve constant in time functions.
So what is causing such a dramatic deterioration in the solution?

50




There’s another physical property... .,

National

Let’s take p=const and examine what happens during a single time step:

C(Q(1)) C(Q(t + At))
m,(t+At) =m,
m. - - - m.
pi (t)=j=pconst m'=fpidx=pconsz1ui pl(t+At)=_l
i ] ]
m, 1. L.
pi(t + At) - ‘ul B pconsnul - pconst & > pconst —_—>

Our departure grid
approximates the true
Lagrangian grid, hence it
violates the property that
non-divergent Lagrangian
flows preserve volumes!
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The Geometric Conservation Law ) faos,

Our scheme violates the Geometric Conservation Law (GCL), i dx = f u-nds
which is critical for methods involving any kind of moving grids: dt C.(1) aC.(1)

Thomas, Lombardi, AIAA 17, 1979

0.9 0 |

Some recent work on GCL.:

Use more Lagrangian points.
« Enforces GCL approximately.

Lauritzen, Nair, Ullrich, A conservative semi-Lagrangian multi-tracer
transport scheme on the cubed-sphere grid, JCP 229/5 (2010)

Heuristic mesh adjustment procedure: ® Adjusted point toremain
xed at this stage.
 No theoretical assurance of completion. e e
Arbogast, Huang, A fully mass and volume conserving implementation X %fofﬁf;h:é?ﬁ:féﬁ tl(fiside_
of a characteristic method for transport problems, SISC 28 (6) (2006). ways” to the flow.
_—

Monge-Ampere trajectory correction Flow

« Requires nontrivial solution of the nonlinear MAE Correct departure points according to

* Approximate: GCL = accuracy of MAE scheme . . op;”"
corr . ij

p, =p,+(@-1,)Ve; det

Cossette, Smolarkiewicz, Charbonneau, The Monge—Ampere ox
trajectory correction for semi-Lagrangian schemes, JCP, (2014) —

=1
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An optimization solution to the GCL ) .

Statement of the volume correction problem

Given: a source mesh C(Q) and ¢, ER"” such that ECOJ =|Q| and ¢,;=0 Vi
Find: a volume compliant mesh C(Q) such that:

a) C(Q) has the same connectivity as the source mesh

b) The volumes of its cells match the volumes prescribed in ¢,

c) Every cell C, € C(Q) is valid; or convex
d) Boundary points in C(Q) correspond to boundary points in C(Q)

* The volume correction problem may or may not have a solution!
 An important setting in which solution always exist is when

The source mesh C(Q) is transformation of another mesh C(Q) such that:

Véi € C(Q) is valid, or convex and ‘éi‘ =Cy;

In this case C(Q2) = C‘(Q) is a trivial solution of the volume correction problem 3
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Volume correction as an optimization probler@lamramnes

We consider quads (simplices are actually easier). We need few things:

Oriented volume of a quad cell:
1

VC eC(Q), C|= 5(()61',1 = X;3)(Vin = Yia) (X5 =X, (V5 — yi,l))
Di4s= (%,%%,4@%
g . . . . _ /%H/Ezs = (%,3,.%',3)
Partitioning of a quad into triangles: (1.2.4) r=1 »
2,3,4) r=2 el G
7WirE(:i’ Zr= a.’ ’ Cl,b,C =<(,, §
, , (pr Py, pb,) (a.,b.,c,) (13.4) r=3 |
\(1’ 293) r=4 dfwwzwaw ‘y_)\“gpi,z = (%2, Yi,2)
Oriented volume of a triangle c
1
r,edq, L,|= E(’xi,ar (yi,c, —Vin, ) - Xib, (yi,a, —Vie, ) - Xie, (yi,b, —Via, ))
Convexity indicator for a quad cell:
C, is convex, if the oriented areas of all its triangles are positive: V7T, €C,, |T;,|>0
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Volume correction as an optimization probler@

Optimization objective:

2
/€2

- 1 ~ ~
Mesh distance —> J,(p,D)= Ed(C(Q),C(Q))2 =|p-p

Optimization constraints:

@ Volume equality —> VC eC(Q),

Ci

=Cy,

@ Cell convexity —> VC ECQQ), VT, EC, T,>0

@ Boundary compliance @~ — ij €dQ, y(p;)=0

Nonlinear programming problem (NLP)

p* =argmin{J,(p,p) subjectto (1),(2), and (3)}
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A simplified NLP formulation iL

Consider a polygonal domain:
« Boundary compliance on polygonal Q can be subsumed in the volume constraint
» Convexity can be enforced weakly by logarithmic barrier functions

« This leaves only the equality volume constraint and gives the simplified NLP:

L,

p = argmin{](p) subject to ‘Ci‘ = Cy; Vi} J(p)=J,(p)- /J’E E log

¢ T, €C

Specialization to simplicial cells
>0

>01

(:;
(ji

A valid simplex is always convex —> A simplex is valid if and only if

Since ¢,; >0, the volume equality constraint VC; € C(€), Cl-\ =¢,; implies

p" =argmin{J,(p) subjectto |C|=c,, Vi}

Sandia
National _
Laboratories
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A scalable optimization algorithm LUf

Based on the inexact trust region sequential quadratic programming (SQP) method of
Ridzal and Heinkenschloss. Key properties of the inexact SQP approach:

* Fast local convergence, based on its relationship to Newton’s method,
« Use of ‘inexact’ solvers enables an efficient solution of very large NLP.

« Key requirement in the method: design of an efficient preconditioner.

Given an optimization iterate p* all linear systems involved are of the form

1 vty ( v H p

VC(phH) 0 v’ b

C(pk) - polynomial matrix function of coordinates

Preconditioner

I 0 « &>0small parameter ~ 10%h
a* = . o » . VC(pHVC(p*)" +¢l formed explicitly
0 (VC(p VCpT) + 81) * Inverse: smoothed aggregation AMG — Trilinos

If VC(p") is full rank, preconditioned GMRES converges in 3 iterations (Golub et al SISC 21/6, 2000)

Heinkenschloss, Ridzal, A Matrix-Free Trust-Region SQP Method for Equality Constrained Optimization, SIOPT 24/3, 2014 57
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Algorithm scalability

To challenge the algorithm we test performance as follows:

« Start with a uniform nxn mesh and advance to final time using the deformational velocity field.

* Apply algorithm to the deformed mesh at final time setting ¢, to initial mesh volumes.

Analytic action of V>J(p) but finite difference VC(p)

o Lscel oo ahees] oures ol cry L,

0.962
128 3 2 42 2.8 3.551
256 2 1 30 3.0 10.54
512 3 1 49 3.5 87.07

« Almost constant GMRES iterations; average GMRES ~

75
82
88

128 3
256 2
512 3

= N

Analytic action of V>J(p)

n Lscel ool awees] aures o lcry L,

36
25
43

24
2.5
3.1

0.860 65
3.115 81
8.787 85
73.775 90

« The matrix VC(-)VC(:)" = A, hence the appropriateness of AMG for the preconditioner

» CPU per SQP iteration scales linearly with problem size & confirms choice of preconditioner

« SQP and inner CG iteration counts to achieve machine precision are mesh independent

* The algorithm inherits its scalability from the AMG solver.
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theoretical bound of 3 (inexact ML solve!)
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Applications: Lagrangian mesh motion &=

Models the evolution of the computational mesh under a non-divergent velocity

sin(rx)’ sin(2wy)cos(nt /T) | < Deformational 05-y
up.n=| u(p.?) =
—sin(ry)” sin(2x)cos(mt / T) Rotational —> 05-x
Exact Source (uncorrected) Compliant (corrected)

Deformational

R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 59




Improvements in mesh geometry

Cell barycenters

% - exact Lagrangian mesh . .
B - source (uncorrected)
@ - compliant (corrected)

Sandia
m National
Laboratories
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Invalid cell in the source mesh:
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Improvements in mesh geometry LUf

Point trajectories

Rotational flow Deformational flow

—=-yuncorrected
0.7l | =#e=corrected
—exact

0.6

—=—nuncorrected
=k corrected
— X acCt

0.6

0.5¢

0.5¢

0.4r

0.4}

014 015 0.‘6 015 016 0.‘7
We observe significant improvements in the geometry of the corrected mesh:

» The shapes of the corrected cells are close to the exact Lagrangian shapes
« The barycenters of the corrected cells are very close to the exact barycenters

» The trajectories of the corrected points track the exact Lagrangian trajectories very closely
61




National

Applications: semi-Lagrangian transport T &z.

Recall the cell-centered optimization-based semi-Lagrangian scheme:

Step 1: Trace back cell vertices to find the Lagrangian (departure) grid C(Q(1))
Step 2: Optimization-based remap of Lagrangian values from arrival to departure grid.

Step 3: Update values on the Eulerian (arrival) grid C(Q(t))

We modify it to include a volume correction step:

Step 1*: Correct the departure grid to match the cell volumes of the arrival grid
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Applications: semi-Lagrangian transport @ =

Constant in time density: rotational flow

2.01p

Uncorrected Corrected Comparison
200 g e

: : : : o 2.07 : o :

: : 5 5 P JIIlexact %
206l Pl (It uncorrected . ]

' . |—corrected v
2,051 .-' Y , ;i' ]
204t ! ‘-‘ :' o
208 : o
2.02f ." , "‘,‘ !i'r , "_ ]
D

0 02 04 06 ' 0 0.2 0.4 0.6 0.8 1

0 5 0.2 0.4 0.6 0.8

Plots of the density at time ¥ = 1.5 for Forward Euler simulations with Ar =0.006
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Applications: semi-Lagrangian transport T &z.

Initial cylindrical density distribution: rotational flow

Uncorrected Corrected Comparison

=mmexact
| [r== uncorrected
—corrected

1.81

1.6f

1.4f

1.2f

Plots of the density at time ¥ = 1.5 for Forward Euler simulations with Ar =0.006
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Conclusions

Traditional approaches to devise stable and accurate numerical methods
are reaching a point of diminishing returns for complex applications
involving multiple mathematical models, requiring diverse, heterogeneous
numerical methods.

The use of optimization ideas to couple hetergoeneous numerical methods
and to preserve the relevant physical properties is very promising.

However, its success depends critically on the availability of efficient and
scalable optimization algorithms to solve the resulting QPs and NLPs.

We've presented two examples where such algorithms are available and
optimization leads to successful heterogenous numerical methods and

property preserving schemes.
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Development of fast, scalable optimization algorithms is likely to play the

same role for Heterogeneous Numerical Methods as the development of

fast, scalable linear solvers did in the past for conventional PDE methods.
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