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DOE uses computer models to understand, predict, and verify complex systems in high 
consequences analyses that would be difficult or even impossible by other means. 

Property-Preserving 
Methods 

HNM 
Coupling 

HNM 
Solving 

Complex systems require 
diverse “mathematical 
parts”: PDEs, integral 
equations, classical DFT, 
potential-based atomistic… 

Diverse math models 
require diverse “numerical 
parts”: mesh based (FE, 
FV, FD), meshless (SPH,  
MLS), implicit, explicit, 
Eulerian, Lagrangian… 

HNM = Co l l ec t i on o f 
dissimilar numerical parts 
from multiple disciplines 
functioning together as a 
unified simulation tool 

Parts must be stable, 
accurate and 
preserve key 
physical properties. 

The parts must function 
together as a unified 
simulation tool (HNM). 

HNMs must be stable, 
accurate and 
preserve key 
physical properties 

We must be able 
to solve our 
HNMs efficiently 

We carry out a comprehensive 
research effort to address these 

challenges 

Challenges: beyond compatible methods 
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1. Achieving Stability & Accuracy (Structural aspects) 

•  Game changer: Homological techniques:  FE exterior calculus (DEC), mimetic FD,… 
•  Typically achieved by topological means: 

-  Careful placement of the variables on the mesh. 
-  Special grid structure, e.g., topologically dual grids. 

•  Challenges:  
1.  Models that don’t fit EC structure, e.g., heterogeneous methods: FEM+cDFT  
2.  Stable and accurate does not imply property preserving… 

2. Preserving Physical Properties (Qualitative aspects) 
•  Maximum principles, local bounds, symmetries, Geometric Conservation Laws,… 
•  Correlations between variables, e.g., between two passive tracers. 
•  Challenges: conventional ways to preserve these properties are either 

-  Restrictive: Cartesian mesh, angle conditions, etc, and/or, 
-  Entangle accuracy with the property preservation, e.g., limiters. 

•  Game changer?  
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☞ “Exascale computing will enable consideration of new classes of multiscale problems 
in which different types of discretizations, appropriate to a particular scale in different 
portions of the domain, are employed  and models which treat distinct phenomena in 
different parts of the domain, such as ocean-atmosphere coupling…” 

☞ “Effective models must be hierarchical and include multiple sub-models that represent 
different phenomena with vastly differing scales.” 

“As this type of simulation expands, there 
is a critical need to develop systematic 

approaches for coupling across the range 
of scales and quantification of the 

properties of these types of coupling 
strategies” 

Multi-Fidelity Structure of a
Global Earth System Model

Coupler to exchange
fluxes from one 

component
to another

Exchange with 
other components 

Land Model

O
cean M

odel

Sea Ice M
odel
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Ice Sheet Model

Atm
osphere Model

LIME: Lightweight Integrating 
Multiphysics Environment (CASL) Global Earth System Model 

Traditional monolithic and operator-splitting modeling approaches 
fall short of meeting the crosscutting challenges; see Multifaceted 
Mathematical Approach for Complex Systems. 

3. Assembling Diverse Numerical Parts into HNMs and solving them  

SAND2015-4936 PE 

Game changer?  
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Thanks to:  
•  M. D’Elia, P. Kuberry, D. Littlewood, M. Perego, K. Peterson, D. Ridzal (SNL), M. Shashkov (LANL) 
•  M. Gunzburger (FSU), A. Shapeev (SkolTech), S.Moe (U. WA), M. Luskin, D. Olson (U. MN) 

Property-Preserving 
Methods 

HNM 
Coupling 

HNM 
Solving 

Optimization-based property-preserving methods 
•  Semi-Lagrangian transport of passive tracers 
•  Volume correction (Geometric Conservation Law) 
•  Property-preserving data transfer (remap) 

Optimization-based operator splitting 
•  Abstract decomposition theory 
•  Application to the Navier-Stokes eqs. 
•  Application to advection-diffusion 

equations 

Optimization-based operator coupling 
•  Local-to-Nonlocal couplings 
     (D’Elia talk, Tuesday) 
•  Atomistic-to-Continuum 
•  Interface problems:  
     Friday, 11:20, AUD1. 

The use of optimization ideas to couple heterogeneous numerical methods 
and to preserve the relevant physical properties could be a game changer. 
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L1
h (u1

T ,θ ) = f1

L2
h (u2

T ,θ ) = f2

€ 

u1
h − u2

h 2

Subject to  

Component physics Physical properties 

Target mismatch Coupling mismatch ui
h −ui

T 2

i=1,2
∑

Minimize 

+ 

☛ Reverses the roles of the coupling conditions and the models. 
☛ Divide and conquer approach:  
-  separates numerical parts: facilitates merging of heterogeneous methods. 
-  separates accuracy from physical properties (local bounds, conservation, etc..) 

€ 

Bui
h = b€ 

Ci ≤Cui
h ≤C i

Couch assembly of numerical parts and preservation of properties into an optimization problem: 
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€ 

Bui
h = b€ 

Ci ≤Cui
h ≤C i

Physical properties 

Target mismatch 

€ 

L1
h (u1

h ,θ) = f1

€ 

L2
h (u2

h ,θ) = f2

€ 

u1
h − u2

h 2

Subject to  

€ 

ui
h − ui

T 2

i
∑

Minimize 

+ 

Component physics 

Coupling mismatch 

In Part 1 we consider application of optimization to operator splitting. 

Related work: Lions (2001), Quarteroni (2000), Gunzburger (2000), Du (2001) – applications to PDEs, Oden (2011 – 
Atomistic to Continuum), Discacciati (2013 – heterogeneous domain decomposition), Karniadakis (2014-Stochastic PDE) 

This case study highlights the use of optimization ideas for the design 
of robust and efficient solvers for multiphysics problems. 
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€ 

Seek  u∈U  such that  Q u,v( ) = f ,v ∀v ∈V , f ∈V *

U,V,H  - Hilbert spaces, V *  - dual of V,   s.t.  V,H,V *{ }  is Gelfand triple

Model problem 

Assumptions 

sup
v∈V

Q u,v( )
v

V

≥ γ u
U

   and   sup
u∈U

Q u,v( )
u

U

> 0

Q u,v( ) ≤ γ u
U

∀u∈U, ∀v ∈V

%

&
''

(
'
'

€ 

⇒ u U ≤
1
γ
f V *

P. Bochev and D. Ridzal, Optimization-based additive operator decomposition of weakly coercive problems 
with applications, CAMWA, 2016. 

Sufficient for  a well-posed variational formulation 

Q ⋅, ⋅( ) :U ×V→R weak form of a “multiphysics” operator 
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Assumptions 

€ 

Q u,v( ) =Q1 u,v( ) +Q2 u,v( )•                                               with weakly coercive component forms: 

sup
v∈V

Qi u,v( )
v

V

≥ γ i u U
   and   sup

u∈U

Qi u,v( )
u

U

> 0

Qi u,v( ) ≤ γ i u U
∀u∈U, ∀v ∈V

%

&
''

(
'
'

  

€ 

⇒ Qi u,v( ) = f ,v    is well -posed

➪  u1,u2 – the states 
➪  θ – virtual (distributed) control 

Optimization exposes the constituent components of the multiphysics operator 

Reformulation of                        as a constrained optimization problem 

€ 

Q u,v( ) = f ,v

  

€ 

minimize   J(u1,u2) =
1
2
u1 − u2 U

2

subject to 
Q1 u1,v1( ) − θ,v1( )V = f ,v1 ∀v1∈V

Q2 u2,v2( ) + θ,v2( )V = 0 ∀v2 ∈V

& 
' 
( 

) ( 

& 

' 

( 
( 

) 

( 
( 

•  Component problems are easier to solve that the monolithic problem 
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Lagrange multiplier solution: saddle-point optimality system 

€ 

u1 − u2, ˆ u 1 − ˆ u 2( )U
+ Q1 ˆ u 1,λ1( ) + Q2 ˆ u 2,λ2( ) = 0 ∀ˆ u 1, ˆ u 2 ∈U

ˆ θ ,λ2 − λ1( )
V

= 0 ∀ ˆ θ ∈V

Q1 u1, ˆ λ 1( ) + Q2 u2, ˆ λ 2( ) + θ, ˆ λ 2 −
ˆ λ 1( )

V
= f , ˆ λ 1 ∀ ˆ λ 1, ˆ λ 2 ∈V

' 

( 

) 
) 

* 

) 
) 

The optimality system is well-posed problem with a unique solution (u1,u2,θ,λ1,λ2). 

Moreover, if u is a solution of the original variational equation, then u=u1=u2

➪  Control penalty is not required for well-posedness of the optimality system! 

➪  As a result, original and reformulated problems are completely equivalent 

Notable facts 

Theorem                                                   (Bochev & Ridzal, 2015) 

There’s no splitting error! 
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Discretization  

sup
vh∈Vh

Q uh,vh( )
vh

V

≥ γ uh
U

   and   sup
uh∈Uh

Q uh,vh( )
uh

U

> 0

Uh ⊂U, V h ⊂VAssume                            is a pair of LBB-stable spaces for the form Q: 

•  The KKT optimality system is well-posed with a unique solution         
•  Discrete reformulated and monolithic problems are equivalent: 

•  The following quasi-optimal error estimate holds:

Theorem                                                      (Bochev & Ridzal, 2015) 

This turns out to be sufficient for the well-posedness of the discrete reformulated problem 

(u1
h,u2

h,θ h,λ1
h,λ2

h )
uh = u1

h = u2
h

ui
h −ui U

i=1,2
∑ + λi

h −λi V
i=1,2
∑ ≤C inf

Uh
vi
h −ui U

i=1,2
∑ + inf

Vh
µi
h −λi U

i=1,2
∑

$

%
&&

'

(
))
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Solving the KKT system 

U −U 0 Q1
T 0

−U U 0 0 Q1
T

0 0 0 −V V
Q2 0 −V 0 0
0 Q2 V 0 0

"

#

$
$
$
$
$

%

&

'
'
'
'
'

u1
u2
θ
λ1
λ2

"

#

$
$
$
$
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'
'
'
'
'

=

0
0
0
f
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Let                              be the solution of the full KKT system. Then 
•                      and 

•  The triple                 solves the reduced KKT system 

Theorem                                                      (Bochev & Ridzal, 2015) 

Q1 0 −V
0 Q2 V
0 0 (Q1

−1 +Q2
−1)V

"

#

$
$
$

%

&

'
'
'

u1
u2
θ

"

#

$
$
$

%

&

'
'
'
=

f
0

−Q1
−1f

"

#

$
$
$

%

&

'
'
'

(u1,u2,θ,λ1 ,λ2 )
λ1 = λ2 = 0 u = u1 = u2

(u1,u2,θ )

Q1 +Q2( )u = f

Monolithic problem 

KKT 

Can we really solve 
this 5X larger problem 
faster and more 
efficiently than the 
monolithic one? 

This system provides a foundation 
for an efficient iterative procedure for 
the solution of the KKT system  



SAND2015-3701 C 

SAND2015-3701 C 

Addi?ve	
  spliLng	
  	
  	
  	
  	
  	
  	
  	
  solu?on	
  algorithm	
  	
  

14	
  

Q1
−1 +Q2

−1( )Vθ = −Q1
−1f

Q1u1 = f +Vθ Q2u2 = −Vθ

1.  Use GMRES to solve the reduced space equation  

-  Application of                   decouples trivially into linear system solves with      and      . Q1
−1 +Q2

−1( ) Q1 Q2

-  By assumption sub-problems are easier to solve that the monolithic problem:  

are easier to invert than  ⇒ Q1, Q2 Q1 +Q2( )

2.  Recover the state by solving either                       or  

-  Since                     both yield the solution of the monolithic problem! 
-  Note that this also allows to further simplify the KKT system to  

u = u1 = u2

•  However, derivation of this system is not obvious at first! 
•  The variational setting and its discretization are left to a guesswork and serendipity. 
•  Optimization automates and formalizes the discovery of decompositions. 

Q1 −V
Q2 V

"

#
$
$

%

&
'
'

u1
θ

"

#
$
$

%

&
'
'
=

f
0

"

#
$
$

%

&
'
'

In principle one could bypass optimization 
and derive the split via auxiliary variables 
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Focus on the Oseen equations 

−νΔu+ (b ⋅∇)u+∇p = f in  Ω
∇⋅u = 0 in  Ω
u = 0 on  Γ

'

(
)

*
)

⇒  Availability of robust solvers with optimal complexity is prerequisite to solve the NSE 
•  Convergence should be at best independent of the mesh size and the viscosity 
•  Formulation of such solvers remains a challenge. Existing approaches include 

-  physics-based splitting: vector Laplacian + convection term (Hamilton et al NLA, 2010) 
-  dimension-based splitting: 1D scalar advection-diffusion (Benzi et al, ANM 2011) 
-  Iterative algorithm design must be tailored to the splitting employed 

Result from linearization of the Navier-
Stokes equations (NSE) by fixed point or a 

Newton-type method 

•  We apply optimization-based splitting to develop efficient solvers for Oseen equations 
•  Approach is agnostic to the type of splitting used, only requires well-posed subproblems 
•  Could in principle apply it with the same splitting as above 
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−σΔu+ (b ⋅∇)u+ 2∇p
2∇⋅u

%

&
'

(

)
*+

(σ −ν )Δu−∇p
−∇⋅u

%

&
'

(

)
*=

f
0
%

&
'
(

)
*

Q(u, p;v,q) =ν (∇u,∇v)+ (b ⋅∇u,v)− (p,∇⋅v)+ (q,∇⋅u)

U =V = H0
1(Ω)× L0

2 (Ω); H = L2 (Ω)

(u, p;v,q)U = (∇u,∇v)+ (p,q); u, p
U

2
= ∇u

0

2
+ p

0

2

Variational setting for the monolithic problem 

Additive splitting: 

Q1(u, p;v,q) =σ (∇u,∇v)+ (b ⋅∇u,v)− 2(p,∇⋅v)+ 2(q,∇⋅u)

Q2 (u, p;v,q) = (ν −σ )(∇u,∇v)+ (p,∇⋅v)− (q,∇⋅u)

Q(u, p;v,q) =Q1(u, p;v,q)+Q2 (u, p;v,q)

Additive splitting: strong form 

Q is weakly coercive on U×V: 
the monolithic problem 

satisfies our assumptions 

Choosing a sufficiently large 
splitting parameter σ ensures 

that each subproblem is 
dominated by the Laplacian  

Each subproblem is weakly 
coercive on U×V: the split 
satisfies our assumptions 

“Easy” Oseen Stokes 
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minimize   J(u1, p1;u2, p2 ) = 1
2

∇u1 −∇u2 0

2
+ p1 − p2 0

2( )

s.t. 
Q1 u1, p1;v1,q1( )− ξ,v1( )1 − r,q1( )0

= f ,v1 ∀v1,q1 ∈U

Q2 u2, p2;v2,q2( )+ ξ,v2( )1 + r,q2( )0
= 0 ∀v2,q2 ∈U

%
&
'

('

%

&

'
'

(

'
'

Optimization reformulation 

θ = ξ, r{ }∈ H0
1(Ω)× L0

2 (Ω)

Virtual distributed control 

Interpretation via auxiliary variables 

−σΔu+ (b ⋅∇)u+ 2∇p−Δξ
2∇⋅u− r

%

&
'

(

)
*+

(σ −ν )Δu−∇p+Δξ
−∇⋅u+ r

%

&
'

(

)
*=

f
0
%

&
'
(

)
*

•  Derivation of this system is not obvious at first! 
•  The variational setting and its discretization are left to a guesswork and serendipity. 
•  Optimization automates and formalizes the discovery of decompositions. 

As in the abstract case 
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∑ =1.0×10−7 Solutions of optimization-based decomposition 

match monolithic solution to within the GMRES 
tolerance set to 1.0E-08 
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Optimization-based solver is independent of the mesh size 

Mesh level # cells #DoF #GMRES 
1 352 1,727 37 
2 1,408 6,619 39 
4 5,632 25,907 40 
8 22,528 102,499 40 
16 90,112 407,747 38 

ν = 5×10−3

σ =1

GMRES tol=10-6 

Optimization-based solver is mildly dependent on viscosity 

Visc. 1E+2 1E+1 1E-1 1E-2 5E-3 

#GMRES 4 4 6 22 40 

Viscosity decreases by five orders of magnitude. 
Iterations increase by a single order of magnitude. 

Parameters 
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Optimization-based vs. preconditioned monolithic solver 
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Mesh scaling 

Optimization Monolithic 

Q1 +Q2( )
Monolithic solver 

preconditioned by        :  Q1

Q1 ~
−σΔu+ (b ⋅∇)u+ 2∇p

2∇⋅u
%

&
'

(

)
*

“Easy” 
Oseen 

Parameters 
GMRES tol=10-6,                  ,            . ν = 5×10−3 σ =1
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Optimization-based vs. preconditioned monolithic solver 

Q1 +Q2( )
Monolithic solver 

preconditioned by        :  Q1

Q1 ~
−σΔu+ (b ⋅∇)u+ 2∇p

2∇⋅u
%

&
'

(

)
*

“Easy” 
Oseen 

Parameters 
GMRES tol=10-6,           , Level 8 mesh. σ =1
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Viscosity scaling 

Optimization Monolithic These preliminary results do not explore 
further tuning of the optimization solver by 
virtue of the splitting parameter  
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Coupling mismatch 

€ 

L1
h (u1

T ,θ) = f1

€ 

L2
h (u2

T ,θ) = f2

€ 

u1
h − u2

h 2

€ 

Bui
h = b€ 

Ci ≤Cui
h ≤C i

Subject to  

€ 

ui
h − ui

T 2

i
∑

Minimize 

+ 

Target definition 
Physical properties 

Target mismatch 

This case study highlights application of optimization ideas for the 
preservation of relevant physical properties in numerical methods. 

P. Bochev, D. Ridzal, M. Shashkov, Fast optimization-based conservative remap of scalar fields, J. Comp. Phys. 246 (2013) 

P. Bochev, D. Ridzal, K. Peterson, Optimization-based remap and transport: A divide and conquer strategy for 
feature- preserving discretizations, J. Comp. Phys. 257, (2014) 1113 – 1139. 

In Part 2 we apply optimization ideas to develop property-preserving 
methods for transport of passive tracers in climate models. 
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1.  Conservation of mass and total tracer: 
2.  Preservation of local bounds for q and ρ:

3.  Preservation of linear correlations between tracers: 

4.  Preservation of constant tracers, i.e., “compatibility”. 

M = ρ dV
Ω

∫ Q = ρqdV
Ω

∫

q1(x) = aq2 (x)+ b

qi
min ≤ qi ≤ qi

maxρi
min ≤ ρi ≤ ρi

max

Key requirements 

An ubiquitous problem in geosciences and climate modeling 

ρ

q
u

- density 
- tracer mixing ratio 
- velocity 

∂ρ
∂t
+∇⋅ρu = 0

∂ρq
∂t

+∇⋅ρqu = 0

#

$
%%

&
%
%

⇒ ∂q
∂t
+u ⋅∇q = 0 where: 

Semi-Lagrangian schemes are the method of choice in these 
communities because they allow for time steps much larger than the 
CFL-limited time steps in Explicit Eulerian methods. This is even more 
critical for recent high-order nodal schemes deployed in climate models.  
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Advantages  
•  SE: Diagonal mass matrix + Spectral accuracy 
•  SL: avoids severe CFL restrictions of high-order methods 
•  SL+SE: Simple, efficient and accurate! 
•  HOMME (High Order Modeling Environment) uses SE and 

DG on fully unstructured quadrilateral meshes on the sphere 

HOMME is a community model supported by the NSF and the DOE 
with contributions from NCAR, DOE laboratories and universities. 

HOMME is the default dynamical core of the Community Atmosphere 
Model (CAM) and the Community Earth System Model (CESM) 

The new SL-SE scheme for tracers is motivated 
by and implemented in HOMME. 

cubed-sphere mesh 

Dennis J, Edwards J, Evans K, Guba O, Lauritzen P, Mirin A, St.-Cyr A, Taylor M, Worley P.  2012.  CAM-SE: A scalable 
spectral element dynamical core for the Community Atmosphere Model. IJHPCA. 26:74-89. 

We begin Part 2 by developing a new scheme, which combines 
•  Spectral elements (SE) for spatial discretization. 
•  Semi-Lagrangian (SL) approach for time stepping. 
•  Optimization for enforcing conservation and local bounds.  
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∂ρ
∂t
+∇⋅ρu = 0

∂ρq
∂t

+∇⋅ρqu = 0

#

$
%%

&
%
%

∂ρ
∂t
+u ⋅∇ρ = −ρ∇⋅u

∂q
∂t
+u ⋅∇q = 0

$

%
&&

'
&
&

Dρ
Dt

= −ρ∇⋅u

Dq
Dt

= 0

$

%
&&

'
&
&

Key idea: convert PDEs into ODEs along Lagrangian particle paths 

dx
dt
= u(x(t), t)

Step 1: solve the “final value” problem in [tn,tn+1]: 

dx
dt
= u(x(t), t)  and  x(tn+1) = p

Step 2: solve the initial value problems in [tn,tn+1]: 

Dρ
Dt

= −ρ∇⋅u  and  ρ(tn ) = ρh ( p, tn )

Dq
Dt

= 0            and  q(tn ) = qh ( p, tn )

p = x(tn+1)
p = x(tn )

Arrival pt. 

Departure pt. 

Initial value at tn = PDE 
solution at departure pt.  

ρh (p, tn+1) = ρ(tn+1)

qh (p, tn+1) = q(tn+1)

ODE solution at tn+1 = PDE 
solution at arrival pt.   

p = x(tn )
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Step 1: solve the “final value” problem in [tn,tn+1]: 

Step 2: solve the initial value problems in [tn,tn+1]:  

dx
dt
= u(x(t), t)  and  x(tn+1) = pij

pij{ }

Arrival points = Gauss-Lobatto points  pij{ }

Departure points      

Dρ
Dt

= −ρ∇⋅u  and  ρ(tn ) = ρh ( pij, tn )

Dq
Dt

= 0            and  q(tn ) = qh ( pij, tn )

qh (pij, tn )

ρh (pij, tn )

Initial values = spectral element reconstruction at Gauss-Lobatto departure points  
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u(x(t), t) = 0.5− y
0.5− x

"

#
$$

%

&
''

dx
dt
= u(x(t), t)  and  x(tn+1) = pij

Solved by RK4 
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Critical for physically consistent tracer transport, since high-
order spatial schemes are prone to unphysical oscillations:  

However, the generic scheme 
•  Does not conserve mass and total tracer 
•  Does not preserve local solution bounds  
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Solution: combine the generic SE+SL scheme with optimization to 
•  Conserve mass and total tracer 
•  Preserve local solution bounds  

Recall the advantages:  
•  Diagonal mass matrix 
•  Spectral accuracy 
•  Avoids severe CFL restrictions of high-order methods 
•  Simple!! (compare, e.g., to tent-pitching schemes) 

Physical 
bounds 
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pij = x(tn )

ρh (pij, tn+1) = ρ(tn+1)  and  qh (pij, tn+1) = q(tn+1)

Start with a generic SE+SL scheme:  

1. Determine GL departure points  

2. Determine solution at arrival points 

Then proceed as follows to find the tracer at tn+1 (density is similar)   

3.  Set optimization target to SE+SL solution: 

4.  Determine local solution bounds: 

5.  Set solution at the new time step by solving 

q̂ := qh (pij, tn+1)

qij
min ≤ q(pij, tn+1) ≤ qij

max

qn+1
* = argmin

q∈Qr
q− q̂

0

2 subject to  
qdx

Ω

∫ = qn dx
Ω

∫

qij
min ≤ qij ≤ qij

max

&

'
(

)(

Conservation 

Local bounds 

TBD later! 
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Algebraic form 

qn+1 = argmin
q

qTMq+ cTq+ c0 subject to  
wTq =wTq n

qmin ≤ q ≤ qmax

"
#
$

%$

Conservation 

Local bounds 

☞  Example of a “singly linearly constrained QP with simple bounds” 
☞  QP structure admits a fast O(N) optimization algorithm. 

Theorem (Existence of optimal solutions) 
The feasible set of the optimization problem for the solution transfer is 
non-empty. The problem has a unique optimal solution. 

M = φijφkl dx
Ω

∫ = diag(Mij ); c = −2Mq̂; c0 = q̂
TMq̂; w→  Gauss-Lobato weights
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L(q,λ,µ1,µ2 ) = Mij qij − q̂ij( )
2

node
∑ −λ wij qij − qij,n( )

node
∑ − µ1,ij (qij − qiji

min )
node
∑ − µ2,ij (qij − qiji

max )
node
∑

qij = q̂ij +λ +µ1,ij −µ2,ij
qiji
min ≤ qij ≤ qiji

max

µ1,ij ≥ 0, µ2,ij ≥ 0

µ1,ij (qij − qiji
min ) = 0,

µ2,ij (qij − qiji
max ) = 0

$

%

&
&
&

'

&
&
&

and wij qij − qij,n( )
node
∑ = 0

The Lagrangian 

The Karush-Kuhn-Tucker (KKT) conditions 

Without the equality constraint the 
QP splits into N one-dimensional 
QPs with simple bounds: 

Without the equality constraint the KKT 
conditions are fully separable and can 
be solved for any fixed value of λ. 

qij,n+1 = argmin
qij

Mij qij − q̂ij( )
2

subject to  qiji
min ≤ qij ≤ qiji

max

qij,n+1=med(qiji
min, q̂ij,qiji

max )
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qij = qij +λ; µ1,ij = 0; µ2,ij = 0                   if   qiji
min ≤ qij +λ ≤ qiji

max

qij = qiji
min; µ2,ij = 0; µ1,ij = qij − qiji −λ    if   qiji

min ≥ qij +λ

qij = qiji
max; µ1,ij = 0; µ2,ij = qij − qij +λ     if             qij +λ ≥ qiji

max

$

%
&&

'
&
&

Step 1: solve the first set of KKT conditions to find q as a function of λ 

qij (λ) =med(qiji
min, qij +λ,qiji

max );

Step 2: solve the single equality constraint for λ 

Solve wij qij (λ)− qij,n( )
node
∑ = 0

-  Piecewise linear, monotonically increasing function of single scalar variable λ  
-  Can solve to machine precision by a simple secant method  
-  Globalization is unnecessary: λ0=0 is an excellent initial guess:  

-                solves the QP without the equality constraint, i.e., “almost” a solution 
-  Locality                     barely violates the mass conservation constraint 

qij (λ0 )
⇒ qij (λ0 )

Trivial, communication-free 
O(N) computation 

qij (λ0 ) =med(qiji
min, qij,qiji

max );

Mass-form OBR algorithm
Second, we adjust � in an outer iteration in order to satisfy

CX

i=1

�mi (�) = 0 .

When we find the �⇤ such that
PC

i=1 �mi (�⇤) = 0 holds, we will have
solved the full KKT conditions.

The function
PC

i=1 �mi (�) is a piecewise linear, monotonically increasing
function of a single scalar variable �. Therefore, a secant method can
be e�ciently employed as the outer iteration.

0
�

. . . given �p , �c , rp
1 Compute �mi (�c ) 

median(emmin
i � mi , �m

T
i + �c , emmax

i � mi ) 8i .

Compute residual rc  
PC

i=1 �mi (�c ).

2 Set ↵ (�p � �c )/(rp � rc ). Set rp  rc .

3 Set �p  �c . Set �c  �c � ↵rc .

In all our examples, the algorithm requires  5 secant iterations!

,
D. Ridzal Feature-preserving solution transfer 22
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For solenoidal fields local bounds are easy: 
Dρ
Dt

= 0  ⇒ ρ(x(t), t) = const

Dq
Dt

= 0  ⇒ q(x(t), t) = const

ρh (pij, tn+1) = ρ(tn+1) = ρ(tn ) = ρh ( pij, tn )

qh (pij, tn+1) = q(tn+1) = q(tn ) = qh ( pij, tn )

qij
min =min

p∈Κ
q(pij, tn )

qij
max =max

p∈Κ
q(pij, tn )

Tight bounds Loose bounds 

Solution is constant along Lagrangian paths ⇒ taking min/max in a neighborhood 
of  the departure points is sufficient to determine solution bounds: 

K 
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  R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 627–665. 

u(p, t) = 0.5− y
0.5− x

"

#
$$

%

&
''Zalesak cylinder, cone and a smooth hump 

80x80 bi-cubic elements; CFL=0.7  
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u(p, t) =
sin(π x)2 sin(2π y)cos(π t /T )
−sin(π y)2 sin(2π x)cos(π t /T )

"

#

$
$

%

&

'
'
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q(x, t) = 0.5(1.0+ cos(πr1)); r1 =
min(r, r0 )

r0

80x80 bi-cubic elements; CFL=0.7  

R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 627–665. 
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15.8489 25.1189 39.8107 63.0957
10

−4

10
−3

10
−2

10
−1

10
0
L1 Convergence Rates for Limiters With Deformational Flow

 

 

No Limiting
QM Interp−Loose Bounds
QM Interp−Tight bounds
QM Reconstruction

h3

15.8489 25.1189 39.8107 63.0957
10

−4

10
−3

10
−2

10
−1

10
0
L∞ Convergence Rates for Limiters With Deformational Flow

 

 

No Limiting
QM Interp−Loose Bounds
QM Interp−Tight bounds
QM Reconstruction

h3

A SE+SL method with limiters would typically truncate the 
order of convergence to 2 even for L1 errors.    

We see essentially no degradation in the 3rd order L1 error 
rate (compared to “raw” solution convergence). 

Tight 
Loose 
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CFL=14.08 

60x60 bi-cubic elements; 20 full revolutions. 

CFL=7.04 
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For∇⋅u ≠ 0 the density equation is a balance rather than a conservation law. 

⇒ The density is not constant along Lagrangian paths.  
⇒ Taking min/max in a neighborhood of the departure points is not appropriate.  

∂V
∂t

+u ⋅∇V =V∇⋅u

∂ρ
∂t
+u ⋅∇ρ = −ρ∇⋅u

$

%
&&

'
&
&

⇒
∂ρV
∂t

+u ⋅∇(ρV ) = 0 ⇒
D(ρV )
Dt

= 0

Solution: combining the Geometric Conservation Law and the balance law 

GC Law: 

Balance law: 

The idea is to associate and track an arbitrary initial volume V0 and “mass” with 
every GLL point and use these quantities to provide bounds for the density. This 
resembles what we do in a finite volume semi-Lagrangian scheme (next topic). 

yields a new conservation law for the point “mass” distribution             . M := ρV
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ρmin =
M min

Vn+1

4a. Solve the GCL in [tn,tn+1] 

DV
Dt

=V∇⋅u  and  V (tn ) =Vn

Assume Vn and Mn are given at tn : 

4d. Solve the mass law in [tn,tn+1] 

DM
Dt

= 0  and  M (tn ) =Mn

4b. Determine local bounds for the point masses: 

Mij
min =min

p∈Κ
M (pij, tn ) Mij

max =max
p∈Κ

M (pij, tn )

4c. Determine local bounds for the density: 

ρmax =
M max

Vn+1

Vn+1 =V (tn+1)

Mij
min =min

p∈Κ
M (pij, tn )

Mij
max =max

p∈Κ
M (pij, tn )

Vn+1Vn
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80x80 bi-cubic elements; CFL=0.7  

u(p, t) =
−sin(π x)2 sin(2π (y− 0.5))cos(π (y− 0.5)2 cos(π t /T )

1
2
sin(π x)cos(π (y− 0.5))3 cos(π t /T )

"

#

$
$
$

%

&

'
'
'
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•  Cell-centered schemes are ubiquitous in DOE codes. However, 

-  These schemes use monotone reconstruction, i.e., limiters to control bounds. 
-  Limiters use local “worst case” scenarios when enforcing the bounds. 
-  Limiters entangle accuracy with preservation of bounds, which obscures 

sources of discretization errors.  

•  Besides getting a better scheme we will have another chance to showcase the 
use of optimization to preserve physical properties! 

Why do we care about finite volume schemes? 

Cell-centered discretization of density and tracer 

!C(!(t))

C(!(t))

!i (t)
qi (t)

!!i (t)
!qi (t)

!i (t +!t)
qi (t +!t)

C(!(t +"t))

mi = ρ dx
Ci

∫

µi = dx
Ci

∫
ρi =

mi

µi

qi =
Qi

miQi = ρqdx
Ci

∫

Cell mass 

Cell area 
Cell average density 

Cell average tracer 
Cell tracer 
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!C(!(t))

C(!(t))

!i (t)
qi (t)

!!i (t)
!qi (t)

!i (t +!t)
qi (t +!t)

C(!(t +"t))d
dt

ρ dx
Ci

∫ = 0

d
dt

ρqdx
Ci

∫ = 0

For Lagrangian volumes 

Step 2: Remap Lagrangian quantities from arrival to departure grid:   

•  Reconstruct       such that 

•  Reconstruct       such that 

Step 1: Trace back cell vertices to find the Lagrangian  (departure) grid  C(Ω(t))

ρi
qi

ρi
min ≤ ρi ≤ ρi

max

qi
min ≤ qi ≤ qi

max
Lagrangian 
quantities 

mi = ρi dx
Ci

∫

Qi = ρi qi dx
Ci

∫

!
"
#

!
"
#

Step 3: Update values on the Eulerian (arrival) grid C(Ω(t))

Dukowicz and Baumgardner (2000) JCP 

mi (t +Δt) =mi (t)

Qi (t +Δt) =Qi (t)

mi (t +Δt) = mi ρi =
mi

µi
Qi (t +Δt) = Qi qi =

Qi

mi
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Step 2: Remap Lagrangian quantities from arrival to departure grid:   

•  Reconstruct       without applying bounds 

•  Reconstruct       without applying bounds 

•  Solve two quadratic programs (QP) for the Lagrangian quantities: 

Step 1: Trace back cell vertices to find the Lagrangian  (departure) grid  C(Ω(t))

ρi
qi

Lagrangian 
targets 

mi
T = ρi dx

Ci

∫

Qi
T = ρi qi dx

Ci

∫

!
"
#

!
"
#

min
mi

     mi − mi
T( )

2

Ci

∑    subject to

mi
Ci

∑ =M; and mi
min ≤ mi ≤mi

max

min
Qi

     Qi − Qi
T( )

2

Ci

∑    subject to

Qi
Ci

∑ =Q; and Qi
min ≤ Qi ≤Qi

max

Step 3: Update values on the Eulerian (arrival) grid C(Ω(t))

mi (t +Δt) = mi ρi =
mi

µi
Qi (t +Δt) = Qi qi =

Qi

mi
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•  The solution is a globally optimal state that also satisfies the bounds: 
-  By definition it is the best possible solution satisfying the bounds! 

•  The solution provably preserves linear tracer correlations. 

•  The two QPs have the exact same structure as in the SE-SL case: 
-  We have a fast, scalable optimization algorithm! 
-  Solution times are essentially the same as for conventional limiters: 

Cells Time 
steps 

FCT 
(sec) 

Van Leer  OB-SL  Ratio 

64x64 400 4.51 4.55 4.98 1.1 
128x128 810 47.60 48.35 48.78 1.0 
256x256 1,610 390.47 399.15 405.92 1.0 
512x512 3,220 5802.05 5804.66 5655.00 0.9 

Timings for Leveque’s combo example.  

0.2 0.4
0.6 0.8

1
0.20.40.60.81

0
0.2
0.4
0.6
0.8
1

xy

Vectorized Matlab code: wall-clock times on a 3.06GHz Intel Core Duo MacBook Pro 
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Convergence Test

t = 0 t = 2.5 t = 5

OBT⇤ Unlimited
mesh steps l

2

l1 l

2

l1

3

� 600 0.386 0.465 0.368 0.425
1.5

� 1200 0.182 0.268 0.172 0.225
0.75

� 2400 0.0626 0.113 0.0559 0.0843
0.375

� 4800 0.0167 0.0425 0.0144 0.0233

Rate 1.51 1.16 1.56 1.40
3 1.5 0.75 0.375

10−2

10−1

100

 

 
l2 OBT
l
∞

 OBT
l2 Unlim
l
∞

 Unlim

⇤ Optimization-based transport

April 7, 2014 14

Smooth Gaussian hills on a cubed sphere mesh  

Using optimization to enforce bounds does not lead to degradation of accuracy! 
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Linear Tracer Correlation Test

Two tracers with initial distributions linearly correlated cosine bells,
q

1

has min = 0.1 and max = 1.0, q
2

= �0.8q
1

+ 0.9.

q1 q2

Correlation t = 2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q1

q 2

April 7, 2014 15

Initial tracer distributions: two linearly correlated cosine bells 

q2=-0.8q1+0.9

Optimization formulation provably preserves linear tracer correlations 
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Part 3  
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All we did was switch from RK4 to a forward Euler. Clearly Euler is less 
accurate but it is still supposed to preserve constant in time functions.   
So what is causing such a dramatic deterioration in the solution? 

Do you think there’s anything wrong with this result? 

1.7 

2.1 

2.0 

Everything! Exact solution (density) is constant in time!  
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Let’s take ρ=const and examine what happens during a single time step: 

mi = ρi dx
Ci

∫ = ρconst µiρi (t) =
mi

µi

= ρconst

ρi = ρconst mi (t +Δt) = mi

ρi (t +Δt) =
mi

µi

!C(!(t))

C(!(t))

!i (t)
qi (t)

!!i (t)
!qi (t)

!i (t +!t)
qi (t +!t)

C(!(t +"t))

Ci
EXACT

Ci

d
dt

dx
Ci

∫ = 0

Our departure grid 
approximates the true 

Lagrangian grid, hence it 
violates the property that 

non-divergent Lagrangian 
flows preserve volumes! 

ρi (t +Δt) =
mi

µi

=
ρconst µi

µi

= ρconst
µi

µi

≠ ρconst
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Our scheme violates the Geometric Conservation Law (GCL), 
which is critical for methods involving any kind of moving grids:  

Some recent work on GCL: 

Use more Lagrangian points.  

Lauritzen, Nair, Ullrich, A conservative semi-Lagrangian multi-tracer 
transport scheme on the cubed-sphere grid, JCP 229/5 (2010)  

Arbogast, Huang, A fully mass and volume conserving implementation 
of a characteristic method for transport problems, SISC 28 (6) (2006). 

Cossette, Smolarkiewicz, Charbonneau, The Monge–Ampere 
trajectory correction for semi-Lagrangian schemes, JCP, (2014) – 

Heuristic mesh adjustment procedure: 

Monge-Ampere trajectory correction 

Author's personal copy

2.1. Upstream integrals

The sub-domains ak‘ over which must be integrated can have many possible shapes (Fig. 3). The practical difficulty in
developing analytical integrals that cover all possible cases is, in general, somewhat complicated but not impossible [23].
Instead the problem can be greatly simplified by converting the area-integrals into line-integrals by appropriate use of
the Gauss–Green theorem [6].

2.1.1. Lagrangian cell boundary computation (search algorithm)
Suppose the trajectories for the vertices of ak are given. Finding the location of the vertices of ak‘ basically reduces to the

computation of intersections between coordinate lines (sides of A‘) and lines of arbitrary orientation (sides of ak‘). Only three
intersection scenarios are possible when marching counter-clockwise along a side of ak‘: Intersection with a horizontal coor-
dinate line (Fig. 4(a)), intersection with a vertical coordinate line (Fig. 4(b)) or intersection with a vertex of A‘ (Fig. 4(c)). The
coordinates of the crossing are simply the location of the intersection between straight lines. Let Nh be the number of vertices
of ak‘. The coordinates of the vertices of the polygon ak‘ are denoted ðxk‘;h; yk‘;hÞ; h ¼ 1; . . . ;Nh, and are numbered counter-
clockwise (Fig. 5). The first subscript k refers to the kth departure cell to which ak‘ belongs, ‘ refers to the fact that
ðxk‘;h; yk‘;hÞ is a vertex in the grid cell A‘ and h is the local index for the numbered vertices of ak‘.

(b)(a) (c) (d)

Fig. 2. Schematic illustrations of possible approximations to the analytical departure cell boundary (solid curved line) using different levels of refinement
with piecewise straight lines. (a) The approach used in this paper connects the four vertices of the departure cell (filled circles) with straight lines. To
improve the approximation to the departure cell one may introduce (b) one, (c) two or (d) three Lagrangian points along the cell sides (unfilled circles) and
connect these by straight line segments to converge towards the exact departure cell boundary.

(a) (b)

(c) (d)

Fig. 3. A schematic illustration of some of the possible shapes the polygons ak‘ (shaded areas) may take depending on the location of the departure points
(filled circles). The number of vertices can be (a) 3, (b) 4, (c) 5, (d) 6 and even more depending on the flow and time-step.

1404 P.H. Lauritzen et al. / Journal of Computational Physics 229 (2010) 1401–1424
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! Adjusted point to remain
fixed at this stage.❞ Points adjusted simulta-
neously in the direction
of the characteristic.

× Points adjusted “side-
ways” to the flow.

>
Flow

❛❛✥✥ ✥✥❛❛✥✥
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! ! ! ×
❞
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! ❞
! ❞! ! ! × ❞

Fig. 6.1. The adjustment of the trace-back regions. At each adjustment stage, the points marked
with a solid dot remain fixed. In the first step, the points marked with a circle are simultaneously
adjusted to obtain volume balance of the entire layer. In the second step, the points marked with a
cross are adjusted to obtain volume balance for each element.

>

Flow ×
xi,j+1/2

xi,j+1

xi,j

< >

!

!

! !!
×

!! !

! !

! !
×

❳❳❳❳✘✘✘ ✏✏✏

❳❳❳✘✘✘✘✥✥✥

✂
✂
✂
❇

❇
❇

☞
☞
☞☞
▲

▲
▲▲

✂
✂
✂
▲

▲
▲▲

Fig. 6.2. The adjustment of the interior midpoints. The points marked with a solid dot remain
fixed, and the points marked with a cross are adjusted to obtain volume balance for each element.

converging to the correct τn. This method works well since points trace toward the
sources backward in time, and so τn < tn adjusts the region to have less volume while
τn > tn gives more volume. At the conclusion of this step, we have volume balance
for the layer, but not for each element.

The second step is to adjust the interior midpoints of the layer to obtain volume
balance of each element. We choose to adjust in the direction of maximal change
to the volume (so that points move minimally). As depicted in Figure 6.2, we ad-
just, e.g., xi,j+1/2 = (xi, yj+1/2) along the line through its unadjusted position and
perpendicular to the line adjoining vertices xi,j and xi,j+1. On an exterior no-flow
boundary where u(x) · ν(x) = 0, points should not be adjusted, since they can move
only tangentially along the boundary, and so do not change volumes.

The trace-back layers can be of several types. Around an injection well, we may
have a closed ring, in which case we may fix one of the midpoints and adjust the rest
in sequence around the ring. The volume of the entire ring is correct, so adjustment
of the last point will correct the volumes of the final two elements. We may also
have a simple layer which meets the external boundary on two ends. Even if we
are not allowed to change the end trace-back midpoints (because of no-flow boundary
conditions), again we can meet the volume constraint for each element since the entire
layer has the proper volume.

Things get more complex with multiple injection wells and/or inflow boundaries,
since these can produce multiple basins of attraction. In that case, care must be taken
when multiple trace-back adjustment layers intersect. In principle this problem can
be resolved, either through human intervention or automatically. Automatic handling

d
dt

dx
Ci (t )
∫ = u ⋅nds

∂Ci (t )
∫

Thomas, Lombardi, AIAA 17, 1979 

•  No theoretical assurance of completion.  

•  Requires nontrivial solution of the nonlinear MAE  
•  Approximate: GCL ≈ accuracy of MAE scheme  

•  Enforces GCL approximately.  

pij
corr = pij + (t − tn )∇φ; det

∂pij
corr

∂x
=1

Correct departure points according to 
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Statement of the volume correction problem  

C(Ω) co ∈ R
m   such that  c0,i

Ci

∑ = Ω   and  c0,i ≥ 0 ∀iGiven: a source mesh           and  

Find:   a volume compliant mesh            such that: C(Ω)

a)            has the same connectivity as the source mesh 
b)  The volumes of its cells match the volumes prescribed in c0

c)  Every cell                   is valid; or convex 
d)  Boundary points in           correspond to boundary points in  

Ci ∈C(Ω)
C(Ω) C(Ω)

C(Ω)

•  The volume correction problem may or may not have a solution! 
•  An important setting in which solution always exist is when 

C(Ω)The source mesh          is transformation of another mesh          such that: 

C(Ω)

∀

Ci ∈


C(Ω)   is valid, or convex and  


Ci = c0,i

In this case                       is a trivial solution of the volume correction problem C(Ω) =

C(Ω)
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We consider quads (simplices are actually easier). We need few things: 

∀Ci ∈C(Ω),      Ci =
1
2

(xi,1 − xi,3 )(yi,2 − yi,4 )+ (xi,2 − xi,4 )(yi,3 − yi,1)( )

  

Ci

Ti,r ∈Ci,      Ti,r =
1
2
xi,ar (yi,cr − yi,br )− xi,br (yi,ar − yi,cr )− xi,cr (yi,br − yi,ar )( )

Convexity indicator for a quad cell: 

Oriented volume of a quad cell: 

Ti,r ∈Ci,    Ti,r = (par , pbr , pbr ) (ar,br,cr ) =

(1, 2, 4) r =1
(2,3, 4) r = 2
(1,3, 4) r = 3
(1, 2,3) r = 4

!

"
##

$
#
#

Ci is convex, if the oriented areas of all its triangles are positive:  ∀Ti,r ∈Ci,  Ti,r > 0

Partitioning of a quad into triangles: 

Oriented volume of a triangle 
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Optimization objective: 

J0 (p, p) =
1
2
d(C(Ω), C(Ω))2 = p− p

2
2

Optimization constraints: 

Mesh distance 

①  Volume equality 

②  Cell convexity 

③  Boundary compliance 

∀Ci ∈C(Ω),      Ci = c0,i

∀Ci ∈C(Ω), ∀Ti,r ∈Ci,  Ti,r > 0

∀pj ∈∂Ω, γ (pj ) = 0

Nonlinear programming problem (NLP) 

p∗ = argmin J0 (p, p)  subject to  (1), (2),  and (3){ }
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•  Boundary compliance on polygonal Ω can be subsumed in the volume constraint   

Specialization to simplicial cells 

•  Convexity can be enforced weakly by logarithmic barrier functions 

p∗ = argmin J(p)  subject to  Ci = c0,i ∀i{ } J(p) = J0 (p)−β log Ti,r
Ti,r∈Ci

∑
Ci

∑

•  This leaves only the equality volume constraint and gives the simplified NLP: 

Consider a polygonal domain: 

A simplex is valid if and only if Ci > 0A valid simplex is always convex 

Since c0,i >0, the volume equality constraint                                       implies             ! ∀Ci ∈C(Ω),  Ci = c0,i Ci > 0

p∗ = argmin J0 (p)  subject to  Ci = c0,i ∀i{ }

56	
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Based on the inexact trust region sequential quadratic programming (SQP) method of 
Ridzal and Heinkenschloss. Key properties of the inexact SQP approach:  

•  Fast local convergence, based on its relationship to Newton’s method,  
•  Use of ‘inexact’ solvers enables an efficient solution of very large NLP.  
•  Key requirement in the method: design of an efficient preconditioner. 

Heinkenschloss, Ridzal, A Matrix-Free Trust-Region SQP Method for Equality Constrained Optimization, SIOPT 24/3, 2014 

Given an optimization iterate pk all linear systems involved are of the form 

I ∇C(pk )T

∇C(pk ) 0

"

#

$
$

%

&

'
'

v1

vv
"

#
$$

%

&
''=

b1

b2
"

#
$$

%

&
'' C(pk ) - polynomial matrix function of coordinates 

π k =
I 0

0 ∇C(pk )∇C(pk )T +εI( )
−1

#

$

%
%

&

'

(
(

•  ε>0 small parameter ~ 10-8h

•                                     formed explicitly 

•  Inverse: smoothed aggregation AMG – Trilinos 

∇C(pk )∇C(pk )T +εI

Preconditioner 

∇C(pk )If               is full rank, preconditioned GMRES converges in 3 iterations (Golub et al SISC 21/6, 2000)    
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To challenge the algorithm we test performance as follows: 

•  Start with a uniform nxn mesh and advance to final time using the deformational velocity field. 
•  Apply algorithm to the deformed mesh at final time setting c0 to initial mesh volumes.  

n SQP CG GMRES GMRES av. CPU %ML 

64 3 2 34 2.3 0.962 59 

128 3 2 42 2.8 3.551 75 

256 2 1 30 3.0 10.54 82 

512 3 1 49 3.5 87.07 88 

•  Almost constant GMRES iterations; average GMRES ~ theoretical bound of 3 (inexact ML solve!) 
•  The matrix                             , hence the appropriateness of AMG for the preconditioner 
•  CPU per SQP iteration scales linearly with problem size & confirms choice of preconditioner 
•  SQP and inner CG iteration counts to achieve machine precision are mesh independent 
•  The algorithm inherits its scalability from the AMG solver. 

∇C(⋅)∇C(⋅)T ≈ Δ

n SQP CG GMRES GMRES av. CPU %ML 

64 3 2 28 1.9 0.860 65 

128 3 2 36 2.4 3.115 81 

256 2 1 25 2.5 8.787 85 

512 3 1 43 3.1 73.775 90 

Analytic action of               but finite difference ∇C(p)∇2J(p) Analytic action of  ∇2J(p)
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Models the evolution of the computational mesh under a non-divergent velocity 

u(p, t) =
sin(π x)2 sin(2π y)cos(π t /T )
−sin(π y)2 sin(2π x)cos(π t /T )

"

#

$
$

%

&

'
'

Deformational 

R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 

Exact Source (uncorrected) Compliant (corrected) 

u(p, t) = 0.5− y
0.5− x

"

#
$$

%

&
''Rotational 

Deformational 
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- exact Lagrangian mesh 

- source (uncorrected) 

- compliant (corrected) 

Cell barycenters 

Invalid cell in the source mesh: 
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•  The shapes of the corrected cells are close to the exact Lagrangian shapes 
•  The barycenters of the corrected cells are very close to the exact barycenters 
•  The trajectories of the corrected points track the exact Lagrangian trajectories very closely 

Point trajectories 
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0.6

 

 

uncorrected
corrected
exact
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Rotational flow Deformational flow 

We observe significant improvements in the geometry of the corrected mesh: 
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Recall the cell-centered optimization-based semi-Lagrangian scheme: 

Step 2: Optimization-based remap of Lagrangian values from arrival to departure grid.   

Step 1: Trace back cell vertices to find the Lagrangian  (departure) grid  C(Ω(t))

Step 3: Update values on the Eulerian (arrival) grid C(Ω(t))

We modify it to include a volume correction step: 

Step 2:  Optimization-based remap of Lagrangian values from arrival to departure grid.   

Step 1:  Trace back cell vertices to find the Lagrangian  (departure) grid  C(Ω(t))

Step 3:  Update values on the Eulerian (arrival) grid C(Ω(t))

Step 1+: Correct the departure grid to match the cell volumes of the arrival grid 
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Plots of the density at time tN = 1.5 for Forward Euler simulations with ∆t = 0.006
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Uncorrected Corrected Comparison 

Constant in time density: rotational flow 
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Initial cylindrical density distribution: rotational flow 

Uncorrected Corrected Comparison 

Plots of the density at time tN = 1.5 for Forward Euler simulations with ∆t = 0.006
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Traditional approaches to devise stable and accurate numerical methods 
are reaching a point of diminishing returns for complex applications 
involving multiple mathematical models, requiring diverse, heterogeneous 
numerical methods. 

The use of optimization ideas to couple hetergoeneous numerical methods 
and to preserve the relevant physical properties is very promising. 

However, its success depends critically on the availability of efficient and 
scalable optimization algorithms to solve the resulting QPs and NLPs. 

We’ve presented two examples where such algorithms are available and 
optimization leads to successful heterogenous numerical methods and 
property preserving schemes. 

Development of fast, scalable optimization algorithms is likely to play the 
same role for Heterogeneous Numerical Methods as the development of 
fast, scalable linear solvers did in the past for conventional PDE methods. 


