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Abstract:

Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive
materials with desired functionality. This tailor-design approach has become the standard for many
technological applications (e.g., solar energy harvesting) including the design of organic conjugated
electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has
developed efficient LANL-based codes to model the relevant photophysical processes following
photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The
developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large
realistic molecules (hundreds of atoms in size) in the realistic solvent dielectric environment. The Collective
Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited
State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple
coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed
key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex
materials, including organic conjugated polymer materials, and have provided a detailed understanding of
photochemical products and intermediates and the internal conversion process during the initiation of
energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model non-
radiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of
electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution
of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable
requiring ~300 processors for up to one week runtime to reach a meaningful restart point.
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Efficient Algorithms for Non-adiabatic Excited State Molecular
Dynamics in Large Systems
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