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Bound-Preserving Reconstruction of Tensor
Quantities for Remap in ALE Fluid Dynamics

Matej Klima, Milan Kucharik, Mikhail Shashkov, and Jan Velechovsky

Abstract We analyze several new and existing approaches for limiting tensor quan-
tities in the context of deviatoric stress remapping in an ALE numerical simulation
of elastic flow. Remapping and limiting of the tensor component-by-component is
shown to violate radial symmetry of derived variables such as elastic energy or
force. Therefore, we have extended the symmetry-preserving Vector Image Poly-
gon algorithm, originally designed for limiting vector variables. This limiter con-
strains the vector (in our case a vector of independent tensor components) within
the convex hull formed by the vectors from surrounding cells – an equivalent of
the discrete maximum principle in scalar variables. We compare this method with
a limiter designed specifically for deviatoric stress limiting which aims to constrain
the J2 invariant that is proportional to the specific elastic energy and scale the tensor
accordingly. We also propose a method which involves remapping and limiting the
J2 invariant independently using known scalar techniques. The deviatoric stress ten-
sor is then scaled to match this remapped invariant, which guarantees conservation
in terms of elastic energy.
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1 Introduction

The reconstruction of material quantities from discrete values defined on a com-
putational mesh is a key part of high-order numerical schemes for fluid dynamics.
For demanding simulations where both high pressure gradients and shear flows oc-
cur simultaneously, such as in the field of laser-plasma interactions, the Arbitrary
Lagrangian-Eulerian (ALE) framework [3, 7] is often used. As its name suggests, it
allows for arbitrary movement of the computational mesh. We focus on the indirect
ALE formulation which utilizes pure Lagrangian steps [2] advancing the solution
and mesh in time.

If needed, mesh smoothing and subsequent quantity remapping is performed to
preserve sufficient geometric quality of the mesh. In the remapping step, the mono-
tonicity of the reconstructed fields is often ensured by slope limiters. These have
been formulated originally for scalar and later extended to vector quantities. How-
ever, reconstructing and limiting of tensor variables is still a relatively unexplored
territory with only a few specialized methods that have been proposed recently [11].
The design principles of such methods are objectivity (frame invariance) and preser-
vation of bounds and tensor invariants.

The simplest approach presented in this paper involves piecewise-linear recon-
struction of the tensor components using a known limiter scheme for scalar variables
(such as the Barth-Jespersen limiter [1]) applied component-wise. This method is
known to violate the solution symmetry for radially symmetric problems. Our alter-
native scheme is inspired by the Vector Image Polygon limiter [5], constraining the
tensor components within a convex hull constructed in the tensor component space.

Another approach was proposed specifically for stress tensor limiting [11], con-
straining its second invariant and scaling the tensor in a way that is frame invariant
and preserves local extrema and symmetry. We propose an extension of this method,
based on limiting/remapping the tensor components and the J2 invariant separately.
The remapped tensor is then scaled to match the remapped J2 value – as it is pro-
portional to the elastic energy density, which implies that the conservation of energy
will not be violated.

Properties of the particular methods are demonstrated on a selected numerical
test of static remapping of a tensor quantity with a radially symmetric distribution.

2 Governing Equations – the Lagrangian Step

We solve the time-dependent Euler equations in Lagrangian form, extended to a
general elastic-plastic continuum [13, 6]:
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ρ
dν

dt
−∇ ·u = 0, (1)

ρ
du
dt
−∇ ·σ = 0, (2)

ρ
dE
dt
−∇ · (σu) = 0, (3)

where ρ represents density, ν = 1
ρ

specific volume, σ the Cauchy stress tensor,
u velocity vector, and E = ε + 1

2 u2 specific total energy with ε being the specific
internal energy. The Cauchy stress tensor is symmetric and can be decomposed as

σ =−pI +S, (4)

where p is hydrodynamic pressure, I the identity matrix and S the deviatoric stress
tensor. For the closure of the system the Mie-Grüneisen equation of state [10] is
used.

The system is solved by a numerical scheme based on [6]. A compatible dis-
cretization [2] is used in which the movement of the computational mesh is calcu-
lated nodal force vectors while the discrete stress tensor is defined in cell centers.
The cell-to-node subzonal forces are calculated first as

Fp,c = l1 σc n1 + l2 σc n2, (5)

and then combined to yield the total nodal force,

Fp = ∑
c∈N(p)

Fp,c, (6)

where N(p) is a set containing all neighboring cells of node p. l1, l2 is equal to the
half of the respective cell edge length and n1,n2 are the unit normal vectors. See
Figure 1 for details.

3 Remapping of the Deviatoric Stress Tensor

In this Section we propose several methods for remapping the deviatoric stress ten-
sor. In two-dimensional planar geometry it has the following shape:

S =

Sxx Sxy 0
Sxy Syy 0
0 0 −(Sxx +Syy)

 . (7)

It is necessary to use the full 3×3 representation [6], where the third diagonal term
enforces the deviatoric property tr(S) = 0. The characteristic equation of the tensor
defines the three invariants:
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l1
l2p

n1

n2

Fp,c

σc

Fig. 1 Cell c to node p subzonal elastic force Fp,c construction with half-edge lengths l1, l2, nor-
mals n1,n2 and the cell-centered stress tensor σc.

λ
3 + J1λ

2 + J2λ + J3 = 0, (8)

J1 = tr(S) = 0, J2 =
1
2
(S : S) =

1
2

tr(ST S), J3 = det(S). (9)

We are interested especially in the J2 invariant, as it is proportional to the elastic
energy density:

eelast. =
1

2µ
J2, (10)

where µ is the shear modulus, a material constant.
There are several properties we would like the remapper to have. The first is

preservation of bounds – for a tensor variable this is not readily defined but we
can use one of the derived quantities. In the case of deviatoric stress, our remapper
should preserve the bounds of elastic energy [11]. The total elastic energy should
also be conserved. We propose an extra criterion of preserving the elastic force radial
symmetry. As a vector quantity, the elastic forces (6) are easier to analyze.

In the following subsections we describe several approaches to deviatoric stress
remapping.

3.1 Component-wise remap and limiting of tensor S

The simplest way of remapping the deviatoric stress tensor is to treat the individ-
ual components of the tensor as independent scalar variables. The tensor compo-
nents are remapped similarly to average pressure, where the pressure-volume work
is remapped:
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S̃cṼ c = ScV c + ∑
c′∈N (c)

(
FS

c′∩c̃−FS
c∩c̃′
)
, FS

c′∩c̃ =
∫∫

c′∩c̃

S(x)dV. (11)

The tensor reconstruction S(x) can be expressed in terms of the independent tensor
components as: Sxx

Sxy
Syy

(x) =

Sc
xx

Sc
xy

Sc
yy

+(x−xc)

ψxx∇Sxx
ψxy∇Sxy
ψyy∇Syy

 , (12)

where ∇S is the tensor gradient and its components can be obtained using the least
squares optimization [9, 4] on all neighboring cells. xc is the geometric centroid
of the computational cell and ψxx is a scalar limiting coefficient. In particular, the
Barth-Jespersen procedure [9, 1] is used here:

ψ
p
xx =


min

(
Smax

xx −Sc
xx

Sp
xx−Sc

xx
,1.0

)
if Sp

xx > Sc
xx

min
(

Smin
xx −Sc

xx
Sp

xx−Sc
xx
,1.0

)
if Sp

xx < Sc
xx

1.0 otherwise

, (13)

ψxx = min
p∈P(c)

(ψ p
xx) , Sp

xx = Sc
xx +(xp−xc)∇Sc

xx, (14)

where P(c) is the set of all vertices of the cell c, xp is the position of the vertex p
and Sp

xx is the unlimited reconstruction in the corresponding point. Smax
xx and Smin

xx are
tensor component maximum and minimum calculated on the same 9-cell stencil as
is used for the gradient computation. The same procedure is also used for the other
independent tensor components Sxy and Syy.

3.2 VIP limiter for tensors

The component-wise limiting approach is simple to implement but it also has sev-
eral disadvantages. For simplicity, let us apply this method on vectors first. Due
to the independent limiting of vector components, vectors can be unnecessarily ro-
tated, distorting the directional symmetry. In the tensor case, this can manifest as
deformation of the tensor principal directions. Component-wise limiting also does
not guarantee the validity of the discrete maximum principle for vector magnitudes.
This is more complex for tensors, but similarly the J2 invariant monotonicity is not
preserved [11].

To solve these issues, the Vector Image Polygon limiter was proposed [5] and
adapted for the vector magnitude monotonicity problem [12]. It constrains the re-
constructed vector within the convex hull formed by the values in the neighboring
cells. An example and comparison with the component-wise method is shown in
Figure 2 – an extreme case is displayed, where all values reconstructed in vertices
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lie outside the convex hull in the tensor component-space, but are considered valid
by the component-wise limiter.

Sp1

Sp4

Sp2

Sp3

Sc

SV IP

6

-

Sxx

Sxy

Fig. 2 A simplified 2D schematic of the VIP algorithm for tensors with unlimited reconstructed
values in cell nodes Sp1 . . .Sp4, cell-centered average value Sc and the closest limited value SVIP,
compared with component-wise limiting set (red).

We propose applying this method as a scalar slope limiter using (Sxx,Sxy,Syy) as
the 3D tensor component-space:

S(x) = Sc +ψV IP(x−xc)∇Sc, (15)

ψV IP = min
p∈P(c)

(
‖SV IP−Sc‖
‖Sp−Sc‖

)
, Sp = Sc +(xp−xc)∇S. (16)

The construction of the convex hull in three dimensions with few points is rel-
atively simple, but the limiter requires a robust intersection algorithm as the hull
often degenerates to a planar case which needs to be treated separately. In the non-
degenerate 3D case an iterative line-polyhedron intersection is calculated.

The main disadvantages of this algorithm are complexity and more diffusion
compared to component-wise limiting. It noticeably reduces the overall order of
accuracy below second-order.

3.3 J2 invariant scaling limiter

This limiter was formulated specifically for the deviatoric stress limiting in [11].
It is based on an assumption that the monotonicity of J2 invariant (proportional
to elastic energy) is more important than monotonicity of tensor components. The
monotonicity condition can be described as:
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Jmin
2 − Jc

2 ≤ Jp
2 − Jc

2 ≤ Jmax
2 − Jc

2 ∀p ∈P(c), (17)

where Jmin
2 and Jmax

2 are again determined on the set of neighboring cells. Single
scaling factor is then used for the reconstructed tensor:

S(x) = ψ (Sc +(x−xc)∇S) , ψ = Barth-Jespersen [J2(S)] (18)

This approach is relatively fast, simple to implement and the monotonicity of J2 is
guaranteed by design. However, as it has been developed in a different context, its
effect on elastic forces has not been investigated in literature previously.

3.4 J2 invariant-based scalar slope limiter

An alternative to previous approach is also presented in [11]. The design goals are
similar, but it uses the formalism of a slope limiter:

S(x) = Sc +(x−xc)ψ∇S, ψ = Barth-Jespersen
[√

J2(S)
]

(19)

Our test show that its behavior is almost indistinguishable from the previous case
while being slightly more resource intensive.

3.5 Independent remap of S and J2

The previously described algorithms were intended mainly to reduce symmetry dis-
tortion by using tensor-specific limiting techniques. Here we propose a different ap-
proach for deviatoric stress remapping – the J2 invariant is remapped independently
of S:

J̃c
2Ṽ c = Jc

2V c + ∑
c′∈N (c)

FJ2
c′∩c̃−FJ2

c∩c̃′ . (20)

A scalar limiter is then used in the J2 reconstruction. This is equivalent to remapping
the elastic energy density (10) which is a conservative quantity. Then, S is remapped
component-wise (11) without limiting and the resulting tensor is scaled by multi-
plying by the ratio of the remapped invariant J̃c

2 and J2(S̃) calculated from remapped
S:

˜̃S = S̃

√
J̃c

2

J2(S̃)
. (21)

This formulation guarantees conservation of total elastic energy as well as its mono-
tonicity. The component-wise remap of S primarily determines the principal direc-
tions of the tensor (not its J2 invariant) and according to our observation, low-order
(donor) remapping is sufficient here with negligible impacts on the overall accuracy.
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4 Numerical results – Cyclic remapping of a non-linear radial
distribution of the deviatoric stress tensor

We demonstrate the performance of different deviatoric stress remapping methods
on a simple static test case – a distribution of the stress tensor is initialized and
repeatedly remapped without any influence of the hydrodynamics. The artificial re-
zoning motion was inspired by the “tensor-product” cyclic rezoning [8] and is de-
fined as follows:

rn = rl +

[
r0− rl

rr− rl
(1−dn)+

(
r0− rl

rr− rl

)3

dn

]
(rr− rl), (22)

ϕn = ϕ0, dn =
1
2

sin
(

πn
nmax

)
, rl = 0.1, rr = 1.0,

where r0,ϕ0 are the initial nodal polar coordinates, n is the current remapping step
and nmax is the total number of remapping steps. This represents a cyclic movement
of nodes in the radial direction where the initial (n = 0) and final (n = nmax) grids
are identical, see Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

→ →

n = 0 n = 1
4 nmax n = nmax

Fig. 3 Polar grid sequence – different steps of the cyclic rezoning movement, 20×20 mesh.

On such grid, the deviatoric stress tensor is initialized as follows:

Si, j =



(
0 0
0 0

)
for i≤ ni

2(
−cos(2ϕi, j) −sin(2ϕi, j)

−sin(2ϕi, j) cos(2ϕi, j)

)
for i > ni

2

, (23)

where i, j are the radial and axial indices, and ni is the number of cells in the radial
direction. This distribution generates a radial discontinuity with a peak in the elastic
force (as shown in Figure 4) and piecewise constant J2 invariant distribution.
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Fig. 4 Initial elastic force distribution shown in the internal nodes of the 20× 20 mesh, force
vectors are colored according to magnitude.

A comparison of the final elastic force distribution after the cyclic remapping
is shown in Figure 5. If no limiter is used, there are visible undershoots of the
remapped quantity. However, limiting components independently does not solve the
problem and adds asymmetry. The VIP limiter performs well, but is slightly more
diffusive than the other alternatives. Our approach to tensor remap seems to shift the
position of the peak, but preserves monotonicity of forces perfectly in this test.

Figure 6 shows the radial distribution of the J2 invariant. Here, the asymme-
try generated by component-wise limiting is even stronger. The VIP limiter does
not guarantee monotonicity of the elastic energy. All other methods are based on
constraining the J2 invariant directly and therefore are successful in this task. Our
remapping method preserves symmetry, does not violate energy conservation and is
the only one which limits both J2 and elastic forces correctly in this idealized test.

Table 1 illustrates the computational efficiency of all limiting methods for the
cyclic remapping case. We can see that most high-order methods with limiting per-
form similarly, except for the VIP-based method which is much more expensive.

Table 1 Simulation times for deviatoric stress tensor cyclic remapping compared by different
remapping methods, 40× 40 mesh, nmax = 80, run single-thread on an IntelTM Core i5-4300M
processor.

Low-order High-order unlim. Comp.-wise lim. VIP J2 scaling J2 slope lim. S+ J2 remap

0.3s 1.4s 1.7s 6.6s 1.7s 1.9s 1.7s
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Fig. 5 Radial component of the total nodal elastic force produced by the deviatoric stress tensor
after cyclic remapping, compared by different remapping methods. 40×40 mesh, nmax = 80.

5 Conclusion

Several methods of reconstructing a tensor quantity are proposed in this paper, fo-
cusing on the flux-form remap of the deviatoric stress in the context of an indirect
ALE simulation. We show that using a scalar reconstruction method for each in-
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Fig. 6 Radial distribution of the J2 invariant of the deviatoric stress tensor after cyclic remapping,
compared by different remapping methods. 40×40 mesh, nmax = 80.

dependent tensor component does not guarantee the monotonicity preservation of
elastic forces and energy while distorting the symmetry of the solution severely.

We have implemented a modified Vector Image Polygon limiter for tensors,
showing the viability of this approach. It is, however, a resource-intensive and com-
plex method that produces more diffusive results. Specialised methods constraining
the second invariant of the tensor are much faster and less diffusive but also reduce
the force overshoots less.
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We propose a new method for remapping the deviatoric stress, where the ten-
sor and its second invariant are remapped independently. The tensor is then scaled
to match the remapped invariant. Without much overhead, this method preserves
monotonicity and guarantees the conservation of the elastic energy.

Future work includes testing the reconstruction methods in a full elastic-plastic
simulations and possibly developing methods that work for general tensors.
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