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Notes on the virtual element method for second-order elliptic
problems: the low-order conforming formulation

G. Manzini

December 26, 2016

Abstract

This document contains very simple introductort notes on the Virtual Element Method. Only the
low-order conforming formulation is addressed and formulas for the implementation are given.

1. Introduction

1.1. This document contains working annotations on the Virtual Element Method (VEM) for the approxi-
mate solution of diffusion problems with variable coefficients. To read this document you are assumed to
have familiarity with concepts from the numerical discretization of Partial Differential Equations (PDEs)
and, in particular, the Finite Element Method (FEM). This document is not an introduction to the FEM, for
which many textbooks (also free on the internet) are available. Eventually, this document is intended to
evolve into a tutorial introduction to the VEM (but this is really a long-term goal).

1.1.1. To ease the exposition, we will refer to the Laplace problem and consider the conforming method for
the primal form in two space dimensions.

1.2. Acronyms used in this document:

• FEM = Finite Element Method
• VEM = Virtual Element Method
• MFD = Mimetic Finite Difference method
• PFEM = Polygonal Finite Element Method
• PDE = Partial Differential Equation

1.3. The Virtual Element Method is a kind of Finite Element Methods where trial and test functions are the
solutions of a PDE problem inside each element.

1.3.1. A naive approach to implement the VEM would consists in solving each local PDE problem to
compute the trial and test functions at least approximately where needed (for example, at the quadrature
nodes of the element).

1.4. The key point in the VEM approach is that some elliptic and L2 polynomial projections of functions
and gradients of functions that belong to the finite element space are computable exactly using only their

1



degrees of freedom. So, the VEM strategy is to substitute test and trial functions in the bilinear forms and
linear functionals of the variational formulations with their polynomial projections whenever these latters
are computable. In fact, the value of such bilinear forms is exact whenever at least one of the entries is a
polynomial function of a given degree. We refer to this exactness property as the polynomial consistency or,
simply, the consistency of the method. This strategy leads to an underdetermined formulation (the global
stiffness matrix is rank deficient). In the VEM we fix this issue by adding a stabilization term to the bilinear
form. Stabilization terms are required not to upset the exactness property for polynomials and to scale
properly with respect to the mesh size and the problem coefficients.

1.4.1. The low-order setting for polygonal cells (in 2D) and polyhedral cells (in 3D) can be obtained as a
straightforward generalization of the FEM. The high-order setting deserves special care in the treatment of
variable coefficients in order not to loose the optimality of the discretization and in the 3D formulation.

1.5. The shape functions are virtual in the sense that we never compute them explicitly (not even approx-
imately) inside the elements. Note that the polynomial projection of the approximate solution is readily
available from the degrees of freedom and we can use it as the numerical solution.

1.6. The major advantage offered by the VEM is in the great flexibility in admitting unstructured polygonal
and polyhedral meshes.

1.7. The VEM can be seen as an evolution of the MFD method. Background material (and a few historical
notes) will be given in the final section of this document.

2. Meshes

2.1. Meshes with polygonal & polyhedral cells.
The VEM inherits the great flexibility of the MFD method and is suitable to approximate PDE problems

on unstructured meshes of cells with very general geometric shapes. The mesh flexibility is a major feature
of this kind of discretization, as we often need that computational meshes should be easily adaptable to:

• the geometric characteristics of the domain;
• the solution.

2.1.1. Examples of 2D meshes used in academic problems are given in Figure 1.

Figure 1: Convex and non-convex cells; highly deformed cells; local adaptive refinements (AMR, hanging
nodes).

2.1.2. Examples of 3D meshes used in academic problems are given in Figure 2.
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Figure 2: Random hexahedra; prysmatic meshes; local adaptive refinements (AMR, hanging nodes).

3. Formulations
To introduce the basic ideas of the virtual element method, we first consider the case of the Laplace

equation. Let Ω ⊂ Rd (d = 2) be a polygonal domain with boundary Γ. We use standard notation on
Sobolev (and Hilbert) spaces, norms, and semi-norms. Hereafter, H1

g (Ω) denotes the affine Sobolev space
of functions in L2(Ω) with first derivatives in L2(Ω), and boundary trace equal to g; H1

0 (Ω) is the subspace
of H1(Ω) corresponding to g = 0. Also, we assume that f ∈ L2(Ω) and g ∈ H 1

2 (Γ).

3.1. Differential formulation. Find u ∈ H1(Ω) such that:

−∆u = f in Ω,

u = g on Γ.

3.2. Variational formulation. Find u ∈ H1
g (Ω) such that:

A
(
u, v
)

:=

∫
Ω

∇u · ∇v dV =

∫
Ω

fv dV =:
(
f, v
)

∀v ∈ H1
0 (Ω).

3.3. Finite element formulation. Find uh ∈ Vh,g ⊂ H1
g (Ω) such that:

A
(
uh, vh

)
:=

∫
Ω

∇uh · ∇vh dV =

∫
Ω

fvh dV =:
(
f, vh

)
∀vh ∈ Vh,0 ⊂ H1

0 (Ω),

where Vh,g and Vh,0 are finite dimensional affine and linear functional spaces, dubbed the finite element
spaces (see Section 4 for the formal definition).

3.4. A short guide to a happy life (with VEM)
Let P be a cell of a mesh partitioning Ωh of domain Ω. The construction of the VEM follows these four

logical steps.

(i) Define the functions of the virtual element space Vh(P) as the solution of a PDE problem;

(ii) Split the virtual element space as the direct sum of a the polynomial subspace Pm(P) of the polyno-
mials of degree up to m and its complement:
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Vh(P) =
[
polynomials

]
⊕
[
non-polynomials

]
.

At this point, it is natural to introduce the polynomial projection operator Π∇m : Vh(P) → Pm(P)
and reformulate the splitting above as:

Vh(P) = Π∗m
(
Vh(P)

)
⊕
(
1−Π∗m

)(
Vh(P)

)
.

(iii) Define the virtual element approximation of the local bilinear form as the sum of two terms, respec-
tively related to the consistency and the stability of the method:∫

P

∇uh · ∇vh dV ≈
[
CONSISTENCY

]
+
[
STABILITY

]
=: Ah,P

(
uh, vh

)
.

(iv) Prove the convergence theorem:[
CONSISTENCY

]
+
[
STABILITY

]
⇒
[
CONVERGENCE

]

4. Extending the linear conforming FEM from triangles to polygonal cells

4.1. The linear conforming Galerkin FEM on triangles. For every cell P, we define the local finite
element space as:

Vh,P :=
{
vh ∈ H1(P) | vh ∈ P1(P)

}
.

Local spaces glue gracefully and yield the global finite element space:

Vh :=
{
vh ∈ H1(Ω) | vh|P ∈ Vh,P ∀P ∈ Ωh

}
⊂ H1(Ω),

which is a conforming approximation of H1(Ω).

4.1.1. We take into account the essential boundary conditions through the affine space

Vh,g :=
{
vh ∈ Vh,P | vh|Γ = g

}
for the given boundary function g ∈ H 1

2 (Γ). We take g = 0 in the definition above and consider the linear
subspace Vh,0 ⊂ Vh. The affine space Vh,g and the linear space Vh,0 are respectively used for the trial and
the test functions in the variational formulation.

4.1.2. The degrees of freedom of a virtual function vh ∈ Vh are the values at mesh vertices. Unisolvence
can be proved and conformity of the global space is obvious.

4.2. An extension of the FEM to polygonal cells. We extend the FEM to polygonal meshes by redefining
the local finite element space Vh,P on the polygonal cell P. To this end, we require that

• the degrees of freedom of each function are its vertex values; therefore, the dimension of this func-
tional space on cell P is equal to the number of vertices of the cell: dimVh,P = NVP ;
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• on triangles Vh,P must coincide with the linear Galerkin finite element space. This condition implies
that Vh,P contains the linear polynomials 1, x, y and all their linear combinations;

• the local spaces Vh,P glue gracefully to give a conformal finite element space Vh of functions globally
defined on Ω.

4.3. Shape functions on polygons. The construction of a set of shape functions defined on P and satisfying
the requirements listed above is hard if we assume that P may have a general polygonal geometric shape.
The challenge here is to define Vh,P by specifying the minimal information about its functions so that
a computable variational formulation is possible. To achieve this task, we specify the behavior of the
functions of Vh,P on ∂P, for example by assuming that their trace on each polygonal boundary is a piecewise
polynomial of an assigned degree. Then, we characterize them inside P in a very indirect way by assuming
that they solve a partial differential equation.

4.4. The local finite element space on a generic polygonal cell. We define the local finite element space
Vh,P as the span of a set of shape functions ϕi ∈ H1(P ), which are associated with the cell vertices vi. A
possible construction of these shape functions is given in the following three steps.

1. For each vertex vi consider the boundary function δi such that:

– δi(vj) = 1 if i = j, and 0 otherwise;

– δi is continuous on ∂P ;

– δi is linear on each edge.

2. Then, set ϕi|∂P = δi;

3. Finally, consider the function ϕi that is the harmonic lifting of the function δi inside P.

Eventually, we set:

Vh,P := span{ϕ1, . . . , φNP}

4.5. The harmonic lifting.
We define the shape function ϕi associated with vertex i as the harmonic function on P having δi as

trace on boundary ∂P. Formally, ϕi ∈ H1(P) is the solution of the following elliptic problem:

−∆ϕi = 0 in P,

ϕi = δi on ∂P.

4.5.1. Properties of ϕi. Note that:

• the functions {ϕi} are linearly independent (in the sense of the Gramian determinant);

• if wh ∈ Vh,P, then wh =
∑NP

i=1 wh(vi)ϕi;
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• linear polynomials belong to Vh,P, i.e., 1, x, y ∈ Vh,P;

• the trace of each ϕi on each edge of ∂P only depends on the vertex values of that edge. Consequently,
the local spaces Vh,P glue together giving a conformal finite element space Vh ⊂ H1

0 (Ω).

4.5.2. Moreover, we can easily prove that:

• if P is a triangle, we recover the P1 Galerkin elements;

• if P is a square, we recover the Q1 bilinear elements.

4.6. The low-order local virtual element space. The low-order local virtual element space (m = 1) is
given by:

V 1
h (P) =

{
vh ∈ H1(P) : ∆vh = 0,

vh|e ∈ P1(e) ∀e ∈ ∂P,

vh|∂P ∈ C0(∂P)
}

4.6.1. Extension of the conforming virtual space to the high-order case. The high-order local VE space
(m ≥ 2) reads as:

V mh (P) =
{
vh ∈ H1(P) : ∆vh ∈ Pm−2(P),

vh|e ∈ Pm(e) ∀e ∈ ∂P,

vh|∂P ∈ C0(∂P)
}

4.6.2. The local spaces glue gracefully to provide a conforming approximation of H1(Ω). A natural way to
guarantee the last property in the previous definitions, i.e., vh|∂P ∈ C0(∂P), is to consider the vertex values
in the set of the degrees of freedom.

4.7. The Harmonic Finite Element Method. Using the shape function of the previous construction,
we can define a Polygonal Finite Element Method (PFEM), which we may call the Harmonic FEM. This
method formally reads as: Find uh ∈ Vh such that

A
(
uh, vh

)
= Fh(vh) for all vh ∈ Vh,

where (as usual)

A
(
uh, vh

)
=

∫
Ω

∇uh · ∇vh dV,

and Fh(vh) is some given approximation of
∫

Ω

fv dV , which we assume computable from the given func-

tion f by using only the vertex values of vh. A possible approximation for the right-hand side is given in
the following step.
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4.7.1. Low-order approximation of the right-hand side. The low-order approximation of the forcing
term is given by:

(
f, vh

)
=
∑
P

∫
P

fvh dV ≈
∑
P

vh.P

∫
P

f dV =: Fh(vh) vh,P =
1

NP

NP∑
i=1

vh(xi)

4.7.2. In the literature, harmonic shape functions are used, for example, in computer graphics (see, for
example, [116]) and elasticity (see [47]).

4.8. Mesh assumptions. Under reasonable assumptions on the mesh and the sequence of meshes for
h → 0, the harmonic finite element discretization of an elliptic problem enjoys the usual convergence
properties. We do not enter into the details here; among these properties we just mention that

• all geometric objects must scale properly with the characteristic lenght of the mesh; for example,
|P| ' h2, |e| ' h, etc;

• each polygon must be star-shaped with respect to an internal ball of points⇒ interpolation estimates
hold (see [50, 79]); more generally, each polygon can be the union of a uniformly bounded number
of star-shaped subcells.

4.9. Computability issues. The Harmonic FEM is a very nice method that works on polygonal meshes
and has a solid mathematical foundation. This method is expected to be second order accurate when it
approximates sufficiently smooth solutions. In such a case, the approximation error is expected to scale
down proportionally to h in the energy norm and proportionally to h2 in the L2 norm. However, we need
to compute the shape functions to compute the integrals forming the stiffness matrix

A
(
ϕi, ϕj

)
=

∫
Ω

∇ϕi · ∇ϕj dV

and the term on the right-hand side

Fh(vh) =

∫
Ω

fϕi dV.

A numerical approximation of the shape functions inside P is possible for example by partitioning the cell
in simplexes and then applying a standard FEM. However, this approach is rather expensive since it requires
the solution of a Laplacian problem on element P for each one of its vertices.

5. The virtual approximation of the bilinear form A
(
ϕi, ϕj

)
The virtual element approach follows a different strategy by resorting to the so-called virtual construc-

tion of the bilinear form. Roughly speaking, we assume that the bilinear form A of the Harmonic FEM is
approximated by a virtual bilinear form Ah. Since the bilinear form A can be split into elemental contribu-
tions AP

A
(
vh, wh

)
=
∑
P

AP

(
v|P , w|P

)
=
∑
P

∫
P

∇v · ∇w dV,
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we assume that Ah is split into elemental contributions Ah,P. Each Ah,P is a local approximation of the
corresponding AP. Therefore, we have that:

Ah
(
vh, wh

)
=
∑
P

Ah,P
(
vh|P , wh|P

)
, with Ah,P ≈ AP.

5.1. Now, we give two conditions that must be satisfied by each local bilinear form: consistency and
stability. These two conditions are inherited from the MFD formulation and as for this latter they guarantee
the convergence of the method.

5.2. Consistency. Consistency is an exactness property for linear polynomials. Formally, for all q ∈ P1(P)
and for all vh ∈ Vh,P:

Ah,P
(
vh, q

)
= A

(
vh, q

)
.

5.3. Stability. There exist two positive constants α∗ and α∗ independent of P, such that

α∗AP

(
vh, vh

)
≤ Ah,P

(
vh, vh

)
≤ α∗AP

(
vh, vh

)
.

5.4. Convergence Theorem.

Theorem 1.1. Assume that for each polygonal cell P the bilinear form Ah,P satisfies the properties of
consistency and stability introduced above. Let uh ∈ Vh be such that

Ah
(
uh, vh

)
= Fh(vh) for all vh ∈ Vh.

Then,

‖u− uh‖H1(Ω) ≤ Ch‖u‖H2(Ω)

Proof. See [18].

5.5. A good starting point to build Ah,P. . . leading to a rank-deficient stiffness matrix.

5.5.1. We know the functions vh of Vh,P only on the boundary of P and we can compute the exact value of
the quantity

∇vh :=
1

|P|

∫
P

∇vh dV

using only the vertex values. In fact,

∫
P

∇vh dV =

∫
∂P

vhnP dS =

NP∑
i=1

(∫
ei

vh dS

)
nP,i =

NP∑
i=1

vh(vi) + vh(vi+1)

2
|ei|nP,i
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∇vh is a constant vector inR2.

5.5.2. Now, we are really tempted to say that

AP

(
ϕi, ϕj

)
:=

∫
P

∇ϕi · ∇ϕj dV ≈
∫
P

∇ϕi · ∇ϕj dV =: Ah,P
(
ϕi, ϕj

)
Note that if P is a triangle we obtain the stiffness matrix of the linear Galerkin FEM. However,Ah,P

(
ϕi, ϕj

)
would have rank 2 for any kind of polygons, thus leading to a rank deficient approximation for Ah on any
mesh that is not (strictly) triangular!

5.6. The local projection operator Π∇m. We define the local projection operator for each polygonal cell P

Π∇m : Vh,P −→ P1(P)

that has the two following properties:

(i) it approximates the gradients using only the vertex values:

∇
(
Π∇mvh

)
= ∇vh;

(ii) it preserves the linear polynomials:

Π∇mq = q for all q ∈ P1(P).

5.7. The bilinear form Ah,P. We start writing that

Ah,P
(
uh, vh

)
= Ah,P

(
Π∇muh, vh

)
+Ah,P

(
uh −Π∇muh, vh

)
.

With an easy computation it can be shown that

Ah,P
(
Π∇muh, vh

)
= AP

(
Π∇muh,Π

∇
mvh

)
:= A0

h,P

(
uh, vh

)
and

Ah,P
(
(I −Π∇m)uh, vh

)
= AP

(
(I −Π∇m)uh, (I −Π∇m)vh

)
−→ A1

h,P

(
uh, vh

)
.

We will set:

Ah,P = A0
h,P +A1

h,P = CONSISTENCY + STABILITY

5.8. The consistency termA0
h,P. The bilinear formA0

h,P provides a sort of “constant gradient approxima-
tion” of the stiffness matrix. In fact, A0

h,P ensures the consistency condition: Ah,P
(
vh, q

)
= AP

(
vh, q

)
for

all q ∈ P1(P); in fact,

A0
h,P

(
vh, q

)
=

∫
P

∇vh · ∇q dV = |P|∇vh · ∇q =

(∫
P

∇vh
)
· ∇q dV

=

∫
P

∇vh · ∇q dV =

∫
P

∇vh · ∇q dV = AP

(
vh, q

)
.
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5.8.1. The remaining term is zero because (I −Π∇m)q = 0 if q ∈ P1(P).

5.9. The stability term A1
h,P.

We need to correct A0
h,P in such a way that:

• consistency is not upset;
• the resulting bilinear form is stable;
• the correction is computable using only the degrees of freedom!

In the founding paper it is shown that we can substitute the (non computable) termAP

(
(I−Π∇m)uh, (I−

Π∇m)vh
)

with

A1
h,P

(
uh, vh

)
:= Sh,P

(
(I −Π∇m)uh, (I −Π∇m)vh

)
where Sh,P can be any symmetric and positive definite bilinear form that behaves (asymptotically) like
AP on the kernel of Π∇m.

Hence:

Ah,P
(
uh, vh

)
:= AP

(
Π∇muh,Π

∇
mvh

)
︸ ︷︷ ︸

CONSISTENCY

+ Sh,P
(
(I −Π∇m)uh, (I −Π∇m)vh

)
︸ ︷︷ ︸

STABILITY

6. Implementation of the local virtual bilinear form in four steps

6.1. The central idea of the VEM is that we can compute the polyomial projections of the virtual functions
and their gradients exactly using only their degrees of freedom. So, to implement the VEM we introduce
the matrix representation of such projection, i.e., the projection matrix. The projection matrix representats
the projection of the shape functions with respect to a given monomial basis (or with respect to the same
basis of shape functions).

6.2. Step 1. To compute the projection matrix we need two special matrices called B and D. Matrices B and
D are constructed from the basis of the polynomial subspace (the scaled monomials). All other matrices
are derived from straightforward calculations involving B and D. The procedure is exactly the same for the
conforming and nonconforming method, except for the definition of matrix B.

6.2.1. Matrix D. To start the implementation of the VEM, we consider the matrices B and D. The columns
of matrix D are the degrees of freedom of the scaled monomials. Since the scaled monomials are the same
for both the conforming and nonconforming case, the definition of matrix D is also the same. Matrix D is
given by:

D =



1
x1 − xP
hP

y1 − yP
hP

1
x2 − xP
hP

y2 − yP
hP

. . .

1
xn − xP
hP

yn − yP
hP


.
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6.2.2. Matrix B. The column of matrix B are the right-hand sides of the projection problem. Matrix B is
given by:

B =
1

2hP


1

n

1

n
. . .

1

n∣∣e1

∣∣nx,1 +
∣∣en∣∣nx,n ∣∣e2

∣∣nx,2 +
∣∣e1

∣∣nx,1 . . .
∣∣en∣∣nx,n +

∣∣en−1

∣∣nx,n−1∣∣e1

∣∣ny,1 +
∣∣en∣∣ny,n ∣∣e2

∣∣ny,2 +
∣∣e2

∣∣ny,1 . . .
∣∣en∣∣ny,n +

∣∣en−1

∣∣ny,n−1

 .

6.3. Step 2. Using these matrices, we compute matrix G = BD.

6.4. Step 3. Then, we solve the projection problem in algebraic form: GΠ∇m = B for matrix Π∇m, which
is the representation of the projection operator Π∇m.

6.5. Step 4. Using matrices Π∇m and Π∇,φm = DΠ∇m we build the stiffness matrix:

M = (Π∇m)T G̃Π∇m + νP(I−Π∇,φm )T (I−Π∇,φm )

where G̃ is matrix G with the first row set to zero, νP is a scaling coefficient.

7. Background material on numerical methods for PDEs using polygonal and poly-
hedral meshes

7.1. The conforming VEM for the Poisson equation in primal form as presented in the founding paper [18]
is a variational reformulation of the nodal Mimetic Finite Difference method of References [51] (low-order
case) and [29] (arbitrary order case).

7.1.1. The nonconforming VEM for the Poisson equation in primal form as presented in the founding
paper [13] is the variational reformulation of the arbitrary-order accurate nodal MFD method of Refer-
ence [104].

7.1.2. Incremental extensions are for different type of applications (including parabolic problems) and
formulations (mixed form of the Poisson problem), hp refinement, and also different variants (arbitrary
continuity, discontinuous variants). A complete and detailed review of the literature on MFD and VEM is
out of the scope of this collection of notes. However, we list below a few references that can be of interest
to a reader willing to know more.

7.1.3. Compatible discretization methods have a long story. A review can be found in the conference
paper [48]. A recent overview is also found in the first chapter of the Springer book [31] on the MFD
method for elliptic problem and the recent paper [122].

7.1.4. The state of the art on these topics is well represented in two recent special issues on numerical
methods for PDEs on unstructured meshes [42, 41].

7.1.5. Comparisons of different methods are found in the conference benchmarks on 2D and 3D diffusion
problms with anisotropic coefficients, see [86].

7.1.6. For the Mimetic Finite Difference method, we refer the interested reader to the following works:
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• extension to polyhedral cells with curved faces [55];

• general presentation of the MFD method:book [31]; review papers [97, 108]; connection of MFD
with other methods [105]; benchmarks [103, 111]; conference paper [112],

• advection-diffusion problems: connection with finite volume schemes [25]; convergence analysis [65];

• diffusion equation in primal form: the low-order formulation [51],post-processing of solution and
flux [39]; arbitrary-order of accuracy on polygonal [29, 30] and polyhedral meshes [104]; arbitrary
regularity [36, 37]; a posteriori estimators [9];

• diffusion equation in mixed form: founding paper on the low-order formulation: convergence anal-
ysis [54] and implementation [56]; with staggered coefficients [114, 107]; arbitrary order of accu-
racy [96]; monotonicity conditions and discrete maximum/minimum principles [109, 110]; eigen-
value calculation [61]; second-order flux discretization [35]; convergence analysis [27]; post-processing
of flux [64]; a posteriori analysis and grid adaptivity [34]; flows in fractured porous media [8];

• steady Stokes equations: the MFD method on polygonal meshes [26]; error analysis [28];

• differential forms and Maxwell eigenvalues [52]; magnetostatics [106];

• quasilinear elliptic problems [11], nonlinear and control problems [6, 7], obstacle elliptic prob-
lem [10],

• topology optimization [91].

7.1.7. For the Virtual Element Method, we refer the interested reader to the following works:

• first (founding) paper on the conforming VEM [18];

• diffusion problems in primal form: “hp” refinements [24]

• diffusion problems in mixed form [53, 22]

• geomechanics [2]

• L2-projections [1]

• steady Stokes equations: stream function formulation [4]; divergence free methods [33]; mixed VEM
for the pseudostressvelocity formulation [58]

• fracture network simulations [90, 46, 45, 43]

• Cahn-Hilliard equation on polygonal meshes [5];

• linear [19] and nonlinear elasticity [32]; plate bending problem [57]; finite deformations [68]; three-
dimensional elasticity [93];

• non-conforming formulation:first (founding) paper [13]; Stokes [62]; advection-reaction-equation [67]; bi-
harmonic problems [139, 3];

• eigenvalue calculation [94]; Steklov eigenvalue problem [118];
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• connection with other methods: PFEM [115, 121]; MFD and BEM-based FEM [63];

• Helmholtz equation [123];

• implementation [20, 129];

• further developments of the conforming virtual formulation [21, 23]; stabilization of the hourglass
phenomenon [66]; VEM with with arbitrary regularity [40, 36];

• advection-diffusion problems in the advection dominated regime [44];

• a posteriori analysis [38];

• topology optimization [92];

• contact problems [138].

7.2. Polygonal/Polyhedral FEM. The development of numerical methods with such kind of flexibility or
independence of the mesh has been one of the major topics of research in the field of numerical PDEs in
the last two decades and a number of schemes are currently available from the literature. These schemes
are often based on approaches that are substantially different from MFDs or VEMs.

Recently developed discretization frameworks related to general meshes include

• the finite element method using rational basis functions [133, 134, 87] and using generalized polyno-
mial interpolants on polygons [128, 126, 130];

• the finite volume methods (see the review paper [81]) and the connection with the MFD method
(see [83]);

• hybrid high-order (HHO) method [76, 78, 77];

• the discontinuous Galerkin (DG) method [79];

• hybridized discontinuous Galerkin (HDG) method [71];

• the weak Galerkin (wG) method [136].

7.2.1. Other examples (extended FEM, partition of unity, meshless, non-local decomposition, etc) can be
found in: [12, 14, 15, 16, 17, 47, 48, 75, 85, 88, 89, 95, 101, 117, 124, 125, 127, 131, 137, 74, 113, 60, 132,
59]

7.2.2. Most of these methods use trial and test functions of a rather complicate nature, that often could
be computed (and integrated) only in some approximate way. In more recent times several other methods
have been introduced in which the trial and test functions are pairs of polynomial (instead of a single non-
polynomial function) or the degrees are defined on multiple overlapping meshes: Examples are found in:
[49, 69, 71, 72, 84, 119, 120, 135, 135, 73, 80, 82, 98, 99, 100, 102, 70]

8. Next versions. The next incremental developments of this document will cover:

• the high-order VEM formulation;
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• the nonconforming formulation;
• connection with the MFD method;
• 3D extensions (enhancement of the virtual element space, etc).
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