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Summary. Validation is often defined as the process of determining the degree to 
which a model is an accurate representation of the real world from the perspective 
of its intended uses. Validation is crucial as industries and governments depend 
increasingly on predictions by computer models to justify their decisions. In this 
article, we survey the model validation literature and propose to formulate validation 
as an iterative construction process that mimics the process occurring implicitly in 
the minds of scientists. We thus offer a formal representation of the progressive 
build-up of trust in the model, and thereby replace incapacitating claims on the 
impossibility of validating a given model by an adaptive process of constructive 
approximation. This approach is better adapted to the fuzzy, coarse-grained nature 
of validation. Our procedure factors in the degree of redundancy versus novelty of 
the experiments used for validation as well as the degree to which the model predicts 
the observations. We illustrate the new methodology first with the maturation of 
Quantum Mechanics as the arguably best established physics theory and then with 
several concrete examples drawn from some of our primary scientific interests: a 
cellular automaton model for earthquakes, an anomalous diffusion model for solar 
radiation transport in the cloudy atmosphere, and a computational fluid dynamics 
code for the Richtmyer-Meshkov instability. 

1 Introduction: Our Position with Respect to Previous 
Work on Validation and Related Concepts 

1.1 Introductory Remarks and Outline 

At the heart of the scientific endeavor, model building involves a slow and arduous 
selection process, which can be roughly represented as proceeding according to the 
following steps: 

1. start from observations and/or experiments; 
2. classify them according to regularities that they may exhibit: the presence of 

patterns, of some order, also sometimes referred to as structures or symmetries, 
is begging for "explanations" and is thus the nucleation point of modeling; 

3. use inductive reasoning, intuition, analogies, and so on, to build hypotheses from 
which a model 1 is constructed; 

4. test the model obtained in step 3 with available observations, and then extract 
predictions that are tested against new observations or by developing dedicated 
experiments. 

The model is then rejected or refined by an iterative process, a loop going from step 1 
to step 4. A given model is progressively validated by the accumulated confirmations 
of its predictions by repeated experimental and/or observational tests. 

Building and using a model requires a language, i.e., a vocabulary and syntax, to 
express it. The language can be English or French for instance to obtain predicates 
specifying the properties of and/ or relation with the subject(s). It can be mathemat­
ics, which is arguably the best language to formalize the relation between quantities, 

1 By model, we understand an abstract conceptual construction based on axioms 
and logical relations developed to extract logical propositions and predictions. 
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structures, space and change. It can be a computer language to implement a set of 
relations and inst ructions logically linked in a computer code to obtain quantitative 
outputs in the form of strings of numbers. In this later version, our primary interest 
here, validation must be distinguished from verification. Whereas verification deals 
with whether the simulation code correctly solves t he model equations, validation 
carries an additional degree of t rust in the value of the model vis-a-vis experiment 
and, therefore, may convince one to use it s predictions to explore beyond known 
territories [2]. 

The validat ion of models is becoming a major issue as humans are increasingly 
faced with decisions involving complex tradeoffs in problems with large uncertainties, 
as for instance in att empts to control the growing anthropogenic burden on the 
planet within a risk-cost framework [3, 4] based on predictions of models. For policy 
decisions, national, regional, and local governments increasingly depend on computer 
models that are scrut inized by scientific agencies t o attest to their legitimacy and 
reliability. Cognizance of this trend and its scientific implications is not lost on the 
engineering [5] and physics [6] communities. 

Our purpose here is to clarify from a physics- based perspective what validation 
is and to propose a roadmap for the development of systematic approach to physics­
based validat ion with broad applications. We will focus primarily on the needs of 
computational :fluid dynamics and particle/ radiation transport codes. 

In the remainder of this section , we first review different definitions and ap­
proaches found in the literature, positioning ourselves with respect to selected topics 
or practices pertaining to validation; we t hen show how the validation problem is 
related to the mathematical statistics of hypothesis testing and discuss some prob­
lems associated with emergent behaviors in complex systems. In section 2, we list 
and describe qualitatively t he elements required in our vision of model validation 
as an iterative process where one strives t o build trust in the model going from one 
experiment to the next; however, one must also be prepared to uncover in the model 
a :flaw, which may or may not be fatal. We offer in sections 3- 4 our quantitative 
physics-based approach to model validat ion, where t he relevance of the experiment 
to the validation process is represented explicitly. (An appendix explores the model 
validation problem more formally and in a broader context. ) Section 5 demonstrates 
the general strategy for model validation using the historical development of quan­
tum physics- a remarkably clear ideal case. Section 6 uses some research interests 
of the present authors to further illustrate the validation procedure using less-than­
perfect models in geophysics, computational :fluid dynamics (CFD), and radiative 
transfer. We summarize in section 7. 

1.2 Standardized Definitions 

The following definitions are given by the American Institute of Aeronautics and 
Astronautics [7]: 

• Model: A representation of a physical system or process intended to enhance our 
ability to predict, control and eventually to understand its behavior. 

• Calibration: The process of adjust ing numerical or physical modeling parame­
ters in the computational model for the purpose of improving agreement with 
experimental data. 
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• Verification: The process of determining that a model implementation accurately 
represents the developer's conceptual description of the model and the solution 
of the model. 

• Validation: The process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of the 
model. 

Figure 1, sometimes called a Sargent diagram, shows where validation and several 
other of the above constructs and stages enter into a complete modeling project. 

VrrifiClllioo 

Fig. 1. Schematic representation of the conventional position of validation in model 
construction according to Schlesinger [8] and Sargent [9, 10]. 

In the concise phasing of Roache [2], "Verification consists in solving the equa­
tions right while validation is solving the right equations." In the context of the 
validation of astrophysical simulation codes, Calder et al. [11] add: ((Verification 
and validation are fundamental steps in developing any new technology. For simula­
tion technology, the goal of these testing steps is assessing the credibility of modeling 
and simulation." 

Verifications of complex CFD codes usually comprise a suite of standard test 
problems in the field of fluid dynamics [11]. These include Sod's test [12], the strong 
shock tube problem [13], the Sedov explosion problem [14], the interacting blast 
wave problem [15], a shock forced through a jump in mesh refinement, and so on. 

Validations of complex CFD codes is usually done by comparison with exper­
iments testing a variety of physical phenomena, including instabilities, turbulent 
mixing, shocks, etc. Validation requires that the numerical simulations recover the 
salient qualitative features of the experiments, such as the instabilities, their non­
linear development, the determination of the most unstable modes, and so on. See, 
for instance, Gnoffo et al. [16]. 

Considerable work on verification and validation of simulations has been done in 
the field of CFD, and in this literature the terms verification and validation have pre­
cise, technical meanings [7, 2, 17, 9, 10]. Verification is taken to mean demonstrating 
that a code or simulation accurately represents the conceptual model. Roache [18] 
stresses the importance of distinguishing between (i) verification of codes and (ii) 
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verificat ion of calculat ions. T he former is concerned with the correct ness of the code. 
The later deals wit h the correctness of t he physical equations used in the code. The 
programming and methods of solution can be correct (verification (i) successful) 
but they can solve erroneous equations (verification (ii) failure). Validation of a sim­
ulation means demonstrating that the simulation appropriately describes Nature. 
The scope of validation is t herefore much larger t han that of verification and in­
cludes comparison of numerical results with experimental or observational data. In 
astrophysics, where it is difficult to obtain observations suitable for comparison to 
numerical simulations, this process can present unique challenges. Roache [op. cit .] 
goes on to offer the optimistic prognosis that "the problems of Verification of Codes 
and Verification of Calculations are essentially solved for the case of structured grids, 
and for structured refin ement of unstructured grids. It would appear that one higher 
level of algorithm/ code development is required in order to claim a complete method­
ology for Verifica tion of Codes and Calculations. I expect this to happen. Within 
10 years, and likely m uch less, Verifi cation of Codes and Calculations ought to be 
settled questions. I expect that Validation questions will always be with us." We fully 
endorse this last sentence, as we will argue further on that validation is akin to the 
development of "trust " in theories of real phenomena, a never-ending quest. 

1.3 Impossibility Statements 

For these reasons, the possibility of validating numerical models of natural phe­
nomena, often endorsed either implicitly or identified as reachable goals by natural 
scientists in their daily work, has been challenged; quoting from Oreskes et al. [19]: 
"Verification and validation of numerical models of natural systems is impossible . 
This is because natural systems are never closed and because m odel results are always 
non-unique ." According to this view, the impossibility of "verifying" or "validating" 
models is not limited to computer models and codes but to all theories that rely 
necessarily on imperfectly measured data and auxiliary hypotheses. As Sterman [20] 
puts it: "Any theory is underdetermined and thus unverifiable, whether it is embodied 
in a large-scale computer model or consists of the simplest equations." Accordingly, 
many uncertainties undermine t he predictive reliability of any model of a complex 
natural system in advance of its actual use. 2 

Such "impossibility" statements are reminiscent of other "impossibility theo­
rems." Consider the mathemat ics of algorithmic complexity [25], which provides 
one approach to the study of complex systems. Following reasoning related to that 
underpinning Godel's incompleteness theorem, most complex systems have been 
proved to be computat ionally irreducible, i.e., the only way to predict their evolu­
tion is to actually let them evolve in time. Accordingly, the fu ture time evolution of 
most complex systems appears inherently unpredict able. Such sweeping statements 
turn out t o have basically no practical value. T his is because, in physics and other 
related sciences, one aims at predicting coarse-grained properties. Only by ignor­
ing most of molecular detail, for example, did researchers ever develop the laws of 
thermodynamics, fluid dynamics and chemistry. Physics works and is not hampered 

2 For further debate and commentary by Oreskes and her co-authors, see refs. 
[21 , 22, 23]; also notewort hy is the earlier paper by Konikov and Bredehoeft 
(24] for a statement about validation impossibility in the context of groundwater 
models. 
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by computational irreducibility because we only ask for approximate answers at 
some coarse-grained level [26]. By developing exact but coarse-grained procedures 
on computationally irreducible cellular automata, Israeli and Goldenfeld [27] have 
demonstrated that prediction may simply depend on finding the right level for de­
scribing the system. More generally, we argue that only coarse-grained scales are 
of interest in practice but their description requires "effective" laws which are in 
general based on finer scales. In other words, real understanding must be rooted 
in the ability to predict coarser scales from finer scales, i.e., a real understanding 
solves the universal micro-macro challenge. Similarly, we propose that validation is 
possible, to some degree, as explained further on. 

1.4 Validation and the Mathematical Statistics of Hypothesis 
Testing 

Calder et al. [11] also write: "We note that verification and validation are necessary 
but not sufficient tests for determining whether a code is working properly or a 
modeling effort is successful. These tests can only determine for certain that a code 
is not working properly." This last statement is important because it points to a 
bridge between the problem of validation and some of the most central questions of 
mathematical statistics [28], namely, hypothesis testing and statistical significance 
tests. This connection has been made previously by several others authors [29, 30, 31, 
32]. In showing the usefulness of the concepts and framework of hypothesis testing, 
we depart from Oberkampf and Trucano [33] who mistakenly state that hypothesis 
testing is a true or false issue, only. Every test of significance begins with a "null" 
hypothesis Ho, which represents a theory that has been put forward, either because 
it is believed to be true or because it is to be used, but has not been proved. 3 

For example, in a clinical trial of a new drug, the null hypothesis might be: "the 
new drug is no better, on average, than the current drug." We would write Ho: "there 
is no difference between the two drugs on average." The alternative hypothesis H1 is 
a statement of what a statistical hypothesis test is set up to establish. In the example 
of a clinical trial of a new drug, the alternative hypothesis might be that the new 
drug has a different effect, on average, to be compared to that of the current drug. 
We would write H1: the two drugs have different effects, on average. The alternative 
hypothesis might also be that the new drug is better, on average, than the current 
drug. Once the test has been carried out, the final conclusion is always given in 
terms of the null hypothesis. We either "reject H0 in favor of H1" or "do not reject 
Ho." We never conclude "reject H1 ," or even "accept H1 ." If we conclude "do not 
reject H0 ," this does not necessarily mean that the null hypothesis is true, it only 
suggests that there is not sufficient evidence against Ho in favor of H1; rejecting the 
null hypothesis then suggests that the alternative hypothesis may be true, or is at 
least better supported by the data. Thus, one can never prove that an hypothesis 
is true, only that it is wrong by comparing it with another hypothesis. One can 
also conclude that "hypothesis H1 is not necessary and another, more parsimonious, 
one H 0 should be favored ." The alternative hypothesis H1 is not rejected, strictly 
speaking, but is found unnecessary or redundant with respect to Ho . This is the 

3 We refer the reader to V.J. Easton and J.H. McColl, Statistics Glossary, 
http:/ j www.cas.lancs.ac.uk/glossary_vl.l/main.html, from which we have bor­
rowed liberally for this brief summary. 
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situation when there are two (or several) alternative hypotheses H0 and H1, which 
can be composite , nested, or non-nested. 4 

Within this framework , t he above-mentioned statement by Oreskes et al. [19] 
that verificat ion and validat ion of numerical models of natural systems is impossible 
is hardly news: the theory of statistical hypothesis testing has taught mathematical 
and applied statisticians for decades that one can never prove an hypothesis or a 
model to be true. One can only develop an increasing trust in it by subjecting it to 
more and more tests that "do not reject it." We attempt to formalize below how 
such trust can be increased to lead to an asymptotic validation. 

1.5 Code Comparison 

The above definitions are useful in recast ing the role of code comparison in verifi­
cation and validation (Code Comparison Principle or CCP). Trucano et al. [35] are 
unequivocal on this practice: "the use of code comparisons for validation is improper 
and dangerous." We propose to interpret the meaning of CCP for code verification 
activities (which has been proposed in t his lit erature) as parallel to the problem of 
hypothesis testing: Can one reject Code #1 in favor of Code # 2? In this spirit, the 
CCP is nothing but a reformulation in the present context of the fundamental prin­
ciple of hypothesis testing. Viewed in t his way, it is clear why CCP is not sufficient 
for validation since validat ion requires comparison wit h experiments and several 
other steps described below. The analogy with hypothesis testing illuminates what 
CCP actually is: CCP allows t he selection of one code among several codes (at least 
two) but does not help one to draw conclusions about the validity of a given code 
or model when considered as a unique entity independent of other codes or models. 
5 Thus, the fundamental problem of validation is more closely associated with the 
other class of problems addressed by the theory of hypothesis testing, which consists 
in the so-called "tests of significance" where one considers only a single hypothesis 
Ho, and the alternative is "all the rest," i.e., all hypotheses t hat differ from H0 . In 
that case, the conclusion of a test can be the following: "this data sample does not 
contradict the hypothesis Ho," which is not t he same as "the hypothesis H0 is true." 
In other words, an hypothesis cannot be excluded because it is found sufficient at 
some confidence level for explaining the available data. This is not to say that t he 
hypothesis is true. It is just t hat the available data is unable to reject said hypoth­
esis. Restating the same t hing in a positive way, the result of a test of significance 
is that the hypothesis H0 is "compat ible with the available data." 

It is implicit in the above discussion that, to compare codes quantitatively in a 
meaningful way, they must solve the same set of equations using different algorithms, 
and not just model the same physical system. Indeed, there is nothing wrong with 
"validating" a numerical implementat ion of a knowingly approximate approach to a 
given physical problem. For instance, a (duly verified) diffusion/P1 transport code 
can be validated against a detailed Monte Carlo or Sn code. The more detailed model 

4 The technical difficulties of hypothesis testing depend on these nested structures 
of the competing hypotheses; see, for instance, Gourieroux and Monfort [34]. 

5 We should stress that t he Sandia Report [35] by Trucano et al. presents an even 
more negative view of code comparisons because it addresses the common practice 
in the simulation community that turns to code comparisons rather than bone 
fide verification or validation, without any independent referents . 
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must in principle be validated against real-world data. In turn, it provides validation 
"data" to the coarser modeL Naturally, the coarser (say, P 1 transport) model still 
needs to establish its relevance to the real world problem of interest, preferably by 
comparison with real observations, or at least be invoked only in regimes where it 
is known a priori to be sufficiently accurate based on comparison with a finer (say, 
Monte Carlo transport) modeL 

Two noteworthy initiatives in transport model comparison for non-nuclear appli­
cations are the Intercomparison of 3D Radation Codes (I3RC) [36] (i3rc.gsfc.nasa.gov) 
and the RAdiation Model Intercomparison (RAMI) [37, 38] (rami-benchmark.jrc.it). 
The former is focused on the challenge of 3D radiative transfer in the cloudy at­
mosphere while the later is about 3D radiative transfer inside plant canopies; both 
efforts are motivated by issues in remote sensing (especially from space) and radia­
tive energy budget estimation (either in the framework of climate modeling or using 
observational diagnostics, which typically means more remote sensing). 6 Much has 
been learned by the modelers participating in these code comparison studies, and 
the models have been improved on average [39]. Although not connected so far to 
the engineering community that is at the forefront of V & V standardization and 
methodology, the I3RC and RAMI communities talk much about "testing," and 
sometimes "certification," and not so much about "verification" (which would be 
appropriate) or "validation" (which would not). 

What about multi-physics codes such as those used routinely in astrophysics, 
nuclear engineering, or climate modeling? CCP, along with the stern warnings of 
Trucano et al. [35], applies here, too. Even assuming that all the model compo­
nents are properly verified or even individually validated, the aggregated model is 
likely to be too complex to talk about clean verification through output comparison. 
Finding some level of agreement between two or more complex multi-physics models 
will naturally build confidence in the whole (community-wide) modeling enterprise. 
However, this is not to be interpreted as validation of any or all of the individual 
models. 

There are many reasons for wanting to have not just one model on hand but a 
suite of more or less elaborate ones. A typical collection can range from the mathe­
matically and physically exact but numerically intractable to the analytically solv-

6 In remote sensing science, transport theory (for photons) plays a central role 
and "validation" has a special meaning, namely, the estimation of uncertainty 
for remote sensing products based on "ground-truth," i.e., field measurements 
of the very same geophysical variables (e.g., surface temperature or reflectivity, 
vegetation productivity, soil moisture) that the satellite instrument is designed to 
quantify. These data are collected at the same location as the imagery, if possible, 
at the precision of a single pixeL This type of validation exercise will test both 
the "forward" radiation transport theory and its "inversion." Atmospheric remote 
sensing, particularly of clouds, poses a special challenge because, strictly-speaking, 
there is no counterpart of ground-truthing. One must therefore often make do 
with comparisons of ground-based and space-based remote-sensing (say, of the 
column-integrated aerosol burden) to quantify uncertainty in both operations. In­
situ measurements (temperature, humidity, cloud liquid water, etc.) from airborne 
platforms-balloon or aircraft-are always welcome but collocation is rarely close 
enough for point-to-point comparisons; statistical agreement is then all that is to 
be expected, and residuals provide the required uncertainty. 
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able, possibly even on the proverbial back-of-an-envelope. We elaborate on and il­
lustrate t his kind of hierarchical modeling effort in section A.2 of the Appendix, 
offering it as an approach where model development is basically simultaneous with 
its validation. 

1.6 Relations Between Validation, Calibration and Data 
Assimilation 

As previously stated, validation can be characterized as the act of quantifying the 
credibility of a model to represent phenomena of interest. Virtually all such models 
contain numerical parameters, the precise values of which are not known a priori and, 
therefore, must be assigned. Calibrat ion is the process of adjusting those parameters 
to optimize (in some sense) the agreement between the model results and a specific 
set of experimental data. Such dat a necessarily have uncertainties associated with 
them, e.g., due to natural variability in physical phenomena as well as to unavoidable 
imprecision of diagnostics. Likewise, there are intrinsic errors associated with the 
numerical methods used to evaluate many models, e.g., in the approximate solutions 
obtained from discretization schemes applied to partial differential equations. The 
approach of defensibly prescribing parameters for complex physical phenomena while 
incorporating the inescapable variability in these values is called "calibration under 
uncertainty," [40] a field that poses non-trivial challenges in its own right . 

However calibration is approached, it must be undertaken using a set of data­
ideally from specifically chosen calibration experiments/ observations [41 ]- that dif­
fers from the physical configurations of ultimate interest (i.e., against which the 
model will be validated). In order to ensure that validat ion remains independent of 
calibration, it is imperative t hat these data sets be disjoint. In the case of large, 
complex, and costly experiments encountered in many real-world applications, it 
can be difficult to maint ain a scient ific "demilitarized zone" between calibration 
and validation. To not do so, however, risks undermining the scientific integrity of 
the associated modeling enterprise, the potential predictive power of which may 
rapidly wither as the validation study devolves into a thinly disguised exercise in 
calibration. 

For complex systems, there are many choices to be made regarding experimental 
and numerical studies in both validation and calibrat ion. The high-level approach 
of the Phenomena Identification and Ranking Table (PIRT) [42] can be used to 
heuristically characterize the nature of one's interest in complicat ed systems. This 
approach uses expert knowledge to identify the phenomenological components in 
a system of interest , to rank their (relative) perceived importance in the overall 
system, and to gauge the (relative) degree to which these component phenomena 
are perceived to be understood. This rough-and-ready approach can be used to 
target the choice of validation experiments for the greatest scientific payoff on fixed 
experimental and simulation budgets. To help guide calibration activities, one can 
apply the quantitative techniques of sensitivity analysis t o rank the relative impact of 
input parameters on model outcome. Such considerations are particularly important 
for complex models containing many adjustable parameters, for which it may prove 
impossible to faithfully calibrate all input parameters. 

Saltelli et al. [43, 44] have championed "sensitivity analysis" methods, which 
come in two basic flavors and many variations. One class of methods uses exact or 
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numerical evaluation of partial derivatives of model output deemed important with 
respect to input parameters to seek regions of parameter space that might need 
closer examination from the standpoints of calibration and/or validation. If the 
model has time dependence, one can follow the evolution of how parameter choices 
influence the outcome. The alternate methodology uses adjoint dynamical equations 
to determine the relative importance of various parameters. The publications of 
Saltelli et al. provide numerous examples illustrating the value and practical impact 
of sensitivity analysis, as well as references to the wide scientific literature on this 
subject. The results of numerical studies guided by sensitivity analysis can be used 
both to focus experimental resources on high-impact experimental studies and to 
steer future model development efforts. 

In dynamical modeling, initial conditions can be viewed as parameters and, as 
such, they need to be determined optimally from data. If the dynamical system in 
question is evolving continuously over time and data become available along the 
trajectory of the dynamical system, the problem of finding a single initial condition 
over the entire trajectory becomes increasingly and exceedingly difficult as the time 
window of the trajectory extends. In fact, it is practically impossible for the systems 
like the atmosphere or ocean whose dynamics is highly nonlinear, high-dimensional 
model is undoubtedly imperfect, and inhomogeneous and sporadic data are subject 
to (poorly understood) errors. 

Data assimilation is an approach that attends to this problem by breaking up the 
trajectory over (fixed-length) time windows and solving the initialization problem 
sequentially over one time window at a time as data become available. A novelty 
of data assimilation is that, rather than solving the initialization problem from 
scratch, it uses the model forecast as the first guess (the prior) of the initialization 
(optimization) problem. Once the optimization is completed, the optimal solution 
(the posterior) becomes the initial condition for the next model forecast . 

This iterative Bayesian approach to data assimilation is most effective when the 
uncertainties in both the prior and the data are accurately quantified, as the system 
evolves over time and the data assimilation iterates one cycle after another. This is 
a non-trivial problem, because it requires the estimate of not only the model state 
but also the uncertainties associated with it, as well as the proper description of the 
uncertainties in data. 

Numerical weather prediction (NWP) is one of the most familiar application ar­
eas of data assimilation-one with major societal impact. The considerable progress 
in skill of the NWP in recent decades has been due to improvements in all aspects 
of data assimilation [45], i.e., modeling of the atmosphere, quality and quantity of 
data, and data assimilation methods. At the time of writing, most operational NWP 
centers use the so-called the "three-dimensional variational method" (3D-V ar) [ 46], 
which is an economical and accurate statistical interpolation scheme that does not 
include the effect of uncertainty in the forecast. Some centers have switched to the 
"four-dimensional variational method" (4D-Var) [47], which incorporates the evolu­
tion of uncertainty in linear sense by the used of the adjoint model of the highly 
nonlinear model. These variational methods always call for the minimization of a 
cost function (cf. Appendix) that measures the difference between model results and 
observations throughout some relevant region of space and time. Currently active 
research areas in data assimilation include the effective and efficient quantification 
of the time-dependent uncertainties of both the prior and posterior in the analysis . 
To this end, the ensemble Kalman filter methods have recently received considerable 
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attention motivated by future integration into operational environments [48, 49, 50]. 
As the importance of the uncertaint ies in dat a assimilation have become clear, many 
NWP centers perform ensemble prediction along with the single analysis obtained 
by the variat ional methods [51, 52, 53]. 

Clearly, considerable similarities exist between the data assimilation problem 
and the model validation problem. Can successful data assimilation be construed 
as validation of the model? In our opinion, that would be unjustified because the 
objectives are clearly different for these problems. As stated above, data assimilation 
admits the imperfection of t he model. It explicitly makes use of the knowledge from 
the previous data assimilation cycle. As the init ialization problem is solved itera­
tively over relat ively short t ime windows, deviation of the model trajectory from the 
true evolution of the dynamical system in question tend to be small and data could 
be assimilated into the model without much discrepancy. Moreover, the operational 
centers perform careful quality-control of data to eliminate any isolated "outliers" 
with respect to the model t rajectory. Thus, the data assimilation problem differs 
from the validation problem by design. Nevertheless, it is important to recognize 
that the resources offered by data assimilation can ensure that models perform well 
enough for their intended use. 

1. 7 Extension of the Meaning of Validation 

A qualitatively new class of problems arise in fields such as the geosciences that 
deal with the construction of knowledge of a unique object, planet Earth, whose full 
scope and range of processes can be replicated or controlled neither in the labora­
tory nor in a supercomputer. This has led recently to championing the relevance of 
"systemic" (meaning "system approach" ) also called "complex system" approaches 
to the geosciences. In this framework, positive and negative feedbacks (and even 
more complicated nonlinear multiplicative noise processes) entangle many different 
mechanisms, whose impact on the overall organization can be neither assessed nor 
understood in isolation. How does one validate a model using the systemic approach? 
This very interest ing and difficult question is at the core of the problem of validation. 

How does one validate a model when it is making predictions on objects that are 
not fully replicated in the laboratory, either in the range of variables, of parameters, 
or of scales? For instance, this question is crucial 

• in the scaling t he physics of material and rock rupture tested in the laboratory 
to the scale of earthquakes; 

• in the scaling the knowledge of hydrodynamical processes quantified in the labo­
ratory to the length and time scales relevant to the atmospheric/oceanic weather 
and climate, not to mention astrophysical systems; 

• in the science-based stewardship of the nuclear arsenal, where the challenge is 
to go from many component models tested at small scales in the laboratory to 
the full-scale explosion of an aging nuclear weapon . 

The same issue arises in the evaluation of elect ronic circuits . In 2003, Allen 
R. Hefner, Founder and Chairman of the NIST / IEEE Working Group on Model 
Validation, writes in its description: "The problem is that there is no systematic 
way to determine the range of applicability of the models provided within circuit 
simulator component libraries." See full-page boxed text for the complete version of 
this interesting text, as well as Ref. [54]. This example of validation of electronic 
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NIST WORKING GROUP 0~ MODEL VALIDATION 
Allen R. Hefner, Ph.D. 
Semiconductor Electronics Division 
National Jnslit&lle of Standards and Technology 
Gaithersbur}l, MD 20899, USA 

The primary objective of the working group is to establish well-defined procedures for 
the comprehensive evaluation of circuit simulator models. The working group bas been 
established because there is presently no systematic way to determine the range of 
applicability of the models provided within circuit simulator component libraries. In 
addition, the accuracy of component models varies from one circuit simulator to another 
due to the inclusion of different physical mechanisms in the generic models. The accuracy 
also varies due to the different methods used to determine the model parameters for specific 
device part numbers. 

The complex behavior of electronic devices prohibits individual users of circuit 
simulators from evaluating the proper inclusion of model physics and from determining the 
validity of approximations made to simplify simulator implementation. In addition, 
software vendors are often reluctant to provide a complete description of their model 
equations and model parameters to users. Therefore, the goal of the NIST Working Group 
on Model Validation is to establish experimental test procedures that can be used to 
comprehensively evaluate circuit simulator models independently of the model equations, 
the simulator, or the model parameter extraction techniques. 

Traditionally, most circuit simulator model evaluation has been performed by comparing 
simulations with measurements for the easily measured steady-state output characteristics 
and capacitance-voltage characteristics. However, this type of evaluation is of little use in 
determining the ability of the models to describe the more important dynamic 
characteristics. Presently, the only dynamic evaluation performed for circuit simulator 
models is for narrow ranges of conditions that tend to focus on those physical effects that 
are included in particular models and not on comprehensive evaluation of the model's 
ability to describe the dynamic behavior of the device for the full range of application 
conditions. 

The primary tasks of the working group are to determine the complete range of dynamic 
conditions that must be described for each device type, and to then develop well-defined 
test procedures to evaluate the ability of the models to describe each type of dynamic 
condition. It is envisioned that each device type will require different test procedures, and 
that the circuit parameters for the test procedures will be determined for each part number 
based upon the device manufacturer's ratings and suggested application conditions. 
Furthermore, the model validation test procedures should evolve to account for new device 
variations, modeling requirements for new applications, and to prevent the development of 
models that are designed only to best fit the standard test procedures. 

Typical model validation test procedures are expected to consist of test circuits that 
resemble application conditions, but that are simplified so that the test system is well 
characterizable and is able to isolate the important features of the device characteristics. 
Ultimately, standard characterization procedures will be established that specify the 
methods used to construct the test circuits to minimize the influence of parasitics, as well as 
the procedure for determining the circuit parameters based upon the device manufacturer's 
ratings. These standard test circuits could then be readily used to compare measured 
dynamic characteristics with those predicted by different circuit simulator component 
models. A database of the comparison results could also be maintained. 

For the working group to be successful, expertise in the following areas will be essential: 
electronic component design and manufacturing, model development, software 
development, component characterization, and circuit and system design. The success of 
this working group could result in an improved understanding of the validity and 
limitations of existing circuit simulator component models. This could lead to the 
development of improved circuit simulator models and an increased confidence in the 
ability of the CAD tools to aid in the design of electronic systems. 
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circuits is particularly interesting because it stresses the origin of the difficulties 
inherent in validation: the fact that the dynamics are nonlinear and complex with 
threshold effects and does not allow for a simple-minded analytic approach consisting 
in testing a circuit component by component. Extrapolating, this same difficulty is 
found in validating general circulation models of the Earth's climate or computer 
codes of nuclear explosions. The problem is thus fundamentally a "system" problem. 
The theory of systems, sometimes referred to as the theory of complex systems, is still 
in its infancy but has shown the existence of surprises. The biggest surprise may be 
the phenomenon of "emergence" in which qualitatively new processes or phenomena 
appear in the collective behavior of the system, while they cannot be derived or 
guessed from the behavior of each element . The phenomenon of "emergence" is 
similar to the philosophical law on the "transfer of t he quantity into the quality." 
How does one validate a model of such a system? Validation t herefore requires an 
understanding of this emergence phenomenon. 

From another angle, t he problem is that of extrapolating a body of knowledge, 
which is firmly established only in some limited ranges of variables, parameters 
and scales, beyond this clear domain into a more fuzzy zone of unknowns. This 
problem has appeared and appears again and again in different guises in practically 
all scientific fields . A particularly notable domain of application is risk assessment; 
see, for instance, Kaplan and Garrick's classic paper on risks [55], and the instructive 
history of quant itative risk analysis in US regulatory practice [56], especially in the 
US nuclear power industry [57, 58, 59, 60]. An acute quest ion in risk assessment deals 
with the question of quantifying the potential for a catastrophic event (earthquake, 
tornado, hurricane, flood, huge solar mass ejection, large meteorite, industrial plant 
explosion, ecological disaster, financial crash, economic collapse, etc.) of amplitude 
never yet sampled from the knowledge of past history and present understanding. 

To tackle this enduring question, each discipline has developed its own strategies, 
often being unaware of t he approaches of others. Here, we attempt a formulation 
of the problem, and outline some general directions of attack, that hopefully will 
transcend the specificities of each discipline. Our goal is to formulate the validation 
problem in a way that may encourage productive crossings of disciplinary lines 
between different fields by recognizing the commonalities of the blocking points, 
and suggest useful guidelines. 

2 Validation as a Constructive Iterative Process 

In a generic exercise in model validation, one performs an experiment and, in parallel, 
runs the calculations with the available model. A comparison between the measure­
ments of the experiment and the outputs of the model calculations is then performed. 
This comparison uses some metrics controlled by experimental feasibility, i.e., what 
can actually be measured. One then iterates by refining the model until (admittedly 
subjective) satisfactory agreement is obtained. Then, another set of experiments is 
performed, which is compared with the corresponding predictions of the model. If 
the agreement is still satisfactory without modifying the model, this is considered 
progress in the validation of the model. Iterating with experiments testing different 
features of the model corresponds to mimicking the process of construction of a 
theory in physics [61]. As the model is exposed to increasing .scrutiny and testing, 
the testers develop a better understanding of the reliability (and limitations) of the 
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model in predicting the outcome of new experimental and/or observational set-ups. 
This implies that ((validation activity should be organized like a project, with goals 
and requirements, a plan, resources, a schedule, and a documented record" [6). 

Extending previous work [29, 30, 31, 32), we thus propose to formulate the 
validation problem of a given model as an iterative construction that embodies the 
often implicit process occurring in the minds of scientists: 

1. One starts with an a priori trust quantified by the value Vprior in the potential 
value of the model. This quantity captures the accumulated evidence thus far. 
If the model is new or the validation process is just starting, take Vprior = 1. 
As we will soon see, the absolute value of Vprior is unimportant but its relative 
change is important. 

2. An experiment is performed, the model is set-up to calculate what should be 
the outcome of the experiment, and the comparison between these predictions 
and the actual measurements is made either in model space or in observation 
space. The comparison requires a choice of metrics. 

3. Ideally, the quality of the comparison between predictions and observations is 
formulated as a statistical test of significance in which an hypothesis (the model) 
is tested against the alternative, which is "all the rest." Then, the formulation of 
the comparison will be either "the model is rejected" (it is not compatible with 
the data) or "the model is compatible with the data." In order to implement this 
statistical test, one needs to attribute a likelihood p(MIYobs) or, more generally, 
a metric-based "grade" that quantifies the quality of the comparison between 
the predictions of the model M and observations Yobs· This grade is compared 
with the reference likelihood q of "all the rest." Examples of implementations 
include the sign test and the tolerance interval methods. 7 In many cases, one 
does not have the luxury of a likelihood; one has then to resort to more empirical 
assessments of how well the model explains crucial observations. In the most 
complex cases, the outcome can be binary (accepted or rejected) . 

4. The posterior value of the model is obtained according to a formula of the type 

Vposterior/Vprior = F [p(MIYobs), q; Cnovei] · (1) 

In this expression, Vposterior is the posterior potential, or coefficient, of trust in 
the value of the model after the comparison between the prediction of the model 
and the new observations have been performed. By the action ofF[···), Vposterior 

can be either larger or smaller than Vprior: in the former case, the experimental 
test has increased our trust in the validity of the model; in the later case, the 
experimental test has signaled problems with the model. One could call Vprior 

and Vposterior the evolving "potential value of our t rust" in the model or, loosely 

7 Pal and Makai [62) have used the mathematical statistics of hypothesis testing 
as a way to validate the correctness of code simulating the operation of a com­
plex system with respect to a level of confidence for safety problems. The main 
conclusion is that the testing of the input variables separately may lead to incor­
rect safety related decisions with unforeseen consequences. They have used two 
statistical methods: the sign test and the tolerance interval methods for testing 
more than one mutually dependent output variables. We propose to use these and 
similar tests delivering a probability level p which can then be compared with a 
pre-defined likelihood level q. 



A General St rategy for Physics-Based Model Validation 15 

paraphrasing the theory of decision making in economics, the "utility" of the 
model [63] . 

The transformation from the potential value Vprior of the model before the experi­
mental test to Vposterior after the test is embodied into the multiplier F, which can 
be either larger than 1 (towards validation) or smaller than 1 (towards invalida­
tion). We postulate that F depends on the grade p (M IYobs ), to be interpreted as 
proportional t o the probability of the model M given the data Yobs· It is natural 
to compare this probability with the reference likelihood q that one or more of all 
other conceivable models is compatible with the same data . 

Our multiplier F depends also on a parameter Cnovei that quantifies t he impor­
tance of the test. In other words, Cnovel is a measure of the impact of the experiment 
or of the observation, that is, how well the new observation explores novel "dimen­
sions" of the parameter and variable spaces of both the process and the model that 
can reveal potential flaws. A fundamental challenge is that the determination of 
Cnovel requires, in some sense, a pre-existing understanding of the physical processes 
so that the value of a new experiment can be fully appreciated. In concrete situa­
tions, one has only a limited understanding of t he physical processes and the value 
of a new observation is only assessed after a long learning phase, after comparison 
with other observations and experiments, as well as after comparison with the model, 
making Cnovel possibly self-referencing. Thus, we consider Cnovel as a judgment-based 
weighting of experimental referents, in which judgment (for example, by a sub­
ject matter expert) is dominant in its determinat ion. T he fundamental problem is 
to quantify the relevance of a new experimental referent for validation to a given 
decision-making problem, given that the experimental domain of the test does not 
overlap with the application domain of the decision. Assignment of Cnovei requires 
the judgment of subject matter experts, whose opinions will likely vary. This vari­
ability must be acknowledged (if not accounted for, however naively) in assigning 
Cnovel· Thus, providing an a priori value for Cnovei , as required in expression (1), 
remains a difficult and key step in the validation process. This difficulty is similar 
to specifying the utility function in decision making [63] . 

Repeating an experiment twice is a special degenerat e case since it amounts ide­
ally to increasing the size of the statistical sample. In such a situation, one should 
aggregate the two experiments 1 and 2 (yielding the relative likelihoods P1 / q and 
P2/q respectively) graded with the same Cnovei into an effective single test with the 
same Cnovei and likelihood (pt/q)(P2 / q). This is the ideal situation, as there are cases 
where repeating an experiment may wildly increase t he evidence of systemic uncer­
tainty or demonst rate uncontrolled variability or other kinds of problems. When 
this occurs, this means that the assumption that there is no surprise, no novelty, in 
repeating the experiment is incorrect . Then, the two experiments should be treated 
so as to contribute two multipliers F's, because they reveal different kinds of uncer­
tainty that can be generated by ensembles of experiments. 

One experimental test corresponds to a entire loop 1 - 4 transforming a given 
Vprior to a Vp osterior according to ( 1). This Vposter io r becomes the new Vprior for the 
next test, which will t ransform it into another Vposterior and so on, according to the 
following iterat ion process: 

V ( l) y ( l) _ y(2) y (2) _ y(3) y (n) (2) 
prior -+ p osterior - prior -+ posterior - prior -+ · · · -+ posterior · 
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After n validation loops, we have a posterior trust in the model given by 8 

y (n) 
posterior = F [ (1)(M I (1)) ( 1). (1) ] ... F [ (n)(M I (n )) (n). (n) ] 

( 1) P Yobs 'q 'cnovel P Yobs 'q 'cnovel ' 
vprior 

(3) 

where the product is time-ordered since the sequence of values for c~Jvel depend 
on preceding tests. Validation can be said to be asymptotically satisfied when the 
number of steps n and the final value V~~jterior are sufficiently high. How high is high 
enough is subjective and may depend on both the application and programmatic 
constraints. The concrete examples discussed below offer some insight on this issue. 
This construction makes clear that there is no absolute validation, only a process of 
corroborating or disproving steps competing in a global valuation of the model under 
scrutiny. The product (3) expresses the assumption that successive observations 
give independent multipliers . This assumption keeps the procedure simple because 
determining the dependence between different tests with respect to validation would 
be highly undetermined. We propose that it is more convenient to measure the 
dependence through the single parameter c~Jve l quantifying the novelty of the jth 
test with respect to those preceding it. In full generality, each new F multiplier 
should be a function of all previous tests. 

The loop 1 - 4 together with expression (1) are offered as an attempt to quantify 
the progression of the validation process. Eventually, when one has performed several 
approximately independent tests exploring different features of the model and of 
the validation process, Vposterior has grown to a level at which most experts will be 
satisfied and will believe in the validity of (i.e., be inclined to trust) the model. This 
formulation has the advantage of viewing the validation process as a convergence 
or divergence built on a succession of steps, mimicking the construction of a theory 
of reality. 9 Expression (3) embodies the progressive build-up of trust in a model 
or theory. This formulation provides a formal setting for discussing the difficulties 
that underlay the so-called impossibilities [19, 21] in validating a given model. Here, 
these difficulties are not only partitioned but quantified: 

• in the definition of "new" non-redundant experiments (parameter Cnove!) , 

8 This sequence is reminiscent of a branching process: most of the time, after the 
first or second validation loop, the model will be rejected if V~~jterior becomes 

much smaller t han v~;i~r· The occurrence of a long series of validation t ests 
is specific to those rare models/codes that happen to survive. We conjecture 
that the nature of models and their tests make the probability of survival up to 
level n a power law decaying as a function of validation generation number n: 

Pr [ v~~;terior ~ v~:i~r] ,..._ 1/nr' for large n. The exponent T = 3/2 in mean-field 

branching processes [64]; being an ensemble average over random test outcomes, 
we expect this to be only an upper bound for actual validation processes. The four 
illustrative examples provided further on, augmented with a fifth one described in 
Ref. [1], yield r ~ 0.85 for 3 ~ n ~ 7 with just one outlier. Although the sample 
of models is tiny, this illustrates our point. 

9 It is conceivable that a new and radically different observation/experiment may 
arise and challenge the built-up trust in a model; such a scenario exemplifies how 
any notion of validation "convergence" is inherently local. 
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• in choosing the metrics and the corresponding statistical tests quantifying the 
comparison between t he model and the measurements of this experiment (leading 
to the likelihood ratio p / q), and 

• in iterating the procedure so t hat the product of the gain/loss factors F[· · · ] 
obtained after each test eventually leads to a clear-cut conclusion after several 
tests. 

This formulation makes clear why and how one is never fully convinced that vali­
dation has been obtained: it is a matter of degree, of confidence level, of decision 
making, as in stat istical testing. But this formulation helps in quantifying what new 
confidence (or distrust) is gained in a given model. It emphasizes that validation is 
an ongoing process, similar to t he never-ending construction of a theory of reality. 

The general formulation proposed here in terms of iterated validation loops is 
intimately linked with decision theory based on limited knowledge: the decision to 
"go ahead" and use the model is fundamentally a decision problem based on the 
accumulated confidence embodied in Vposterior· The "goj no-go" decision must take 
into account conflicting requirements and compromise between different objectives. 
Decision theory was created by the statistician Abraham Wald in the late forties [65], 
but is based ultimately on game theory [63, 66]. Wald used the term loss function, 
which is the standard t erminology used in mathematical statistics. In mathemati­
cal economics, the opposite of the loss (or cost) funct ion gives the concept of the 
utility function , which quantifies (in a specific functional form) what is considered 
important and robust in t he fit of the model t o the data. We use Vposterior in an 
even more general sense t han "utility," as a decision and information-based valua­
tion that supports risk-informed decision-making based on "satisficing" 10 (see the 
concrete examples discussed below). 

It may be tempting to interpret the above formulation of the validation problem 
in terms of Bayes' theorem 

. (M ID ) _ Pprior(M ) X Pr(DataiM) 
Ppostwor ata - Pr(Data) (4) 

where Pr(DataiM ) is the likelihood of the data given the model M, and Pr(Data) is 
the unconditional likelihood of the dat a. However, we can not make immediate sense 
of Pr(Data). Only when a second model M' is introduced can we actually calculate 

Pr(Data) = Pprior(M ) Pr(DataiM ) + Pprior(M') Pr(DataiM') . (5) 

In other words , Bayes' formulation requires t hat we set a model/hypothesis in oppo­
sition to another or ot her ones, while we examine here the case of a single hypothesis 
in isolation. 

We therefore stress that one should resist the urge to equate our Vprior and 
Vposterior with Pprior and Pposterior because they are not probabilities. It is not possible 
to assign a probability to an experiment in an absolute way and thus Bayes' theorem 
is mute on the validation problem as we have chosen to formulate it. Rather, we 
propose that the problem of validation is fundamentally a problem of decision theory: 

10 In economics, satisficing is a behavior t hat attempts to achieve at least some 
minimum level of a particular variable, but that does not strive to achieve its 
maximum possible value. The verb "to satisfice" was coined by Herbert A. Simon 
in his theory of bounded rationality [67, 68]. 
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at what stage is one willing to bet that the code will work for its intended use? At 
what stage, are you ready to risk your reputation, your job, the lives of others, your 
own life on the fact that the model/ code will predict correctly the crucial aspect of 
the real-life test? One must therefore incorporate ingredients of decision theory, and 
not only fully objective probabilities. Coming from a Bayesian perspective, Pprior 
and Pposterior could then be called the potential value or trust in the model/code or, 
as we prefer, to move closer to the application of decision theory in economics, the 
utility of the model/code [63]. 

To summarize the discussion so far, expression ( 1) may be reminiscent of a 
Bayesian analysis, however, it does not manipulate probabilities. (Instead, they ap­
pear as independent variables, viz., p(M IYobs) and q.) In the Bayesian methodology 
of validation [69, 70], only comparison between models can be performed due to the 
need to remove the unknown probability of the data in Bayes' formula. In contrast, 
our approach provides a value for each single model independently of the others. 
In addition, it emphasizes the importance of quantifying the novelty of each test 
and takes a more general view on how to use the information provided from the 
goodness-of-fit. The valuation (1) of a model uses probabilities as partial inputs, not 
as the qualifying criteria for model validation. This does not mean, however, that 
there are not uncertainties in these quantities or in the terms F, q or Cnovei and that 
aleatory and epistemic uncertainties 11 are ignored, as discussed below. 

3 Desirable Properties of the Multiplier of the 
Validation Step 

The multiplier F [p(M IYobs ) , q; Cnove!] should have the following properties: 

1. If the statistical test(s) performed on the given observations is (are) passed at 
the reference level q, then the posterior potential value is larger than the prior 
potential value: F > 1 (resp. F ::; 1) for p > q (resp. p ::; q) , which can be 
written succinctly as lnF/ ln(p jq) > 0. 

2. The larger the statistical significance of the passed test , the larger the posterior 
value. Hence aF 

ap > o, 

for a given q. There could be a saturation of the growth ofF for large p f q, 
which can be either that F < oo as pfq ---t oo or of the form of a concavity 
requirement 

a2 F 
8p2 < 0 

for large p f q: obtaining a quality of fit beyond a certain level should not be 
attempted. 

11 For an in-depth discussion on aleatory versus systemic ( a.k.a. epistemic) uncer­
tainties, see for example Review of Recommendations for Probabilistic Seismic 
Hazard Analysis : Guidance on Uncertainty and Use of Experts [71 ], available at 
http: / / www.nap.edu / catalog/ 5487.html. 
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3. The larger the statistical level at which the test(s) performed on the given 
observat ions is (are) passed, the larger the impact of a "novel" experiment on 
the mult iplier enhancing the prior into the posterior potential value of the model: 
8FI8cnovel > 0 (resp. ::; 0), for p > q (resp . p::; q). 

A very simple multiplier that obeys this these properties (not including the 
saturation of t he growth of F ) is given by 

(
p) Cnovel 

F [p(MIYobs ), q; Cnove!] = q ' (6) 

and is illustrated in the upper panel of Fig. 2 as a function of plq and Cnovel· This 
form provides an intuitive int erpretation of the meaning of the experiment impact 
parameter Cnovel· A non-committal evaluation of the novelty of a test would be 
Cnovel = 1, thus F = pl q and the chain (3) reduces to a product of normalized 
likelihoods, as in standard statistical tests. A value Cnovel > 1 (resp. < 1) for a 
given experiment describes a nonlinearly rapid (resp. slow) updating of our trust 
V as a function of the grade pl q of the model with respect to the observations. In 
particular, a large value of Cnovel corresponds to the case of "critical" tests. 1 2 Note 
that the parameterization of Cnovel in (6) should account for the decreased novelty 
noted above occurring when t he same experiment is repeated two or more times. 
The value of Cnovel should be reduced for each repetition of the same test; moreover, 
the value of Cnovel should approach unity as the number of repetitions increases. 

An alternat ive multiplier, 

( ) 

4 

q Cnovel 

[

tanh E. + - 1 
] 

(7) 

is plotted in the lower panel of Fig. 2 as a function of pI q and Cnovel· It emphasizes 
that F saturates as a funct ion of p I q and Cnovel as either one or both of them grow 
large. A completely new experiment corresponds t o Cnovel ~ oo so that 1l cnovel = 0 
and thus F tends to [tanh(pl q)l tanh (1)] 4

, i.e. , Vposterior/Vprior is only determined by 
the quality of the "fit" of the data by the model quantified by plq. A finite Cnovel thus 
implies that one already takes a restrained view on the usefulness of the experiment 
since one limits the amplitude of the gain = VposterioriVprior , whatever the quality of 
the fit of the data by t he model. The exponent 4 in (7) has been chosen so that the 
maximum confidence gain F is equal to tanh(1 ) - 4 

:::::::: 3 in the best possible situation 
of a completely new experiment (cnovel = oo) and perfect fit (pl q ~ oo). In contrast, 
the multiplier F can be arbit rarily small as pl q ~ 0 even if the novelty of the test is 
high ( Cnovel ~ oo) . For a finite novelty Cnovel, a test that fails the model miserably 
(plq :::::::: 0) does not necessarily reject the model completely: unlike the expression in 
(6), F remains greater than zero. Indeed , if the novelty Cnovel is small, the worst­
case multiplier (attained for pl q = 0) is [tanh (llcnovei) I tanh (1 + 1lcnove!)]4 ~ 
1 - 6.9 e- 2

/ cnovel, which is only slightly less than unity if Cnovel ~ 1. In short, 

12 A momentous example is the Michelson-Morley experiment for the Theory of 
Special Relativity. For the Theory of General Relat ivity, it was the observation 
during the famous 1919 solar eclipse of the bending of light rays from distant 
stars by the Sun's mass and t he elegant explanat ion of the anomalous precession 
of the perihelion of Mercury's orbit. 
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Fig. 2. The multipliers defined by (6) and (7) are plotted as functions of pfq and 
Cnovel in the upper and lower panels respectively. Note the vertical log scale used for 
the multiplier (6) in the top panel. 
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this formulation does not heavily weight unimportant tests, as seems intuitively 
appropriate. 

In the framework of decision theory, expression (1) with one of the specific ex­
pressions in (6) or (7) provides a parametric form for the utility or decision "func­
tion" of the decision maker. It is clear that many other forms of the utility function 
can be used, however, with the constraint of keeping the salient features of expres­
sion (1) with (6) or (7), in terms of the impact of a new test given past tests, and 
the quality of the comparison between the model predict ions and the data. This 
indetermination is helpful since it mirrors the inherent variability of the validation 
landscape. For instance, what comprises adequate validation for phenomena at one 
(e.g., macro- )scale may prove inadequate for related phenomena at another (e.g., 
micro-)scale. 

Finally, we remark that the proposed form for the multiplier (7) contains an 
important asymmetry between gains and losses: the failure to a single test with 
strong novelty and significance 13 cannot be compensated by the success of all t he 
other tests combined. In other words, a single test is enough to reject a model. 
This encapsulates the common lore that reputation gain is a slow process requiring 
constancy and tenacity, while its loss can occur suddenly with one single failure and 
is difficult to re-establish. We believe that the same applies to the build-up of trust 
in and, thus, validat ion of a model. 

4 Practical Guidelines for Determining p / q and Cnovei 

These two crucial elements of a validation step are conditioned by four basic prob­
lems, over which one can exert at least partial control. In particular, they address t he 
two sources of uncertainty: "reducible" or epistemic (i.e., due to lack of knowledge) 
and "irreducible" or aleatory (i.e., due to variability inherent in the phenomenon 
under consideration). In a nutshell, as becomes clearer below, the comparison be­
tween p and q is more concerned with the aleatory uncertainty while Cnovei deals 
in part with the epistemic uncert ainty. In the following, as in the two examples (6) 
and (7), we consider that p and q enter only in the form of their ratio pfq. This 
should not be generally t he case but, given the many uncertainties, this restriction 
simplifies the analysis by removing one degree of freedom. 

1. How to model? This addresses model construction and involves the structure of 
the elementary contributions, their hierarchical organization, and requires deal­
ing with uncertainties and fuzziness. This concerns the epistemic uncertainty. 

2. What to measure? This relates to the nature of Cnovei: ideally, one should target 
adaptively the observations to "sensitive" parts of the system and the model (as, 
e.g., Palmer et al. [72] did for atmospheric dynamics). Targeting observations 
could be directed by the desire to access the most "relevant" information as 
well as to get information t hat is the most reliable, i.e., which is contaminated 
by the smallest errors. This is also the stance of Oberkampf and Trucano [33]: 

13 See, e.g. , the impact of localized seismicity on faults in the case of the Olami­
Feder-Christensen model discussed below, or that of the "leverage" effect in quan­
titative finance for t he Multifractal Random Walk model described and evaluated 
in Ref. [1]. 
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"A validation experiment is conducted for the primary purpose of determining 
the validity, or predictive accuracy, of a computational modeling and simulation 
capability. In other words, a validation experiment is designed, executed, and an­
alyzed for the purpose of quantitatively determining the ability of a mathematical 
model and its embodiment in a computer code to simulate a well-characterized 
physical process." In practice, we view Cnovel as an estimate of the importance 
of the new observation and the degree of "surprise" it brings to the validation 
step. Being the cornerstone of our formal approach to validation, we eventually 
want to see its determination grounded in sensitivity and/or PIRT analysis (cf. 
section 1.6) . The epistemic uncertainty alluded to above is partially addressed 
in the choice of the empirical data and its rating with Cnovel (see the examples 
of application discussed below). 

3. How to measure? For given measurements or experiments, the problem is to find 
the "optimal" metric or cost function (involved in the quality-of-fit measure p) 
for the intended use of the model. The notion of optimality needs to be defined. 
It could capture a compromise between fitting best the important features of the 
data (what is "important" may be decided on the basis of previous studies and 
understanding or other processes, or programmatic concerns), and minimizing 
the extraction of spurious information from noise. This requires one to have a 
precise idea of the statistical properties of the noise. If such knowledge is not 
available, the cost function should be chosen accordingly. The choice of the cost 
function involves the choice of how to look at the data. For instance, one may 
want to expand the measurements at multiple scales using wavelet decomposi­
tions and compare the prediction and observations scale by scale, or in terms of 
multifractal spectra of the physical fields estimated from these wavelet decompo­
sitions [73] or from other methods. The general idea here is that, given complex 
observation fields, it is appropriate to unfold the data on a variety of "metrics," 
which can then be used in the comparison between observations and model pre­
dictions. The question is then: How well is the model able to reproduce the 
salient multi-scale and multifractal properties derived from the observations? 
The physics of turbulent fields and of complex systems have offered many such 
new tools with which to unfold complex fields according to different statistics. 
Each of these statistics offers a metric to compare observations with model pre­
dictions and is associated with a cost function focusing on a particular feature 
of the process. Since these metrics are derived from the understanding that tur­
bulent fields can be analyzed using these metrics that reveal strong constraints 
in their organization, these metrics can justifiably be called "physics-based." In 
practice, p, and eventually pjq, has to be inferred as an estimate of the degree 
of matching between the model output and the observation. This can be done 
following the concept of fuzzy logic in which one replaces the yes/no pass test 
by a more gradual quantification of matching [74, 75]. We thus concur with 
Oberkampf and Barone [76], while our general methodology goes beyond. Note 
that this discussion relates primarily to the aleatory uncertainty. 

4. How to interpret the results? This question relates to defining the test and 
the reference probability level q that any other model (than the one under 
scrutiny) can explain the data. The interpretation of the results should aim at 
detecting the "dimensions" that are missing, misrepresented or erroneous in the 
model (systemic/epistemic uncertainty). What tests can be used to betray the 
existence of hidden degrees of freedom and/ or dimensions? This is the hardest 
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problem. It can sometimes possess an elegant solut ion when a given model is 
embedded in a more general one. Then, the limitat ion of the more restricted 
model becomes clear from the vantage of the more general model. 

We refer to the Appendix for further thoughts on these four basic steps in model 
construction and validation in a broader context than our present formulation. 

We now illustrate our algorithmic approach to model validation using the histor­
ical development of quantum mechanics and three examples based on the authors' 
research activities. In these crude but revealing examples, we will use the form (7) 
and consider three finite values: Cnovel = 1 (marginally useful new test), Cnovel = 10 
(substantially new test), and Cnovei = 100 (important new test). When a likelihood 
test is not available, we propose to use three possible marks: p j q = 0. 1 (poor fit), 
pjq = 1 (marginally good fi t) , and p j q = 10 (good fit). Extreme values (cnovei or 
pjq are 0 or oo) have already been discussed. Due to limited experience with this 
approach, we propose these ad hoc values in the following examples of its application. 

5 Illustration with the Development of Quantum 
Mechanics 

Quantum mechanics (QM) offer a vivid incarnat ion of how a model can turn pro­
gressively into a t heory held "true" by almost all physicists. Since its birt h, QM has 
been tested again and again because it presents a view of "reality" that is shockingly 
different from the classical view experienced at the macroscopic scale. QM prescrip­
tions and predictions often go against (classically-trained) intuition. Nevertheless, 
we can state that, by a long and thorough process of confirmed predictions of QM in 
experiments, fueled by the imaginative set-up of paradoxes, QM has been validated 
as a correct description of nature. It is fair to say that the overwhelming majority of 
physicists have developed a strong trust in the validity of QM. That is, if someone 
comes up with a new test based on a new paradox, most physicists would bet that 
QM will come up with the right answer with a very high probability. It is thus by 
the on-going testing and the compatibility of the prediction of QM with the obser­
vations that QM has been validated. As a consequence, one can use it with strong 
confidence to make predictions in novel direct ions. This is ideally the situation one 
would like to attain for the problem of validation of all models, those discussed in 
the following section in particular. We now give a very partial list of selected tests 
that established the trust of physicists in QM. 

1. Pauli's exclusion principle states that no two identical fermions (particles with 
non-integer values of spin) may occupy the same quantum state simultaneously 
[77]. It is one of the most important principles in quantum physics, primarily 
because the three types of particle from which ordinary matter is made, elec­
trons, protons, and neutrons, are all subject to it. With Cn ovei = 100 and perfect 
agreement in numerous experiments (pjq = oo), this leads to p(l ) = 2.9. 

2. The EPR paradox [78] was a thought experiment designed to prove that quan­
tum mechanics was hopelessly flawed: according to QM, a measurement per­
formed on one part of a quantum system can have an instantaneous effect on the 
result of a measurement performed on another part, regardless of the distance 
separating the two parts. Bell's theorem [79] showed that quantum mechanics 
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predicted stronger statistical correlations between entangled particles than the 
so-called local realistic theory with hidden variables. The importance of this 
prediction requires Cnovei = 100 at a minimum. The QM prediction turned out 
to be correct, winning over the hidden-variables theories [80, 81] (pfq = oo), 
leading again to F (2

) = 2.9. 
3. The Aharonov-Bohm effect predicts that a magnetic field can influence an elec­

tron that, strictly speaking, is located completely beyond the field's range, 
again an impossibility according to non-quantum theories (cnovei = 100). The 
Aharonov-Bohm oscillations were observed in ordinary (i.e., not superconduct­
ing) metallic rings, showing that electrons can maintain quantum mechanical 
phase coherence in ordinary materials [82, 83]. This yields pfq = oo and thus 
F(3 ) = 2.9 yet again. 

4. The Josephson effect provides a macroscopic incarnation of quantum effects 
in which two superconductors are predicted to preserve their long-range order 
across an insulating barrier, for instance, leading to rapid alternating currents 
when a steady voltage is applied across the superconductors. The novelty of this 
effect again warrants Cnovei = 100 and the numerous verifications and applica­
tions (for instance in SQUIDs, Superconducting QUantum Interference Devices) 
argues for pfq = oo and thus F(4

) = 2.9, as usual. 
5. The prediction of possible collapse of a gas of atoms at low temperature into 

a single quantum state is known as Bose-Einstein condensation, again so much 
against classical intuition (cnovei = 100). Atoms are indeed bosons (particles 
with integer values of spin), which are not subjected to the Pauli exclusion 
principle evoked in the above test #1 of QM. The first such Bose-Einstein 
condensate was produced using a gas of rubidium atoms cooled to 1.7 · 10- 7 K 
[84] (pfq = oo), leading once more to F(4

) = 2.9. 
6. There have been several attempts to develop a paradox-free nonlinear QM the­

ory, in the hope of eliminating Schrodinger's cat paradox, among other em­
barrassments. The nonlinear QM predictions diverge from those of orthodox 
quantum physics, albeit subtly. For instance, if a neutron impinges on two slits, 
an interference pattern appears, which should, however, disappear if the mea­
surement is made far enough away (cnovei = 100). Experiment tests of the 
neutron prediction rejected the nonlinear version in favor of the standard QM 
[85] (pfq = oo), leading to F(6

) = 2.9. 
7. In addition, measurements at the National Institute of Standards and Technol­

ogy (NIST) in Boulder, CO, on frequency standards have been shown to set 
limits of order 10- 21 on the fraction of the energy of the rf transition in 9 Be 
ions that could be due to nonlinear corrections to quantum mechanics [86]. We 
assign Cnovel = 10, with pfq = 10), to this result, leading to F(7) = 2.4. Although 
less than F (1

-
6
), this is still an impressive score. 

Combining the multipliers according to (3) leads to v:~~teriorfv::i~r ~ 1400, which 
is of course only a lower limit given the many other validation tests not mentioned 
here. 

Tests of QM are ongoing [87]. But given the presumably huge amount of trust 
physicists have in QM which we tried to quantify, why do physicists still feel the 
need to put QM to the "validation" test? This raises the question whether we can 
ever establish a sense of sufficiency for validation. Our position is that this reflects a 
quixotic quest for absolute truth-and also a taste for surprises-that most scientists 
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can relate to. Perhaps, by continuing to test QM, a new insight or an anomaly will 
be uncovered which may help progress in the underst anding of reality. 

6 Three Examples Drawn from the Authors' Research 
Interests 

6.1 The Olami-Feder-Christensen (OFC) Sand-Pile Model of 
Earthquakes 

This is perhaps the simplest sand-pile model of self-organized criticality, which ex­
hibits a phenomenology resembling real seismicity [88]. Figure 3 shows a "stress" 
map generated by the OFC model immediat ely after a large avalanche (main shock) 
at two magnifications, to illustrate the rich organization of almost synchronized re­
gions [89]. To validate the OFC model, we examine the properties and prediction 
of the model that can be compared with real seismicity, together with our assess­
ment of their Cnovel and quality-of-fit . We are careful to state these properties in an 
ordered way, as specified in the above sequences (2)- (3) . 

1. The statistical physics community recognized the discovery of the OFC model 
as an important step in the development of a theory of earthquakes: without 
a conservation law (which was thought before to be an essential condition), 
it nevertheless exhibits a power law distribution of avalanche sizes resembling 
the Gutenberg-Richter law [88]. On the other hand, many other models with 
different mechanisms can explain observed power law distributions [91]. We thus 
attribute only Cnovei = 10 to this evidence. Because the power law distribution 
obtained by the model is of excellent quality for a certain parameter value 
(o: :::::: 0.2), we formally take p j q = oo (perfect fit). Expression (7) then gives 
p(l) = 2.4. 

2. Prediction of the OFC model concerning foreshocks and aftershocks, and their 
exponents for the inverse and direct Omori laws. These predictions are twofold 
[90]: (i) the finding of foreshocks and aftershocks with similar qualitative prop­
erties, and (ii) t heir inverse and direct Omori rates. The first aspect, deserves 
a large Cnove i = 100 as the observat ion of foreshocks and aftershocks came as 
a rather big surprise in such sand-pile models [92]. The clustering in time and 
space of the foreshocks and aftershocks are qualitatively similar to real seismic­
ity [90], which warrants p j q = 10, and thus F( 2a ) = 2.9 . The second aspect 
is secondary compared with the first one ( Cnovei = 1) . Since the exponents are 
only qualitatively reproduced (but with no formal likelihood test available), we 
therefore take pjq = 0.1. This leads to F (2

b) = 0.47. 
3. Scaling of the number of aftershocks with the main shock size (productivity 

law) [90]: Cnovei = 10 as this observation is rather new but not completely 
independent of the Omori law. The fit is good so we grant a grade pjq = 10 
leading to F<3 l = 2.4. 

4. Power law increase of the number of foreshocks with t he main shock size [90]: 
this is not observed in real seismicity, probably because this property is absent 
or perhaps due to a lack of quality data. This t est is therefore not very selective 
( Cnovei = 1) and the large uncertainties suggest a grade p / q = 1 (to reflect the 
different viewpoints on t he absence of effect in real data) leading to F (4

) = 1 
(neutral test). 
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Fig. 3. Map of the "stress" field generated by the OFC model immediately after 
a large avalanche (main shock) at two magnifications. The upper panel shows the 
whole grid of size 1024 and the lower plot represents a subset of the grid delineated 
by the square in the upper plot. Adapted from Ref. [90]. 

5. Most aftershocks are found to nucleate at "asperities" located on the main 
shock rupture plane or on the boundary of the avalanche, in agreement with 
observations [90]: Cnovel = 10 and pfq = 10 leading to p(S) = 2.4. 

6. Earthquakes cluster on spatially localized geometrical structures known as 
faults. This property is arguably central to the physics of seismicity ( Cnovel = 

100), but absolutely not reproduced by the OFC model (pfq = 0.1) . This leads 
to F (6) = 4-10- 4 . 

Combining the multipliers according to (3) up to test #5 leads to v;~;teriorfv;;i~r = 
18.8, suggesting that the OFC model is validated as a useful model of the statistical 
properties of seismic catalogs, at least with respect to the properties which have 
been examined in these first five tests. Adding the crucial last test strongly fails the 
model since v;;~teriorfv;;i~r = 7.5 10- 3. The model can not be used as a realistic 
predictor of seismicity. The results of our quantitative validation process indicate 
that it can nevertheless be useful to illustrate certain statistical properties and to 
help formulate new questions and hypotheses. 
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6.2 An Anomalous Diffusion Model for Solar Radiation in Cloudy 
Atmospheres 

To improve our modeling skill for climate dynamics, it is essential to reduce the sig­
nificant uncertainty associated with clouds. In particular, estimation of the radiation 
budget in the presence of clouds needs improvement since current operational mod­
els for the most part ignore all variability below the scale of the climate model's grid 
("-'100 km). A considerable effort has therefore been expended to derive more realistic 
mean-field radiative transfer models [93], mostly by considering only the one-point 
variability of clouds, that is, irrespective of their actual structure as captured by 
2-point (or higher) correlation statistics. However, it has been widely recognized 
that the Earth's cloudiness is frac tal over a wide range of scales [94]. This is the 
motivation for modeling the paths of solar photons at non-absorbing wavelengt hs 
in the cloudy atmosphere as Levy walks [91], which are characterized by frequent 
small steps (inside clouds) and occasional large jumps (typically between clouds) as 
represented schematically in Fig. 4. These (on-average downward) paths start at the 
top of the highest clouds and end in escape to space or in absorption at the surface, 
respectively, cooling and warming the climate system. In contrast with most other 
mean-field models for solar radiative transfer, this diffusion model with anomalous 
scaling can be subjected to a battery of observational tests. 

Fig. 4. Schematic representat ion of the anomalous diffusion model of solar photon 
transport at non-absorbing wavelengths in the cloudy atmosphere. In this model, 
solar beams follow convoluted Levy walks, which are characterized by frequent small 
steps (inside clouds) and occasional large jumps (between clouds or between clouds 
and the surface). The partition between small and large jumps is controlled by t he 
Levy index o: (the PDF of the jump sizes f has a tail decaying as a power law 
'"'"' 1/fl+o.). Reproduced from Ref. [95]. 

1. The original goal of this phenomenological model, which accounts for the clus­
tering of cloud water droplets into broken and/ or multi-layered cloudiness, was 
to predict the increase in steady-state flux transmitted to the surface compared 
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to what would filter through a fixed amount of condensed water in a single 
unbroken cloud layer [96]. This property is common to all mean-field photon 
transport models that do anything at all about unresolved variability [93]. Thus, 
we assign only Cnovei = 1 to this test and, given that all models in this class are 
successful, we have to take p j q = 1, hence p( l ) = 1. The outcome of this first 
test is neutral. 

2. The first real test for this model occurred in the late 1990s, when it became possi­
ble to accurately estimate the mean total path cumulated by solar radiation that 
reaches the surface. This breakthrough was enabled by access to spectroscopy 
at medium (high) resolution of oxygen bands (lines) [97, 98]. There was already 
remote sensing technology to infer simultaneously cloud optical depth, which is 
column-integrated watering (or cm3

) per cm2 multiplied by the average cross­
section for scattering or absorption in cm2 per g (or cm3

). The observed trends 
between mean path and optical depth were explained only by the new model 
in spite of relatively large instrumental error bars . So we assign Cnovei = 100 to 
this highly discriminating test and p / q = 10 (even though other models were 
generally not in a position to compete), hence F( 2

) = 2.9. 
3. Another test was proposed using time-dependent photon transport with a source 

near the surface (cloud-to-ground lightning) and a detector in space (aboard the 
US DOE FORTE satellite) [99]. T he quantity of interest is the observed delay 
of the light pulse (due to multiple scattering in the cloud system) with respect 
to the radio-frequency pulse (which travels in a straight line). There was no 
simultaneous estimate of cloud optical depth, so assumptions had to be made 
(informed by the fact that storm clouds are at once thick and dense). Because 
of this lack of an independent measurement, we assign only Cnovei = 10 to the 
observation and p j q = 1 to the model performance. Indeed, this test is arguably 
only about the finite horizontal extent of the rain clouds resulting from deep 
convection: one can exclude only most simplistic cloud models based on uniform 
plane-parallel slabs. So, again we obtain F (3

) = 1 for an interesting but presently 
neutral test that needs refinement . 

4. Min et al. [100] developed an oxygen-line spectrometer with sufficient resolution 
to estimate not just the mean path but also its root-mean-square (RMS) value. 
They found the prediction by Davis and Marshak [101] for normal diffusion to 
be an extreme (envelop) case for the empirical scatter plot of mean vs. RMS 
path, and this is indicative that the anomalous diffusion model will cover the 
bulk of the data. Because of some overlap with item # 2, we assign Cnovel = 10 to 
the test and pjq = 10 for the model performance since the anomalous diffusion 
model had not yet made a prediction for the RMS path (although we note that 
other models have yet to make one for the mean path). We therefore receive 
p(4) = 2.4. 

5. Using similar data but a different normalization than Min et al., more amenable 
to model testing, Scholl et al. [102] observed that the RMS-to-mean ratio for 
solar photon path is essentially constant whether the cloud structure (according 
to rom-wave radar profiles) is complex or not (respectively, diffusion is nor­
mal or anomalous). This is a remarkable empirical finding to which we assign 
Cnovei = 100. The new mean- and RMS-path data was explained by Scholl et 
al. by creating an ad hoc hybrid between normal diffusion theory (which in­
deed has a prediction for the RMS path [101]) and its anomalous counterpart 
(which still has none). This modification of the basic model can be viewed as 
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significant, meaning that we are in principle back to validation step 1 with the 
new model. However, this exercise uncovered something quite telling about the 
original anomalous diffusion model, namely, that its simple asymptotic (large 
optical dept h) form used in all t he above tests is not generally valid: for typical 
cloud covers, the pre-asymptotic terms computed explicitly for the normal dif­
fusion case prove to be important irrespective of whether the diffusion is normal 
or not. Consequently, in its original form (resulting in a simple scaling law for 
the mean path with respect to cloud thickness and optical depth) , the anoma­
lous diffusion model fails to reproduce the new data even for t he mean path. 
(Consequently, previous fits yielded only "effect ive" anomaly parameters and 
were misleading if t aken too literally. ) So we assign p j q = 0.1 at best for the 
original model, hence F (5 ) = 4 10- 4

. 

Thus, v;:~terior;v;:i~r = 310- 3
, a fatal blow for t he anomalous diffusion in its sim­

ple asymptotic form, even though v;~~te ri or / VP(:i~r = 7.0 which would have been 
interpreted as close to a convincing validation. 

T his is not the end of the story, of course. T he original model has already 
spawned Scholl et al. 's empirical hybrid and a formalism based on integral (in fact, 
pseudo-differential) operators has been proposed [103] that extends the anomalous 
diffusion model to pre-asymptot ic regimes. More recently, a model for anomalous 
transport (i.e., where angular details matter) has been proposed that fits all of the 
new oxygen spect roscopy results [95]. 

In summary, the first and simplest incarnation of the anomalous diffusion model 
for solar photon transport ran its course and demonst rated the power of oxygen-line 
spectroscopy as a test for the performance of radiative transfer models required in 
climate modeling for large-scale average responses to solar illuminat ion. Eventually, 
new and interesting tests will become feasible when we obtain dedicated oxygen-line 
spectroscopy from space wit h NASA's Orbiting Carbon Observatory (OCO) mission 
planned for launch in 2008. Indeed, we already know that the asymptotic scaling for 
reflected photon paths [104] is different from their transmit ted counterparts [101] in 
standard diffusion theory for both mean and RMS. 

6.3 A Computational Fluid Dynamics Model for Shock-Induced 
Mixing 

So far, our examples of models for complex phenomena have hailed from quantum 
and statistical physics. In the lat ter case, they are stochastic models composed of: 
(1) simple code (hence rather trivial verification procedures) t o generate realizations, 
and (2 ) analytical expressions for the ensemble-average properties (that are used in 
the above validation exercises). We now turn to gas dynamics codes which have a 
broad range of applications, from ast rophysical and geophysical flow simulation to 
the design and performance analysis of engineering systems. Specifically, we discuss 
the validation of the "Cuervo" code developed at Los Alamos National Laboratory 
[105, 106] for use as a simulat ion tool in the complex physics of compressible mix­
ing. This software generates solutions of the Euler equations for flows of inviscid, 
non-heat-conducting, compressible gas. Cuervo has been verified against a suite of 
test problems including, e.g., those discussed by Liska and Wendroff (107]. As clearly 
stated by Oberkampf and Trucano [33] however, such verification differs from and 
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does not guarantee validation against experimental data. A standard validation sce­
nario involves the Richtmyer- Meshkov (RM) instability [108, 109], which arises when 
a density gradient in a fluid is subjected to an impulsive acceleration, e.g., due to 
passage of a shock wave (see Fig. 5) . Evolution of the RM instability is nonlinear and 
hydrodynamically complex and hence defines an excellent problem-space to assess 
CFD code performance for more general mixing scenarios. 

Pre-shock Post-shock 
Vp 

~ 
Ai'~ 

Fig. 5. Schematic of the interactions between weakly shocked (Mach number ::::::1.2) 
light gas (air) and a column of dense gas (SF6). The Richtmyer- Meshkov instability 
occurs from the mismatch between the pressure gradient (at the shock front ) and 
the density gradient (between the light and dense gases), which acts as a source of 
baroclinic vorticity. The column of dense gas "rolls up" into a double-spiral form 
under the action of the evolving vorticity. 

In the series of shock-tube experiments described in [110], RM dynamics are real­
ized by preparing one or more cylinders with approximately identical axisymmetric 
Gaussian concentration profiles of dense sulfur hexafiouride (SF6) in air. This (or 
these) vertical "gas cylinder(s)" is (are) subjected to a weak shock- Mach number 
::::::1.2-propagating horizontally, i.e. , perpendicular to the axis of the gas cylinders. 
The ensuing dynamics are largely governed by the mismatch of the density gradi­
ent between the gases (with the density of SF6 approximately five times that of 
air) and the pressure gradient through the shock wave; this mismatch acts as the 
source for baroclinic vorticity generation. Moreover, the flow evolution is strongly 
two-dimensional up to the final times considered. Visualization of the density field is 
obtained using a planar laser-induced fluorescence (PLIF) technique, which provides 
high-resolution quantitative concentration measurements in a plane that cross-cuts 
the cylinders. The velocity field is diagnosed using particle image velocimetry (PIV), 
based on correlation measurements of small-scale particles that are seeded in the ini­
tial flow field. Careful post-processing of images from 130 J-tS to 1000 J-tS after shock 
passage yields planar concentration and velocity with error bars . 

1. This RM flow is dominated at early times by a vortex pair. Later, secondary 
instabilities rapidly transition the flow to a mixed state. We rate Cnovei = 10 for 
the observations of these two instabilities. The Cuervo code correctly captures 
these two instabilities, best observed and modeled with a single cylinder. At this 
qualitative level, we rate pfq = 10 (good fit), which leads to p(l) = 2.4. 
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2. Older data for two-cylinder experiments acquired with a fog-based technique 
(rather than PLIF) showed two separated spirals associated with the primary 
instability, but the Cuervo code predicted the existence of a material bridge be­
tween those structures. This previously unobserved connection was subsequently 
diagnosed experimentally with the improved observational technique, i.e., the 
simulation code was t ruly predictive of this phenomenon. Using Cnove l = 10 and 
plq = 10 yields F (2

) = 2.4. 
3. The evolution of the total power as a function of time offers another useful met­

ric. The numerical simulation quant itatively accounts for the exponential growth 
of the power with time, within the experimental error bars. Using Cnovel = 10 
and PI q = 10 yields F(3

) = 2.4. 
4. The concentration power spectrum as a function of wavenumber for different 

times provides another way (in the Fourier domain) to present the information of 
the hierarchy of structures already visualized in physical space (cnovel = 1). The 
Cuervo code correctly accounts for the low wavenumber part of the spectrum but 
underestimates the high wavenumber part (beyond the deterministic-stochastic 
transition wavenumber) by a factor 2 to 5. We capture this by setting plq = 0.1 , 
which yields F (4 ) = 0.47. 

Combining the multipliers according to (3) leads to vP<!~teriorlv:;i~r = 6.5, a signifi­
cant gain, but still not sufficient t o compellingly validate the Cuervo code for inviscid 
shock-induced hydrodynamic instability simulations, at least in 2D. Clearly, valida­
tion against t his single set of experiments is inadequate t o address all intended uses 
of a CFD code such as Cuervo. 14 

6.4 Discussion 

The above three examples illust rate the utility of representing the validation process 
as a succession of steps, each of them characterized by the two parameters Cnovel and 
plq. The determination of Cnovel requires expert judgment and that of plq a careful 
statistical analysis, which is beyond the scope of the present report (see Ref. [76] 
for a detailed case study). The parameter q is ideally imposed as a confidence level, 
say 95% or 99% as in st andard statistical t ests. In practice, it may depend on the 
experimental test and requires a case-by-case examination. 

The uncertainties of Cnovel and of pI q need to be assessed. Indeed, different 
st atistical estimations or met rics may yield different pI q's and different experts will 
likely rate differently the novelty Cnovel of a new test. As a result, the trust gain 
v::ste1)iorlv:;i~r aft er n tests necessarily has a range of possible values that grows 
geometrically with n. In certain cases, a drastic difference can be obtained by a 
change of Cnovel· For instance, if instead of attribut ing Cnove l = 100 to the sixth OFC 
test , we put Cnovel = 10 (resp. 1) while keeping pl q = 0.1, F(6

) is changed from 4-10-4 

to 4 · 10- 3 (resp. 0.47). The trust gain t hen becomes v::~teriorlv:;i~r = 0.07 (resp. 
~ 9). For the sixth OFC t est, Cnovel = 1 is arguably unrealistic, given the importance 
of faults in seismology. The two possible choices Cnovel = 100 and Cnovel = 10 then 
give similar conclusions on the invalidation of the OFC model. In our examples, 
v::ste1~or lv:;i~r provides a qualitatively robust measure of the gain in trust after n 

14 Intricate experiments with three gas cylinders have since been performed [111] 
and others are currently under way to further challenge compressible flow codes. 
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steps; this robustness has been built-in by imposing a coarse-grained quality to pfq 
and Cnovel· 

7 Summary 

The validation of numerical simulations continues to become more important as 
computational power grows, as the complexity of modeled systems increases, and 
as increasingly important decisions are influenced by computational models. We 
have proposed an iterative, constructive approach to validation using quantitative 
measures and expert knowledge to assess the relative state of validation of a model 
instantiated in a computer code. In this approach, the increase/ decrease in validation 
is mediated through a function that incorporates the results of the model vis-a-vis 
the experiment together with a measure of the impact of that experiment on the 
validation process. While this function is not uniquely specified, it is not arbitrary: 
certain asymptotic trends, consistent with heuristically plausible behavior, must be 
observed. In four fundamentally different examples, we have illustrated how this 
approach might apply to a validation process for physics or engineering models. 
We believe that the multiplicative decomposition of trust gains or losses (given in 
Eq. 3) , using a suitable functional prescription (such as Eq. 7), provides a reasoned 
and principled description of the key elements- and fundamental limitations-of 
validation. It should be equally applicable to biological and social sciences, especially 
since it is built upon the decision-making processes of the latter. We believe that 
our procedure transforms the paralyzing criticisms in Popper's style that "we cannot 
validate, we can only invalidate" [19] into a practical constructive algorithm. This 
strategy addresses specifically both problems of distinguishing between competing 
models and transforming the vicious circle of lack of suitable data into a virtuous 
spiral path: each cycle is marked by a quantified increment of the evolving trust we 
put in a model based on the novelty and relevance of new data and the quality of 
fits. 

We have also surveyed and commented extensively on the V & V literature. We 
hope this digest will help the reader as much as its collation helped us deepen our 
understanding of the challenge of model validation, including a new perspective on 
some of our own work. We close with these far-reaching thoughts by Patrick J. 
Roache [112]: 

In an age of spreading pseudoscience and anti-rationalism, it behooves those 
of us who believe in the good of science and engineering to be above re­
proach whenever possible. Public confidence is further eroded with every er­
ror we make. Although many of society's problems can be solved with a 
simple change of values, major issues such as radioactive waste disposal 
and environmental modeling require technological solutions that necessar­
ily involve computational physics. As Robert Laughlin {113} noted in this 
magazine, "there is a serious danger of this power [of simulations] being 
misused, either by accident or through deliberate deception." Our intellec­
tual and moral traditions will be served well by conscientious attention to 
verification of codes, verification of calculations, and validation, including 
the attention given to building new codes or modifying existing codes with 
specific features that enable these activities. 
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Appendix: 
A More Formal Look at the Role of Validation in the 
Modeling Enterprise 

We deal with models that possess two aspects: a conceptual part based on the 
physical laws of nature (such as the Navier-Stokes conservat ion equations for fluid 
dynamics) and a computat ional part (like in CFD). Mathematically, a model along 
with observations are defined formally, as described in section A.l below: 

• The model M maps the set {A} of parameters and of initial and boundary 
conditions to a forecast of stat e variables in a formal vector X£; 

• An observation projection g maps the true dynamics or physics in Xt to raw 
measurements Yo . 

Such definitions may seem abst ract and of little use but they are important foun­
dations to build a comprehensive roadmap for physically-based model validation. 

In the following section, we refine the above definitions and introduce a few more 
operators and quantit ies. In section A.2, we revisit the key steps in a validation 
loop with this notation in hand. Finally, we discuss some fundamental limitations 
on model validat ion in section A.3 using some of our own research in time-series 
analysis for illustration. 

A.l Definitions 

Let us denote Xt(r, t ) the true physical field . Observations y0 (r, t) are obtained via 
a possibly nonlinear operator g acting on Xt(r, t ): 

Yo(r, t ) = Q{Xt(r', t')} . (A.l) 

The observations at position r and t ime t may be a combination of past values 
obtained over some finite region , hence our use of (r', t') which are different from 
(r, t) . The operator g may thus be non-local and (causally) time-dependent . In 
addition, any measurement has noise and uncertainties. Therefore, g is a stochastic 
operator. The simplest specificat ion beyond ignoring noise is to consider an additive 
noise. 
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A model M provides a forecast Xf(r, t) either in the actual future or in terms 
of what will lead (via another operator) to the value of the measurements beyond a 
certain fiducial point in time. This is expressed by 

X£(r,t) = M ({A}) (A.2) 

M is the model operator, which contains for instance the equation of states, the 
formulation in terms of ODEs, PDEs, discrete maps and so on, which are supposed to 
embody the known physics of the underlying processes. {A} contains the parameters 
of the model as well as the boundary and initial conditions. The model operator 
M has a non-random part. It can also contain an additive or multiplicative noise 
component to represent the forecast errors as well as possible intrinsic stochastic 
components of the dynamics. The forecast errors may stem from computational 
errors, numerical instabilities and uncertainties, the existence of multiple branches 
in the solution and so on. The simplest specification is again to consider an additive 
noise. 

The output M ( {A}) of the model is translated into physical quantities that can 
be compared with the observation via another operator 11., which models mathe­
matically and in code the observation process. In general , one would like to compare 
Yo(r, t) given by (A.l) with 1i [Xf(r, t)], that is, 9{Xt(r', t')} with 1i [M ({A})]. The 
intended use of the model is key to "objective model validation," because it turns 
"subjectiveness" of the model validation into an "object" using hypothesis testing 
and decision theory. To implement this idea, it is natural to introduce a cost function 
(see below) for the intended use of the model: 

C(9{Xt(r',t')};H.[M({A})]) , 

which is a measure of how well the model accounts for the observations. In this 
expression, the cost function is evaluated in the "physical space" of observa­
tions / measurements. An alternative is to evaluate the cost function in the "model 

". space, 1.e., 
C (9- 1 {H.{Xt(r' , t')}}; M ({A})) , 

where g- 1 is the formal inverse operator tog which maps observations Yo onto the 
model space Xf. In data assimilation, explicit form of g- 1 does not exist in general 
due to rank deficiency. However, such alternative representation within the linear 
theory corresponds to the duality between Kalman filtering and the 3D-Var [114]. 

We propose to define the validation problem as a decision problem in which 
one uses the loss function to infer/ decide how much confidence one feels in the 
reliability of the model to function in the range in which it is supposed to apply. 
The interesting and challenging situation occurs when this range extends beyond 
the region of parameter space in which all reasonably stringent controls have been 
performed. Validation requires the build-up of trust in the model or code so that 
it is believed to be resilient and to work in complex real situations combining the 
simple regimes that have been tested. The cost function is just an alternative way 
of constructing the statistical test that provides the probability level p defined in 
the main text. 
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A.2 Four Recurring Types of Problem in Physically-Based Model 
Validation 

Our overarching goal is to advocate approaches t o validation that are grounded in 
physics. The term "physics-based" embodies two strategies: 

(a) use physical reasoning to improve modeling, t arget experiments and loss func­
tions, and detect missed "dimensions;" 

(b) use concepts from statistical physics to formulat e (in the spirit of Brown and 
Sethna [115]) a validation process of complex models with complex data in the 
form of anN-body problem. 

Following this roadmap, we find ourselves asking the same four questions again and 
again: 

1. How to model? (the question of model construction) 
2. What to measure'? (the question of estimating Cnovei in the main text) 
3. How to measure it '? (the question of choosing and est imating the cost function 

or "metric" ) 
4. How to interpret the results'? (the question of estimating p in the main text) 

We view t hese four defining quest ions as the crucial steps within the validation loop 
described in sections 2- 4 of the main text. 

Problem 1: Targeting model development (How to model?) 

Our discussion so far may give the impression that the modeling step is "homoge­
neous." It may actually be advant ageous to develop a hierarchical modeling frame­
work. In this respect, Oden et al. [116] proposed to use hierarchical modeling as a 
mathematical structure that can be useful in directing validation studies. In this 
construction, a class of models of events of interest is defined in which one identifies 
a "fine" model that possesses a level of sophisticat ion high enough to adequately 
capture t he event of interest with good accuracy. T his model may be intractable, 
even computationally. Hierarchical modeling consists in identifying a family of coarse 
models that are solvable. Using t he fine model out put as a datum, the error in the 
solution of ever coarser models can be estimated and controlled, with the goal of 
obtaining a model best suited for the simulation goal at hand. The essential com­
ponents of this program are the following [116]: 

1. Experiment al data are collected to fully characterize the fine model. 
2. Quant ities Q(X) of interest are specified as the essential physical entity to be 

predicted in t he simulation (for inst ance in the form of t he probability of the 
predicted values of the quantity). 

3. The coarsest model is used to extract a preliminary estimate of Q(X ) and mod­
eling and approximation errors are computed. 

4. If t he estimated error exceeds the prescribed tolerance, the model is enhanced 
and the calculation is repeated until a model yielding results within the preset 
bounds is obtained. 

5. T he truncat ion error of the perturbat ion expansion is estimated: if the total 
error exceeds a preset tolerance, the data set and the fine model definition must 
be updated; if not, the predicted Q(X ) and the probability that it will take on 
values in a given interval are produced as output. 
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A concrete implementation of this program has been performed by Israeli and 
Goldenfeld [27]. Using elementary cellular automata as an example, Israeli and 
Goldenfeld show how to coarse-grain cellular automata in all categories of Wol­
fram 's exhaustive classification [117]. The main discovery is that computationally 
irreducible physical processes can be predictable and even computationally reducible 
at a coarse-grained level of description. The resulting coarse-grained cellular automa­
ton constructed with the coarse-graining procedure emulate the large-scale behavior 
of the original systems without accounting for small-scale details. These results re­
mind us that it is advantageous to develop a view of complex physical processes at 
different scales, as the predictability may depend on the scale of observation. 

A related approach has been discussed recently by Brown and Sethna [115], who 
consider models defined in terms of a set of nonlinear ODEs applied to systems that 
have large numbers of poorly known parameters, simplified dynamics, and uncertain 
connectivity. They call models possessing these three features, "sloppy models." 
Sloppy models characterize many other high-dimensional multi-parameter nonlinear 
models . Brown and Sethna propose to use the maximum likelihood method to frame 
the problem of parameter estimation and model validation in the form of statistical 
ensemble method. In our language, the problem boils down to a study of the cost 
function C and its stiff and soft directions determined from the eigenvalue problem 
of the Hessian of C (with respect to the parameters of the model) . In practice, Brown 
and Sethna propose to estimate the Hessian of C in terms of the so-called "Levenberg­
Marquardt" Hessian (thus called because of its use of that popular minimization 
algorithm); that quantity is defined simply as a sum of pairwise products of first­
order derivatives of the residuals with respect to the model parameters. Stiff modes 
correspond to large eigenvalues. Similar to a decomposition in principal components, 
retaining the stiff modes allows one to get a more robust signature of the coarse­
grained properties of the dynamics. This constitutes a concrete implementation of 
our Problem 4 below on "targeting model errors." This procedure also addresses 
the problem of defining the operator 1i that selects the output of the model for 
comparison to the experimental data. 

There is an interesting avenue for research here: rather than performing the 
principal component decomposition in one step, it may be advantageous to perform 
a series of sub-system analysis, or cluster analysis, retaining the stiff modes of each 
sub-system and then aggregating them at the next level of the hierarchy. 

Problem 2: Targeting the observations (What to measure?) 

Objective: Find 9 (and the associated 11.) that reveals the most about model critical 
behavior. 

The problem has been addressed specifically in these terms by Palmer et al. [72] 
to target adaptive observations to "sensitive" parts of the atmosphere. Targeting 
observations could be directed by the desire to get access to the most relevant in­
formation that is also the most reliable (e.g., contaminated by the smallest errors). 
It may be worth mentioning that targeting the observations depends not only on 
9, but also M, {A}, as well as C (along with its own parameters discussed be­
low). The targeting of the observations is the problem of maximizing the coefficient 
Cnovel introduced in the main text so that the new experiment/ observation explores 
novel dimensions of the parameter and variable spaces of both the process and the 
model that can best reveal potential :flaws that could compromise the important 
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applications. In general, one targets observations by developing experiments that 
are thought to provide, in some sense, the most relevant tests of the physics. 

Oberkampf and Trucano (2002) [33] suggest t hat traditional experiments could 
generally be grouped into t hree cat egories: 

1. experiments that are conducted primarily for the purpose of improving t he 
fundamental understanding of some physical process; 

2. experiments conducted primarily for constructing or improving mathematical 
models of fairly well-understood flows; 

3. experiments that determine or improve the reliability, performance, or safety of 
components, subsystems, or complete systems. 

These authors argue that validation experiments constitute a fourth type of experi­
ment: "A validation experiment is conducted for the primary purpose of determining 
the validity, or predictive accuracy, of a computational modeling and simulation ca­
pability. In other words, a validation experiment is designed, executed, and analyzed 
for the purpose of quantitatively determining the ability of a mathematical model 
and its embodiment in a computer code to simulate a well-characterized physical 
process." This leads them to propose the following guidelines: 

• Guidelin e #1: A validation experiment should be joint ly designed by experi­
mentalists, model developers, code developers, and code users working closely 
together throughout the program, from inception to documentation, with com­
plete candor about the strengths and weaknesses of each approach. 

• Guideline # 2: A validation experiment should be designed to capture the essen­
tial physics of interest , including all relevant physical modeling data and initial 
and boundary conditions required by t he code. 

• Guideline #3: A validation experiment should strive to emphasize the inherent 
synergism between computational and experimental approaches. 

• Guideline #4: Although the experimental design should be developed coopera­
tively, independence must be maintained in obtaining both the computational 
and experimental results. 

• Guideline #5: A hierarchy of experimental measurements of increasing compu­
tational difficulty and specificity should be made, for example, from globally 
integrated quant ities to local measurements. 

• Guideline # 6: T he experimental design should be constructed to analyze and es­
timate the components of random (precision) and bias (systematic) experimental 
errors. 

Problem 3: Targeting the cost function (How to estimate the 
penalty on imperfect models and measurements using their 
discrepancies?) 

For given measurements or experiments, that is, for given g, the problem is to 
find the optimal cost function C for the intended use of the model. The notion of 
optimality needs t o be defined. It could capture a compromise between the following 
requirement s: 

• fit best the important features of t he data (what is "important" may be de­
cided on the basis of previous studies and understanding or other processes, or 
programmatic concerns); 
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• minimize the extraction of spurious information from noise, which requires one 
to have a precise idea of the statistical properties of the noise (if such knowledge 
is not available, the cost function should take this into account). 

The choice of the cost function involves the choice of how to look at the data. 
For instance, one may want to expand the measurements at multiple scales using 
wavelet decompositions and compare the prediction and observations scale by scale, 
or in terms of multifractal spectra of the physical fields estimated from these wavelet 
decomposition or from other methods. The general idea here is that, given complex 
observation fields , it is appropriate to "project" the data onto a variety of "metrics" 
designed to detect and characterize phenomena of particular interest. For instance, 
wavelet-based scaling properties can be used in the comparison between observa­
tions and model predictions; the question is then: How well is the model/code able 
to reproduce the salient multi-scale properties derived from the observations? The 
physics of turbulent fields and of complex systems have offered many such new 
tools to unfold complex fields according to different statistics. Each of these statis­
tics provides a basis for a metric to compare observations with model predictions. 
Each such statistics thus leads to a cost function focusing on a particular feature of 
the process. These metrics are derived from the understanding that turbulent fields 
can be analyzed using them, revealing strong constraints in their organization (spa­
tial structure and temporal evolution). These metrics can therefore be described as 
"physics-based." 

Furthermore, the choice of the cost function should take into account that the 
diagnostics of the experiments may lead to spurious results [11]. For example, in 
laser-driven shock experiments, because the laser-induced fluorescence method illu­
minates the mixing zone with a planar sheet of light, this diagnostic can lead to 
aliasing of long-wavelength structures into short-wavelength features in the images, 
thus affecting the interpretation of observed small-scale structures in the mixing 
zone. Also, because of the dynamic limits on diagnostic resolution, the formation of 
small-scale structure cannot be completely determined. 

As emphasized by Noam Chomsky in his own field of work [118], the danger with 
the Popperian strategy [119] is that one might prematurely reject a theory based on 
"falsification" using data that are themselves poorly understood. For instance, lack of 
quality control for the experiments can result in premature rejection of the model. On 
these issues, Stein [120] discusses means for controlling and for understanding sample 
selection and variability, which can compromise conclusions drawn from validation 
tests. 

The problem of the choice of the cost function C seems, however, to be of less 
importance than Problem 2 above and Problem 4 below. In fact, almost all classical 
results on the limit properties of efficiency of statistical inference are valid (and 
proved) for a whole general family of cost functions C(·; ·) satisfying the following 
conditions (see, e.g., Ibragimov and Hasminskii [121]): 

(a) C(x, y ) = c(lx - yl); 
(b) c(z) is a positive monotonically increasing function (including, e.g., power-law 

functions lzlq, with q > 0); 
(c) c(z) should not increase too fast (its mean with respect to the Gaussian distri­

bution must remain finite) . 

Thus, statistical limit theorems are proved for the whole class of different power-law 
cost functions (including the classic choice q = 2). 
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As an example, it may be appropriate to consider the cost function in the fol­
lowing form. Let us assume we are interested in some functional 

Z (R, T!9{Xt(r, t)} , r E D(R), t:::; T ) 

depending on t he past true physical field Xt (r, t ) in some region D(R). In this case, 
the cost function can be chosen as 

C (Z [R, T !9{Xt (r, t)} , r E D(R ) , t :::; T]; Z [R, T j1l { X£ (r, t )} , r E D(R), t:::; T]) 
(A.3) 

where C(·; ·) is some func tion satisfying above conditions (a)- (c) . The formulation 
(A.3) for C(·; ·) should not only be a function of g and M, but also of those pa­
rameters that correspond to our best guess for the uncertainties, errors and noise. 
Indeed, in most cases, we can never know real uncertainties, errors and noise in g 
and M (or even 1£). Hence, we must parameterize them based on our best guess. In 
data assimilation (described in t he main text in relation to model calibration and 
validation), t he accuracy of such parameterization is known to influence the results 
significantly. 

Generalizations t o (A.3) allowing for different fields in the two sets of variables in 
Care needed for some problems, such as in validat ion of meteorological models. For 
instance, consider a model stat e vector X (dimension is on the order of 106

) which 
is computed on a fixed spat ial grid. In general, t he locations of the observations are 
not on the computational grid (for example, consider measurements with weather 
balloons released from the surface). Thus, the observation Y is a function of X, but 
is not an attempt to estimate X itself. Hence, if the cost function is quadratic, it has 
the form (Y- H (X ))T0- 1 (Y - H (X )) where H acts on the interpolation function 
to pick up the model variable at t he grid points close to the observed location, 
and 0 is related to the error covariance. Let us imagine a validation case using 
satellite infrared images for Y and atmospheric radiat ive stat e for X . Observations 
are quasi-uniform in space at a given time; at each time, available observations and 
their quality (represented by 0 ) may change, however . In this case, the cost function 
must take into account the mapping between X and Y so that we have C(X, Y) = 
C(jH(X) - Yj) rat her t han C(X, Y ) = C(!X - Y j); therefore (Y - H(X))T0- 1 (Y ­
H(X)) when C is quadratic. In addition, for heterogeneous observations (satellite 
images, weather balloon measurements, airplane sampling, and so on), cost functions 
should take into account all these data into account such as 

C(x, y) = Csatell ite ( X, y) + Cballoon (X, y) + Cairplane ( X, y) + · · · 

and each C may have a complex idiosyncratic observation function H. See Courtier 
et al. [122] for a discussion on cost funct ions for atmospheric models and observation 
systems. 

Problem 4: Targeting model errors (How to interpret the results?) 

The problem here is to find the "dimensions" of t he model t hat are missing, misrep­
resented or erroneous. The question of how to interpret the results thus leads to the 
discussion of the missing or misrepresented elements in the model. What tests can 
be used to betray t he existence of hidden degrees of freedom and/ or dimensions? 
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This is the hardest problem of all. It can sometimes find an elegant solution 
when a given model is embedded in a more general model. Then, the limitation 
of the "small" model becomes clear from the vantage of the more general model. 
Well-known examples are 

• Newtonian mechanics as part of special relativity, when v « c where v (resp. c) 
is the velocity of the body (resp. of light); 

• classical mechanics as part of quantum mechanics when hjmc « L (where his 
Planck's constant, m and L are the mass and size of the body and hjmc is the 
associated Compton wavelength); 

• Eulerian hydrodynamics as part of Navier-Stokes hydrodynamics with its rich 
phenomenology of turbulent motion (when the Reynolds number goes to infinity, 
equivalently, viscosity goes to zero); 

• classical thermodynamics as part of statistical physics of N ~ 1 particles or 
elements, where phase transitions and thermodynamic phases emerge in the 
limit N --t oo. 

The challenge of targeting model errors is to develop diagnostics of missing dimen­
sions even in absence of a more encompassing model. This could be done by adding 
random new dimensions to the model and studying its robustness. 

In what sense can one detect that a model is missing some essential ingredient, 
some crucial mechanisms, or that the number of variables or dimensions is inade­
quate? To use a metaphor, this question is similar to asking ants living and walking 
on a plane to gain awareness that there is a third dimension. 15 

A.3 Fundamental Limits on Model Validation 

Before, while and after engaging in model validation, it is wise to reflect frequently 
and systematically on what is not known. Two examples using the formalization 
introduced in section A.1 are: 

Ignorance on the model M( {A}) 

As quoted in the main text, Roache [2] states, in a nutshell, that validation is about 
solving the right equations for the problem of immediate concern. How do we know 
the right equations? 

Consider, for instance, point vortex models, and let us perform "twin experi­
ments," i.e., (1) first generate the "simulated observations" by a "true" point vortex 
system that are unknown to the make-believe observer and modeler; (2) use the pro­
cedure of section A.1 and construct a "validated" point vortex system. The problem 
is that, even before we start model validation, we are already using one of the most 

15 This question (raised already by the German philosopher Kant) actually has an 
answer that has been studied and solved by Ehrenfest in 1917 [123] (see also 
Whitrow's 1956 article [124]). This answer is based on the analysis of several 
fundamental physical laws in lRn spaces and comparing their predictions as a 
function of n. The value n = 3 turns out to be very special! Thus, ants studying 
gravitation or electro-magnetic fields will see that there is more to space than 
their plane. 
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critical pieces of information, which is that the system is based on point vortices. 
Similar criticism for the use of "simulated observations" has been raised in data as­
similation studies using OSSEs (Observing-System Simulation Experiments). This 
criticism is crucial for model validat ion. 

For this unavoidable issue of model errors, we suggest that one needs a hierarchy 
of investigations: 

1. Look at the statistical or global properties of the time series and/or fields gen­
erated by the models as well as from the data, such as distributions, correlation 
functions, n-point statistics, fractal and multifractal properties of the attractors 
and emergent struct ures, in order to characterize how much of the data our 
model fits. Part of this approach is the use of maximum likelihood theory to 
determine the most probable value of the parameters of the model, conditioned 
on the realization of the time series. 

2. We can bring to bear on t he problem the modern methods of computational 
intelligence (or machine learning), including pattern classification and recog­
nition methods ranging from the already classical ones (e.g., neural networks, 
K-means) to the most recent advances (e.g., support vector machines, "random 
forests"). 

3. Lastly, a qualification of the model is obtained by testing and quantifying how 
well it predicts the "future" beyond the int erval used for calibration/initialization. 

Levels of ignorance on the observation Q 

• First level: The characteristics of the noise are known, such as its distribution, 
covariance, and maybe higher-order statistics. 

• Second level: It may happen that the statistical properties of the noise are poorly 
known or constrained. 

• Third level: A worse situation is when some noise components are not known to 
exist and are thus simply not considered in the treatment. For instance, imagine 
t hat one forgets in climate modeling about the impact of biological variability 
in time and space in the distribution of C02 sequestration sites. 

• Fourth level: Finally, there is the representation error in 9 itself, i.e., how 9 is 
modeled mathematically in 1£. 

Consequences of the sensitivity to initial conditions and 
nonlinearity in the model 

Even an accurate forecast is limited by the inherent predictability of the system. 
In the same way, validation may be hindered by limited access to testing. The pre­
dictability of a system refers t o the fundamental limits of prediction for a system. For 
instance, if a system is pure noise, there is no possibility of forecasting it better than 
chance. Similarly, there may be limits in the possibilit ies of testing the performance 
of a model because of limits in measurements, limits in access to key parameters for 
instance. With such limitations, it may be impossible t o fully validate a model. 

A well-known source that limits predictability is the property of sensitivity to 
initial conditions, which is one of the ingredients leading to chaotic behavior. Vali­
dation has to be made immune to t his sensitivity upon initial conditions, by using a 
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variety of methods, including the properties of attractors, their invariant measures, 
the properties of Lyapunov exponents, and so on. Pisarenko and Sornette [125] have 
shown that the sensitivity upon initial conditions leads to a limit of testability in 
simple toy models of chaotic dynamical systems, such as the logistic map. They 
addressed the possibility of applying standard statistical methods (the least square 
method, the maximum likelihood estimation method, the method of statistical mo­
ments for estimation of parameters) to deterministically chaotic low-dimensional 
dynamic system containing an additive dynamical noise. First, the nature of the 
system is found to require that any statistical method of estimation combines the 
estimation of the structural parameter with the estimation of the initial value. This 
is potentially an important lesson for such a class of systems. In addition, in such 
systems, one needs a trade-off between the need of using a large number of data 
points in the statistical estimation method to decrease the bias (i.e., to guarantee 
the consistency of the estimation) and the unstable nature of dynamical trajectories 
with exponentially fast loss of memory of the initial condition. In this simple exam­
ple, the limit of testability is reflected in the absence of theorems on the consistency 
and efficiency of maximum likelihood estimation (MLE) methods [125]. We can use 
MLE with sometimes good practical results in controlled situations for which past 
experience has been accumulated but there is no guarantee that the MLE will not 
go astray in some cases. 

This work has also shown that the Bayesian approach to parameter estimation of 
chaotic deterministic systems is incorrect and probably suboptimal. The Bayesian 
approach usually assumes non-informative priors for the structural parameters of 
the model, for the initial value and for the standard deviation of the noise. This ap­
proach turns out to be incorrect, because it amounts to assuming a stochastic model, 
thus referring to quite another problem, since the correct model is fundamentally 
deterministic (only with the addition of some noise). 

This negative conclusion on the use of the Bayesian approach should be con­
trasted with the Bayesian approach of Hanson and Hemez [126] to model the plastic­
flow characteristics of a high-strength steel by combining data from basic material 
tests. The use of a Bayesian approach to this later problem seems warranted because 
the priors reflect the intrinsic heterogeneity of the samples and the large dispersion 
of the experiments. In this particular problem concerning material properties, the 
use of Bayesian priors is warranted by the fact that the structural parameters of the 
model can be viewed as drawn from a population. It is very important to stress this 
point: Bayesian approaches to structural parameter determination are justified only 
in problems with random distributions of the parameters. For the previous problem 
of deterministic nonlinear dynamics, it turns out to be fundamentally incorrect. We 
therefore view proper partition of the problem at hand between deterministic and 
random components as an essential part of validation. 

Extrapolating beyond the range of available data 

In the previous discussion, the limit of testability is solely due to the phenomenon of 
sensitive dependence upon initial conditions, as the model is assumed to be known 
(the logistic map in the above example). In general, we do not have such luxury. Let 
us illustrate the much more difficult problem by two examples stressing the possibil­
ity for the existence of "indistinguishable states." Consider a map fr that generates 
a time series. Assuming that h is unknown a priori, let us construct/constrain the 
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map h whose initial condition and parameters can be tuned in such a way that tra­
jectories of h can follow data of /I for a while, but eventually the two maps diverge. 
Suppose that the time series of /I is too short to explore the range expressing the 
divergence between the two maps. How can we (in-)validate h as a incorrect model 
of /I? 

This problem arises in the characterizat ion of the tail of distributions of stochas­
tic variables. For instance, Malevergne, Pisarenko and Sornette [127] have shown 
that, based on available data, the best t ests and efforts can not distinguish between 
a power law tail and a stretched exponential distribution for financial returns. The 
two classes of models are indistinguishable, given the amount of data. This fun­
damental limit ation has unfortunately severe consequences, because choosing one 
or the other models involves different predictions for the frequency of very large 
losses that lie beyond the range sampled by historical data (the /I - h problem). 
The practical consequences are significant, in terms of the billions of dollars banks 
should put (or not ) aside to cover large market swings that are outside the data set 
available from t he known past history. 

This example illustrates a crucial aspect of model validation, namely that it 
requires the issuance of predictions outside the domain of parameters and/or of 
variables that has been tested "in-sample" to est ablish the (calibrated or "tuned" ) 
model itself. 
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