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1 Introduction
Graph500 [14] is an effort to offer a standardized benchmark across large-scale
distributed platforms which captures the behavior of common communication-
bound graph algorithms. Graph500 differs from other large-scale benchmark-
ing efforts (such as HPL [6] or HPGMG [7]) primarily in the irregularity of
its computation and data access patterns.

The core computational kernel of Graph500 is a breadth-first search (BFS)
implemented on an undirected graph. The output of Graph500 is a spanning
tree of the input graph, usually represented by a predecessor mapping for ev-
ery node in the graph. The Graph500 benchmark defines several pre-defined
input sizes for implementers to test against.

This report summarizes investigation into implementing the Graph500
benchmark on OpenSHMEM, and focuses on first building a strong and
practical understanding of the strengths and limitations of past work before
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proposing and developing novel extensions. While our initial investigation
explores implementations in pure OpenSHMEM, we also describe work im-
plementing Graph500 using the AsyncSHMEM framework described in [13].
AsynSHMEM is a hybrid programming model and runtime system that com-
poses OpenSHMEM and asynchronous task parallelism in order to enable
novel APIs and functionality. For more details on AsyncSHMEM, please
refer to the original publication [13] or the source code available at [1].

The remainder of this report is structured as follows. Section 2 discusses
the past work in this area. Section 3 describes the most relevant/successful
OpenSHMEM-based implementations we have explored to date. Section 4
discusses how we use the AsyncSHMEM framework [13] to improve the devel-
oped reference OpenSHMEM implementations described in Section 3. Sec-
tion 5 compares the performance of various OpenSHMEM-based and refer-
ence implementations.

2 Past Work
Previous work on G500 can be broken into three categories: the available
distributed reference implementations (all MPI-based), various research im-
plementations in MPI, and various research implementations in OSHMEM.

2.1 MPI-based Reference Implementations

graph500.org offers several reference MPI implementations of the Graph500
benchmark. The provided reference implementations are summarized below:

1. Simple: Generally considered the baseline implementation, Simple
uses two-sided MPI to implement a straightforward wavefront-based
BFS. Nodes in the graph are partitioned across MPI ranks, and at each
layer in the wavefront nodes in the next wavefront are transmitted to
the MPI ranks which own them. This implementation can be diffi-
cult to read, as new receives are detected by inserting periodic polling
(MPI_Test) in the code. Simple is also not a well-performing or scaling
implementation, nor is it intended to be. Mostly, it is an illustration
of a classical implementation of BFS in MPI.

2. One-Sided: This implementation uses MPI one-sided APIs to im-
plement an algorithm similar to the Simple implementation. In our
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experience, it only works on very small datasets and does not per-
form well even at those scales. There is some literature that compares
against it [9] (discussed later), which also reports that in their tests the
One-Sided implementation ran out of memory at small scales (datasets
smaller than even Graph 500’s “Toy” dataset).

3. Replicated: The Replicated implementation is the least conventional
of the reference implementations in that it isn’t message-driven. In-
stead, it communicates bit masks among all MPI ranks using MPI_AllGather,
setting bits to indicate which nodes in the graph are to be visited in the
next wavefront. There is no overlap of computation or communication
in this version. Replicated is unusual among most G500 implementa-
tions in that it is not entirely communication-bound, and has enough
computational work in each processing element (PE) to benefit from
multi-threaded parallelism. However, communication does still take
up a significant amount of application time, particularly two calls to
MPI_Allgather. Replicated is the best performing reference implemen-
tation in our experience, and so our evaluation uses it as a baseline.

2.2 Research MPI Implementations

The main research implementation of note in MPI is from [8]. For the pur-
poses of this paper, we will refer to this implementation as the Tuned im-
plementation. Tuned is available as an open source distribution available
from the Graph 500 website. In our investigation, we have found Tuned to
be a well-scaling implementation of Graph500 in MPI, but also note that it
has some stability issues which make it difficult to evaluate against.

For example, when compiling the Tuned version you build several exe-
cutables from the same source. Each executable is specialized to a certain
number of MPI ranks. The open source distribution comes with a list of sup-
ported numbers of ranks, but when trying to compile with any other number
of ranks the build recurses infinitely on both Intel and GNU compilers.

The Tuned implementation also comes with built-in self-tuning, in that
it performs many training runs while tweaking internal parameters until it
finds what it thinks is the best for the current platform, and then performs
the actual BFS kernel. This makes comparisons against other, more general-
purpose implementations unfair. However, in the experiments we were able
to perform with the Tuned implementation we see it performing similarly to
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the Replicated implementation, even when allowing Tuned to tune itself.

2.3 Research OSHMEM Implementations

There are two primary past works describing OpenSHMEM-based G500 im-
plementations. Neither are open source. [9] describes a straight port of the
MPI One-Sided implementation to OpenSHMEM, and much of the paper fo-
cuses on challenges around resolving differences between the support offered
by MPI APIs and OpenSHMEM APIs. While this paper offers motivation for
extending certain OpenSHMEM APIs, there are no novel G500 algorithmic
contributions.

[12] describes an OpenSHMEM-based implementation that is inspired by
the Simple implementation but with various improvements using RDMA.
Section 4 of [12] describes their implementation. While this paper inspired
some of the investigation described here, there are also a couple of open
questions with regards to this paper. For example, in it the authors describe
a packet format for transmitting chunks of vertices between PEs for setting
up the next wavefront. On the receiver side, the arrival of a packet is detected
by polling for a special header token, then polling for a special footer token,
and then assuming the entire packet is there. This assumes ordered delivery
of bytes and is inconsistent with both the OpenSHMEM specification and
the guarantees made by most modern network hardware.

3 OpenSHMEM Graph500 Implementations
Based on the related works described in Section 2, we developed three from-
scratch implementations of Graph 500 in pure, flat OpenSHMEM.We refer to
these implementations as Bitvector, Concurrent-Fence, and Concurrent-
Hash.

3.1 Bitvector

The Bitvector implementation was inspired by the Replicated reference im-
plementation, and uses bitvectors to communicate traversed vertices among
PEs at each wavefront level. Recall that Replicated was the best perform-
ing MPI reference implementation, and while this algorithmic approach does
not take advantage of one-sided RDMA in OSHMEM, a direct port of the
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Figure 1: Time to complete 10 all-gather operations using Cray MPICH and
Cray SHMEM on Titan with various send buffer sizes.

best performing MPI implementation is an important point of comparison.
However, we found that the OSHMEM version performed poorly because
of scalability differences between MPI_Allgather and shmem_fcollect per-
formance on the Titan supercomputer at ORNL [5]. To quantify this per-
formance difference, we wrote a microbenchmark comparing MPI_Allgather
and shmem_fcollect on Titan (source code available at [10] and [11]). Fig-
ure 1 plots the time to do 10 all-gathers at varying send buffer sizes. Figure 2
plots the same data, but on a log scale. All experiments were run with Cray
MPICH 7.4.0 and Cray SHMEM 7.4.0.

Note that in Figure 1 and 2 there is a large discrepancy between MPI
and OpenSHMEM. At the buffer sizes that we are interested in for Graph500
(KBs to MBs) Cray’s OpenSHMEM all-gather implementation is 5-10× slower.
At the end of the day, this prevents an efficient port of the Replicated MPI
version to OpenSHMEM. As a result, the Bitvector OpenSHMEM imple-
mentation is a dead end for the time being.
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Figure 2: Time to complete 10 all-gather operations using Cray MPICH and
Cray SHMEM on Titan with various send buffer sizes. Axes are in log scale.
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3.2 Concurrent-Fence

The Concurrent-Fence implementation was inspired by the work described
in [12].

Concurrent-Fence is wavefront-based, and distributes nodes in the graph
across PEs. Every PE has four primary data structures: an active queue, an
inactive queue, a receive buffer, and a linked list of send buffers.

At the start of each BFS wavefront, the following properties hold:

1. The active queue contains a list of vertices in the graph that are owned
by this PE and which should be traversed in the current wavefront.

2. The inactive queue is completely empty.

3. The receive buffer is completely empty.

4. The list of send buffers is pre-populated with many send buffers, each
sized to hold on the order of hundreds of (vertex, parent) tuples for
transmission to remote PEs. Send buffers are used to notify remote
PEs of vertices that they should traverse in the next wavefront, as
the local PE encounters them as neighbors of vertices in the current
wavefront.

The processing of the vertices stored in the active queue involves travers-
ing the queue and iterating over the neighbors of each vertex in it. If the
local PE knows a given neighbor vertex has already been visited, it is skipped.
Otherwise, unvisited neighbors are added to the send buffer being filled for
the PE that owns the unvisited vertex. Send buffers are allocated from the
pre-allocated send buffer list when necessary. When a send buffer is filled
during traversal of the active list, it is asynchronously sent to the target PE
using an OSHMEM non-blocking put.

At the same time as we are traversing the active queue on each PE,
each PE also periodically checks for incoming send buffers from remote PEs.
Incoming send buffers are placed in a PE’s receive buffer by the transmitting
PE. A remote atomic add is used on a receive buffer index to reserve space
in the receive buffer for each inbound send buffer. The inbound send buffer
is then placed in that reserved space. The format of a send buffer is depicted
in Figure 3, which is similar to the format described in [12].
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Figure 3: Format of a send buffer in the Concurrent-Fence implementation.

On the sending side, a single send buffer is transmitted as soon as it is
filled. First, the size and body of the buffer are transmitted in a single non-
blocking PUT. Then, a shmem_fence is issued to ensure ordering. Finally, the
special header value is sent, also with a non-blocking PUT. On the receiving
side, the PE periodically polls for the special header value in its receive buffer.
If it is found, the shmem_fence on the sending side ensures that the entire
body of the buffer has been received. If a PE detects a buffer has arrived in
its receive buffer, it processes this buffer by adding any unvisited vertices to
its inactive queue.

For termination detection, each PE sends a special “empty” buffer to ev-
ery other PE. This empty buffer signals to the receiving PE that a PE has
completed its processing of its active queue, and includes a count of the
number of new vertices transmitted to other PEs by that PE in the current
wavefront. Hence, each PE will wait to receive shmem_n_pes() - 1 “empty
buffers” and then terminate the BFS when no PE sent any new vertices on
the current wavefront. This operation is similar to a fuzzy barrier, though it
has the unfortunate property that the number of bytes transmitted scales ex-
ponentially with the number of PEs used (i.e. every PE sends to every other
PE). Concurrent-Fence has also been implemented with a simpler scheme
that uses a shmem_int_sum_reduce followed by a shmem_barrier_all for
termination detection. However, in our experience these two versions per-
form comparably at the scales tested.

If termination has not been reached, the active and inactive queues are
swapped at the end of each wavefront, all send buffers are restored to the
send buffer list, and the receive buffer index is reset to zero.
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Figure 4: Format of a send buffer in the Concurrent-Hash implementation.

3.3 Concurrent-Hash

The Concurrent-Hash implementation was motivated by the observation that
the Concurrent-Fence implementation performs a large number of shmem_fence
calls, which impedes scalability. It primarily differs from the Concurrent-
Fence version in its buffer format, and in how it detects buffer arrival.

The new buffer format is depicted in Figure 4.
Essentially, the goal of this new format is to allow a single send buffer to

be sent in a single non-blocking PUT without requiring a fence, while still
giving the receiving PE a way to detect receipt of an entire send buffer. The
key is the Body Checksum field in Figure 4 which checksums the contents of
the body, and the Header Checksum field which checksums the Buffer Size
and Body Checksum fields. Before transmitting a send buffer, the sender PE
must compute these checksums on the complete send buffer. On the receiving
end, the receiving PE no longer polls on a special header value (as it did in
the Concurrent-Fence implementation), but rather does the following:

1. Reads the next four bytes in the receive buffer, and for now assumes
that is a checksum of a buffer header.

2. Reads the following eight bytes in the receive buffer and computes
their checksum. If this does not match the previous four bytes, we
can assume no send buffer has arrived and abort processing the receive
buffer.

3. Otherwise, we then use the Buffer Size stored in the header to calculate
the size of the body of this buffer and compute the checksum of those
bytes in the receive buffer. If the calculated body checksum matches
the Body Checksum field in the header, the whole buffer has arrived.
Otherwise, it has not and we abort.
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In this approach, the checksum computation on the sending and receiving
ends could become a computational bottleneck. As a result, experiments were
run with several high-performance hashing algorithms, including CRC32,
MurmurHash [3], and CityHash [2]. In the end, CityHash was found to
perform the best for this type of data, and performance profiling shows that
each PE generally only spends ∼1% of execution time on hashing during a
Concurrent-Hash run of Graph500.

4 AsyncSHMEM Implementations
All work described in this section was done using the Offload implementation
of AsyncSHMEM, described in 4.

As mentioned in previous sections, G500 is generally a communication-
bound algorithm. Only in special cases (Replicated) is there enough com-
putational work that G500 can benefit from multi-threaded parallelism, and
unfortunately the current performance of shmem_fcollect prevents us from
building a well-performing OpenSHMEM implementation based on those
techniques (see Section 3.1).

Hence, while previous application studies with AsyncSHMEM have fo-
cused on the use of asynchronous task parallelism for hybrid applications [13],
in G500 we focus more on concurrency and programmability. That is, us-
ing a single runtime thread per PE with computation and communication
multiplexed cooperatively on it by the AsyncSHMEM runtime.

As part of this work, we built AsyncSHMEM implementations of both
the Concurrent-Fence and Concurrent-Hash OpenSHMEM versions.

The changes made to create the AsyncSHMEM versions of Concurrent-
Fence and Concurrent-Hash are similar. In particular, we eliminate the
need to periodically poll for new incoming messages by using the novel
shmem_async_when family of APIs described in previous work [13]:

void shmem_int_async_when( volat i le int ∗ ivar , int cmp ,
int cmp_value , void (∗ ca l l ba ck ) ( void ) ) ;

This API is similar to the shmem_wait family of APIs, in that it triggers
local operations by comparing the value at the symmetric heap location ivar
to cmp_value using the comparison operator specified by cmp. However,
rather than blocking the current thread like shmem_wait, shmem_async_when
triggers an asynchronous task when the specified condition is satisfied.
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Figure 5: A trace of OpenSHMEM calls and their elapsed time inside a single
PE from an execution of Concurrent-Hash on 128 nodes.

In Concurrent-Fence and Concurrent-Hash, we use the shmem_async_when
API to trigger tasks when new incoming messages are detected by either trig-
gering them on the special header value in Concurrent-Fence, or on a change
in the value stored at the location where we expect a header checksum to
appear in Concurrent-Hash.

This change reduces clutter in the code, and hands over the problem
of polling intervals and other scheduling issues to the global AsyncSHMEM
scheduler. It also improves the ability of the AsyncSHMEM system to vi-
sualize the application workload by exposing more semantic information to
the runtime. For example, Figure 5 plots a trace from a single PE run-
ning the Concurrent-Hash implementation. This trace was collected using
AsyncSHMEM-specific, low-overhead tracing capabilities. Note that the y-
axis corresponds with specific OpenSHMEM APIs, offering more high-level,
semantic information to the programmer about where their application is
spending time.

5 Performance Evaluation
For the evaluation reported in this section, all runs use a graph with 229 nodes.
All experiments are performed on the Titan supercomputer at ORNL [5].
Cray MPICH 7.4.0 and Cray SHMEM 7.4.0 are used in all experiments.

We compare the reference Simple and Replicated MPI implementations to
our own Concurrent-Fence and Concurrent-Hash OpenSHMEM implemen-
tations. We compare against Simple and Replicated with both 1 core per
MPI rank (i.e. flat MPI) and with 16 cores per MPI rank (i.e. hybrid MPI
+ OpenMP).
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The comparison to Simple with 1 core per rank is the most apples-to-
apples, as it is algorithmically the most similar MPI-based implementation
to our OpenSHMEM versions (and hence has the most similar communication
patterns). Using 1 core per rank also makes it a more fair comparison, as the
number of PEs will scale equally for both implementations, whereas with 16
cores per rank there are 16× fewer ranks communicating.

The comparison to Replicated with 1 core per rank is done as a one-to-
one comparison of the scalability of the algorithm implemented by Algorithm
compared to the algorithm implemented by Concurrent-Fence/Hash. While
the two implementations are significantly different algorithmically and in
terms of the communication performed, it is important to compare to the
highest performing alternative.

While we have not to-date constructed a hybrid, multi-threaded imple-
mentation of either Concurrent-Fence or Concurrent-Hash, we also compare
against both Simple and Replicated with hybrid parallelism in order to be
certain we are measuring the peak performance possible, given the same hard-
ware resources. However, we note that using hybrid parallelism reduces the
number of ranks communicating, and is therefore a weaker test of scalability.

Figure 6 plots strong scaling curves for all six implementations. Simple-1
and Replicated-1 refers to those implementations with 1 core per PE, while
Simple-16 and Replicated-16 refers to those implementations with 16 cores
per PE. Note that the y axis is log scale in Figure 6, and that none of these
implementations use AsyncSHMEM.

First, we note that Concurrent-Fence and Concurrent-Hash are both able
to beat flat MPI (i.e. Simple-1 and Replicated-1), and that flat MPI stops
scaling after 128 nodes.

Second, we note that while Concurrent-Fence does continue to improve as
you add more nodes, Concurrent-Hash’s removal of excessive shmem_fence
calls leads to better scaling.

Third, we note that only Replicated-16 outperforms the flat implementa-
tions Concurrent-Fence and Concurrent-Hash as a result of fewer MPI ranks
and less inter-rank communication. However, from 128 to 256 nodes our
Concurrent-Hash implementation improves by 33% while the Replicated-
16 implementation only improves by 13%. Hence, despite the fact that
Concurrent-Hash is running with 16× as many PEs, it is still scaling better
than Replicated-16.

Figure 7 reports overheads from using the AsyncSHMEM runtime to
schedule triggered asynchronous tasks rather than using manual polling. In
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Figure 6: Scaling of several Graph 500 implementations. Note that the y
axis is log scale.
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Figure 7: AsyncSHMEM Overheads.

general, we see approximately 5% overhead. While this is larger than de-
sired, it is an upper limit. There has not yet been any exploration of more
complex, cooperative, non-greedy scheduling algorithms for computation and
communication on the AsyncSHMEM runtime. Most of this overhead likely
comes from memory allocation system calls needed for task creation in the
runtime, which are unnecessary in a manual polling approach.

6 Conclusions & Future Work
This work summarizes the state of the world today for the Graph500 bench-
mark and details our own investigation into running it on OpenSHMEM
and AsyncSHMEM. While for flat distributed programs OpenSHMEM has
demonstrated a significant performance and scaling benefit, when comparing
against a hybrid MPI+OpenMP implementation the reduction in communi-
cation from the hybrid approach leads to speedup over our flat OpenSHMEM-
based implementations. Unfortunately, it seems the current performance of
OpenSHMEM all-gather operations limits our ability to implement a sim-
ilarly structured version of Graph500 which can make use of intra-process
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parallelism.
While past work on irregular applications on AsyncSHMEM has focused

on the performance improvement possible from added parallelism, this work
instead demonstrates benefit from using AsyncSHMEM for programmability
and better tooling.

Future work in executing Graph500 on OpenSHMEM must focus on de-
veloping hybrid versions of the benchmark that combine multi-threaded and
multi-process parallelism. While the current version of the OpenSHMEM
specification [4] offers no way to use OpenSHMEM APIs in a thread-safe
manner, ongoing discussions in the OpenSHMEM Threading Working Group
are actively working to rectify that. That change may enable additional novel
work in Graph500 on OpenSHMEM.
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