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 Contributions by research topics: 
 
 

A. Development for Cloud drizzle separation studies for the ENA site based on  Doppler Spectra. 



Separation of cloud and drizzle microphysics and turbulence in warm clouds is extremely useful to shed 

light on precipitation initiation, including the role of aerosols and dynamics. Beyond the basic 

development of precipitation, the consequences of the in-cloud formation of drizzle and its sub-cloud 

evaporation are potentially critical determinants of cloud structural variation in the marine boundary 

layer, which impacts the development and maintenance of warm clouds and the corresponding radiative 

effects.  This section prepares a robust data product just to address this problem from profiling cloud 

radars, using a robust mathematical technique developed by the PIs team termed PTDM (parametric 

time domain method). A journal article is being prepared based on this work.  Doppler spectral analysis 

of radar observations have been pursued since the early days of radar meteorology. This has been used 

extensively in clear air and precipitation profilers extensively.  Spectral analysis in the standard weather 

radars have also come a long way  enabled by the rapid advancement in high speed signal processors.  

Precipitation profilers have significantly advanced the art of separating the various components within 

the vertical looking Doppler observation profiles (Gage, 1990,  Gossard 1988, Moissev and Chandrasekar 

,2007 ).  More recently Luke and Kollias (2013) used  spectral analysis techniques to separate  cloud and 

precipitation components using  vertical  profile of Doppler Spectra.  Spectral analysis is a very well 

developed  topic in the study of signal processing and it spans multiple disciplines  all the way from 

geosciences to  engineering. In this context we propose an advanced signal processing technique 

developed by the PI group to study the cloud drizzle separation and parameter estimation using ARM 

vertically pointing cloud radars in conjunction with other instruments. 

Radar signals can be represented as a sum of individual signals coming from scatters in the radar 

resolution volume. Because the individual signals have similar statistical properties, the joint probability 

density function of real and imaginary parts of the received signal can be considered to be zero mean 

normal ( Bringi and Chandrasekar 2001). The multivariate probability density function of the complex 

voltage can be expressed through its joint distribution function (Bringi and Chandrasekar 2001).  

The multivariate probability density function of the complex voltage can be written as:  

𝑓(𝑉) =
1

𝜋𝑁 det(𝑅)
exp(−𝑉𝐻 𝑅−1𝑉 ) 

            =  
1

𝜋𝑁 det(𝑅)
exp(−𝑡𝑟𝑎𝑐𝑒(𝑅−1𝑅𝑉 )] 

          

Where,  𝑉 is the vector of the received signal samples, 𝑅 = 𝐸(𝑉𝑉𝐻 ) is the covariance matrix and 

𝑅𝑉 = 𝑉𝑉𝐻  is the sample covariance matrix. Here, superscript 𝐻 denotes the Hermitian.  If different 

echo types are present within the same radar observation volume, then the observed Doppler Spectrum 

can be written as  

𝑆(𝑣) =  ∑ 𝑆𝑖 (𝑣)𝑁
𝑖=1 + 𝑃𝑛  
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We can use this model to make cloud particle spectrum and drizzle particle spectra as two different sets 

of  radar echoes.  

 

When we have just cloud and drizzle together N is 2. The spectral moments of the signals can be 

obtained by minimizing the negative log-likelihood as  

 

           (A4) 

 

Where  

 

 

 

The likelihood function in (7) can have several minima. To retrieve unknown parameters one needs to 

make sure that an optimization outcome of (7) converges to a global minimum. To achieve this, it is 

important to properly select seed values for the nonlinear optimization procedure.  

 

Where R() and R are the sample covariance matrix and the model covariance matrix, respectively.  When 

the signal only contains one type of echo, its Doppler power spectrum follows a Gaussian shape (N=1). 

However, in the present of drizzle and cloud mixture, the resulting spectral shape can depart from 

Gaussian. In such case, goodness of fit parameters could be used to detect the present of drizzle in the 

mixture which is described in the error structure of the procedure   

The cloud drizzle separation algorithm is summarized as follows:  

- First, the cloud, drizzle map (C/D map) is created using PTDM goodness of fit parameters. It is noted 

that PTDM is only applied to signals above Cloud base. 

- The C/D map is processed (smoothened) to reduce the estimate uncertainty.  

-  Re-apply PTDM with two-echo model for the gates with the presence of drizzle. 
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Classify cloud and drizzle echoes in a way so that it remains the continuity of drizzle signals below and 

above the Cloud base. The architecture of the cloud drizzle separation is shown in Fig A1. 

 

The advanced parametric modeling method works with a single radar power spectra profile and 

performs well in most scenarios. Drizzle reflectivity can be obtained accurately without the need of a 

compensation factor when cloud and drizzle echoes overlap heavily. The applications of the technique 

include inference of the vertical air motion, drizzle drop size distribution, and the dynamical and 

microphysical processes during the transition from cloud to drizzle.  

 

 

 

Figure A1.   The Architecture of the Cloud Drizzle separation System. 

 



Fig A2 shows an example retrieval of cloud drizzle separation from ARM cloud radar.  The figure on the 

left shows the time resolved vertical profile of reflectivity and velocity whereas the figure in the middle 

shows the cloud profiles and the figure on the right shows the drizzle profiles.  These profiles are directly 

from the code, and no corrections have been made that shows the robustness of the procedure. 

The following Fig A2 shows the cloud drizzle separation methodology for one spectrogram. This can be 

implemented and extended over time to get full scale retrieval. This technique is a further expansion 

and refinement of the spectra based technique developed by Luke et al (2013).  Subsequently the 

observations can be developed into a cloud drizzle separation product as shown in Fig A3.  

  
Figure A2. Radar Doppler spectrum and the 
spectral separation  

Figure A3.  Time profile of cloud drizzle separation 

 

B. Advanced radar retrieval for the SGP site.  

This research essentially focused on microphysical retrievals to get the retrievals from both X band 

radars and networked observations in SGP.   A raindrop size distribution (DSD) retrieval method for a 

weather radar network consisting of several X-band dual-polarization radars is proposed. An iterative 

maximum likelihood (ML) estimator for DSD retrieval in a single radar was developed in our previous 

work, and the proposed algorithm in this paper extends the single radar retrieval to radar networked 

retrieval, where ML solutions in each single radar node are integrated based on a Bayesian scheme in 

order to reduce estimation errors and enhance accuracy. Statistical evaluations of the proposed 

algorithm were carried out using radar simulations. The results with eight radar nodes showed that bias 

and standard errors are - 0.05 and 0.09 in log(Nw); Nw (mm-1m-3 33 ) and 0.04 and 0.09 in D0 (mm) in 

an environment with fluctuations in dual-polarization radar measurements (normal distributions with 

standard deviations of 0.8 dBZ, 0.2 dB, and 1.5 deg in Zhm, Zdrm, and ΦDPm, respectively). Further 

error analyses indicated that estimation accuracy depended on the number of radar nodes, ranges of 

varying μ, raindrop axis ratio model, and system bias errors in dual-polarization radar measurements. 

These results have been reported in multiple articles.  

The SGP site is a unique site and has a network of X-band radars and a C-band radar (in addition to K and 

W band systems). The PI specialized in developing networked radar retrieval algorithms,  which have 



resulted that have been published in peer-reviewed literature. Single radar algorithms were also 

published in peer-reviewed literature. 

 

B.1. Methodology 
 
B.1.1. Background 
 
The three dual-polarization measurements of measured reflectivity—horizontal polarization, ZHm; 
measured differential reflectivity, ZDRm; and measured differential propagation phase, ΦDPm—are the 
inputs of the NTR. Strictly speaking, these three measurements are input to the SRR, and then the 
results of the SRR are input to the NTR. In this subsection, the relations between the three dual-
polarization measurements and the DSD are described as follows: 
 

    (B.1) 

    (B.2) 

               (B.3) 
 

where ZH, ZDR, and KDP are equivalent reflectivity factor at horizontal polarization, differential 

reflectivity, and differential propagation phase, respectively. Terms AH and ADP are precipitation 

attenuations for ZH and ZDR, respectively. And nZHm, nZDRm, and nΦDPm are random variables 

corresponding to the statistical properties of ZHm, ZDRm, and ΦDPm, respectively. Thus, ZHm, ZDRm, 

and ΦDPm are also random variables in the NTR. Terms ZH, ZDR, KDP, AH, and ADP are expressed by 

DSD, N(D), as 

  (B.4) 

                                       (B.5) 
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  (B.7) 

  (B.8) 
 

where  and . Terms shh,vv(D) are backscattering amplitudes at horizontal and 
vertical polarizations, and fhh,vv(D) are forward-scattering amplitudes at horizontal and vertical 



polarizations, respectively. Terms  and  are a real part and an imaginary part, respectively. Term 
λ is the wavelength of transmitting electromagnetic wave (mm). Term Kw is defined by a complex index 
of refraction of water ε as 

                                  (B.9) 
 

In the NTR, N(D) is defined by the normalized gamma DSD (Ulbrich 1983; Testud et al. 2001) to describe 

the natural variability of the DSD, as below: 

                   (B.10) 
where 

                                              (B.11) 
 

                          (B.12) 
 

and D is a diameter of a raindrop (mm), Nw is an intercept parameter (mm−1 m−3), D0 is a median 
volume diameter (mm), μ is a shape factor that is dimensionless, and  is a gamma function. 
 
B.1.2. SRR 
 
This subsection describes the SRR, whose details are elaborated in Yoshikawa et al. (2014). The SRR is 
implemented as the preprocessing of the NTR, as shown in Fig. b.1. The SRR is an iterative ML approach 
to fit a range profile of the DSD parameters to dual-polarization measurements. A likelihood function of 
a range profile in the mth beam of the lth radar node is expressed as 
 

                        (B.13) 
 
where  is a Gaussian PDF whose mean vector and covariance matrix are represented as mx 
and Sx, respectively. Terms x(m,l) and y(m,l) are the range profiles of the DSD parameters and the dual-
polarization measurements, respectively. Term F(x(m,l)) is the relation between x(m,l) and y(m,l), 
corresponding to Eqs. (1)–(12). Term Σy(m,l) is a covariance matrix of y(m,l), which is assumed to be 
known. Term M is the number of beams, and L is the number of radar nodes in the radar network. 
Terms x(m,l) and y(m,l) are represented as follows: 
 

   (B.14) 
 

    (B.15) 
 

where the superscript n indicates a parameter in the nth range bin rn of N range bins. Terms N′w, 

D′0,and μ′ are applied as state variables, which are defined to avoid physical impossibilities through the 

iterative process, 



                              (B.16) 
 

                                 (B.17) 
 

                                             (B.18) 
 

where μ is assumed to be a constant value, μC, in whole range of a radar beam as 
 

                              (B.19) 
 

Thus, Nw and D0 are kept positive and μ is squashed from −1 to 5 without any constraints to N′w, D′0, 

and μ′. In summary, the SRR solution, , is calculated by minimizing a cost function, which is derived 
from the likelihood function of Eq. (13), as shown below: 
 

(B.20) 
 

where σZH, σZDR, and σΦDP are standard deviations for each dual-polarization measurement, 

respectively, which are diagonal elements of Σy(m,l). The iterative minimization is reasonably converged 

by the Gauss–Newton (GN) method (Nocedal and Wright 1999). 

 

                Figure b.1, Processing flow of DSD retrieval through the observation, the SRR, and the NTR.  



B.1.3 NTR 
 
A flowchart of the NTR is shown in Fig. b.2, which indicates that the NTR integrates the SRR solutions 

through three steps.  

 

                Figure b.2, Flowchart of the NTR 

In step 1, posterior PDFs in each radar node are calculated from the SRR solutions. Step 2 transforms the 

posterior PDFs on the radar polar coordinate of each radar node to those on the common Cartesian 

coordinate defined in the radar network. In step 3, the posterior PDFs of each radar node on the 

common Cartesian grid are integrated optimally in a Gaussian stochastic sense. 

1) Step 1: Posteriors of radar node 
 
A posterior PDF in the mth beam of the lth radar node is theoretically derived by the product of a 
likelihood function and a prior PDF as 
 

          (B.21) 
 

With a linear approximation of (x(m,l)) around , the likelihood function of Eq. (13) is transformed 
as 

         (B.22) 
where 



                     (B.23) 
 

Supposing a situation without any other prior information, a noninformative PDF,  
 

, is applied to the prior PDF. Thus, Eq. (B.21) is transformed as 
 

       (B.24) 
where 

             (B.25) 
 

Assuming that range profiles of DSD parameters are independent of each other, the posterior PDF, 
including all the beams of the lth radar node, is expressed as 
 

                 (B.26) 
where 

                     (B.27) 
 

             (B.28) 

 

2) Step 2: Transitions to a common Cartesian grid 
 
A posterior PDF in the lth radar node on the lth radar polar coordinate is transited to that on a common 
Cartesian coordinate, as shown below: 
 

  (B.29) 
 

where xC(i) is a vector including the two DSD parameters in the ith grid of I common Cartesian grids, 
defined as 
 

           (B.30) 
 

Note that μ′ is omitted because the SRR does not consider a range profile of μ. Term T(i,l) is a transition 
matrix from a polar coordinate of the lth radar node to the ith grid of the common Cartesian grid. 
Transition methods from polar to Cartesian coordinates have been described (Trapp and Doswell 2000). 
The closest-point method, which is primitive in radar meteorology, is applied in this paper. Equation (29) 
indicates that other linear transition methods can be alternated.  
 
 

3) Step 3: Integration 



 
Posterior PDFs of all the radar nodes on the common Cartesian coordinate have now been prepared. 
Assuming that posterior PDFs calculated by each radar node are independent and identically distributed 
(i.i.d), their joint distribution is theoretically given as 
 

      (B.31) 
where 

     (B.32) 

              (B.33) 

Thus, the integrated solution  is the best solution of the radar network in a Gaussian stochastic sense. 

 

B.2. Evaluation by numerical simulation 
 
B.2.1. Specifications of numerical simulation 
 
Numerical simulations of the NTR are carried out to confirm their performance. Two-dimensional 
distributions of reference values of the DSD parameters are shown in Fig. b.3, where Nw and D0 are in 
Figs. b.3a and 3b, respectively. The reference values of Nw and D0 were generated from observed data 
on the Colorado State University–University of Chicago–Illinois State Weather Survey (CSU–CHILL) radar. 
The observation was carried out on 20 June 2000. The area shown in Fig. b.3 is placed inside the area of 
the observation. The observed data were converted to the reference values of DSD parameters with the 
use of the algorithm proposed by Gorgucci et al. (2002). The algorithm by Bringi et al. (2002) was applied 
in cases where the obtained KDP was noisy. Since it is well known that μ varies depending on D0, a 
varying μ model is applied in order to simulate a natural variation of μ. The μ of each range bin is 
determined by a linear μ–D0 relation as 
 

        (B.34) 
 

where D0max and D0min are the maximum and minimum D0 in the dataset, respectively. Terms μu and 

μl are the largest and smallest values in a horizontal profile of μ. In this section, 2.0 and −0.5 were 

selected for μu and μl, respectively. Observed parameters ZHm, ZDRm, and ΦDPm at a frequency of 9.5 

GHz (X band) were calculated from these generated reference values of DSD parameters on the 

assumption of spheroidal raindrops with the axis ratio of the Beard and Chuang (BC) model (Beard and 

Chuang 1987). Then, normally distributed fluctuations were added to the three observed parameters, 

whose standard deviations are 0.8 dBZ, 0.2 dB, and 1.5°, respectively. These values of the standard 

deviations were chosen by referring to Bringi and Chandrasekar (2001, chapter 6), wherein the 

theoretical fluctuations in the dual-polarization measurements are derived. The “×” marks in both 



panels of Fig. 3 indicate the positions of each radar node, which are assumed to be deployed with the 

same interval on a circle whose diameter is 30 km as connected by dashed lines. Numbers labeled at 

each radar node are noted beside each × mark. A square area bounded by the dotted line (its side length 

is about 21 km) is an area of interest in which DSD parameters are retrieved by the NTR. It is assumed 

that eight X-band radars are deployed on the field with a maximum observation range of 30 km and 

1024 range bins; that is, each range bin is about 30 m long. A disagreement between polar coordinates 

of the CSU–CHILL radar and the assumed X-band radar was solved by linear interpolation. 

 

 

                                        (a)                                                                                                (b) 

Figure b.3, 2D distributions of reference values of DSD parameters: (a) reference of log(Nw) [Nw (mm−1 

m−3)] (b) reference of D0 (mm). In each panel, “×” marks indicate the position of each radar node; 

nodes are located on a circle whose diameter is 30 km with the same interval as connected by dashed 

lines. Numbers labeled for each radar node are noted beside each × mark. A square area bounded by a 

dotted line is a target space. 

In the proposed algorithm, the same assumptions as in the calculation of the dual-polarization 

measurements from the reference values of DSD parameters—spheroidal raindrops and the BC model—

are applied (see Bringi and Chandrasekar 2001, chapter 4). In the zeroth step (the SRR), it is assumed in 

the algorithm that 16 adjacent range bins have the same DSD in order to reduce the effect of 

fluctuations in measurements and calculation costs. Thus, the algorithm has 64 state variables for both 

Nw and D0 in a radar beam. On the basis of this assumption, three measurements in a chunk of 16 range 

bins are calculated by one DSD, which means that solutions in this simulation have a range resolution of 

about 480 m. The iteration process of the GN method is stopped by a defined threshold of an iterating 

update or iteration count. These settings in the SRR are the same as in our previous work (Yoshikawa et 

al. 2014). An area of interest for the NTR is separated by 128 × 128 square grids. The closest -point 



method is applied for transition to the common grid. All these settings of the simulation are summarized 

in Table b.1. 

Table b.1, Simulation characteristics. 

 

 

The integration of the NTR is performed in each common Cartesian grid as shown in Eq. (B.31); that is, 
16 384 retrievals of the NTR are evaluated in the single 2D distribution of precipitation. In addition, the 
dataset of DSD parameters is the same as the one used in our previous work (Yoshikawa et al. 2014), 
where it is indicated that the statistical properties of the reference values almost agree with a long -term 
observational result by a Joss–Waldvogel disdrometer [see Fig. 2 in Yoshikawa et al. (2014) and Fig. 7.17 
in Bringi and Chandrasekar (2001)]. Therefore, this numerical simulation covers a wide range of 
precipitation and includes a sufficient number of attempts to confirm the theoretical performance of the 
NTR. 
 
B.2.2. Improvement from the SRR 
 
Figure b.4 shows the retrieved results. Figures b.4a and b.4b are horizontal distributions of Nw retrieved 

by the SRR on nodes 0 and 4, respectively, and Figs. b.4d and 4e are those of D0. The NTR results of Nw 

and D0 are shown in Figs. b.4c and 4f respectively, where they are retrieved by the NTR integration with 

nodes 0 and 4 (2-NTR), respectively. On the upper sides of Figs. b.4a and b.4d which indicate a weak 

precipitation region, discontinuities along the azimuth direction significantly appear. The ZH are roughly 

25–31 dBZ in this area, which is reasonable to make the SRR unstable. Compared with the reference 

shown in Fig. b.3, the retrievals in this area have larger errors than ones in the other areas. As seen in 

Figs. b.4c and b.4f, the NTR properly corrects the discontinuity in the upper area of node 0.  

 



 

Figure b.4, 2D distributions of retrieved DSD parameters: (a) the SRR retrievals of Nw in node 0, (b) the 

SRR retrievals of Nw in node 4, (c) the NTR retrievals of Nw with nodes 0 and 4, (d) the SRR retrievals of 

D0 in node 0, (e) the SRR retrievals of D0 in node 4, and (f) the NTR retrievals of D0 with nodes 0 and 4.  

Figure b.5, showing horizontal distributions of standard deviations of the SRR solutions of nodes 0 and 4 

(corresponding to the square roots of the diagonal elements of  and , respectively), indicates how 

integration of the NTR works. Figures 5a–5d show those of Nw in node 0, Nw in node 4, D0 in node 0, 

and D0 in node 4, respectively. As pointed out in Yoshikawa et al. (2014), the SRR is unstable in the case 

of weak precipitation throughout a beam because the DSD parameters have less sensitivity to the dual-

polarization measurements in such a case due to a characteristic of the nonlinear function expressed in 

Eqs. (B.1)–(B.12). However, the covariance matrix, , includes large variances in the diagonal elements 

corresponding to those unstable solutions. This is seen in the upper side of Figs. b.5a and b.5c. In the 

NTR, the DSD parameters are integrated considering each covariance based on a Bayesian scheme—that 

is, an accurate solution is obtained as long as one node in a radar network has a stable solution by the 

NTR utilizing a multidirectional observation environment. On the other hand, in the case of all nodes 



having a stable solution in a desired grid, the SRR retrievals in each node are integrated with almost 

equivalent averaging to derive retrieval with lower fluctuations.  

 

 

Figure b.5 2D distributions of standard deviations of the SRR solutions: (a) the standard deviations of Nw 

in node 0, (b) the standard deviations of Nw in node 4, (c) the standard deviations of D0 in node 0, and 

(d) the standard deviations of D0 in node 4. 

 

B.2.3. Error analyses 
 
To confirm the performance of the NTR with possible radar network situations, statistical evaluations 

are carried out by changing setting parameters of the numerical simulation with respect to the number 

of radar nodes, ranges of varying μ, axis ratio models, and system bias errors. Hereafter, 8-NTR is 

implemented on the assumption that the BC axis ratio model is applied, 2.0 and −0.5 are selected for μu 

and μl of the μ model, respectively, and no system bias error is considered in all the radar nodes if not 

specified. Throughout the error analyses, evaluated bias and standard errors are summarized in Table 2.  

 



Table b.2 Bias and standard errors of log(Nw) [Nw (mm−1 m−3)] and D0 (mm) resulting from the 

numerical simulations; bias error (standard error). Standard setting; 8-NTR, (μu, μl) = (2.0, −0.5), BC 

model, and no-biased measurements. In the others, the standard setting is applied if not specified. 

 

 

 

1) Number of radar nodes 
 
The 2- and 4-NTR, where nodes 0 and 4 and nodes 0, 2, 4, and 6 were applied, respectively, were 

compared to the 8-NTR. In Fig. b.6, bias and standard errors of Nw and D0 calculated by comparing the 

NTR results with the reference values are shown. Figures b.6a and b.6b correspond to those of Nw and 

D0, respectively. Each panel indicates bias and standard errors separately calculated in six different 

quantiles of each DSD parameter (i.e., <2, 2–2.5, 2.5–3, 3–3.5, 3.5–4, >4 for log(Nw), and 0–1.5, 1.5–2, 

2–2.5, 2.5–3, 3–3.5, >3.5 for D0.) For example, in Fig. b.6a, the three biases and standard errors in the 

leftmost row are those with reference values of log(Nw) less than 2. Dotted, dashed, and solid lines are 

bias and standard errors, represented with the vertical bars of the 2-, 4-, and 8-NTRs, respectively. For 

clarification purposes, the lines of bias and standard errors are plotted with slight shifts along the 

horizontal axis. Bias errors are equivalent among the NTRs through all the quantiles of each DSD 

parameters. Smaller standard errors appear by increasing the number of radar nodes. Table b.2 also 

indicates that bias errors of the 2-, 4-, and 8-NTRs are −0.05 in log(Nw) and either 0.03 or 0.04 in D0. The 

standard errors of the 2-, 4-, and 8-NTRs are 0.12, 0.10, and 0.09 in log(Nw) and 0.12, 0.09, and 0.09 in 

D0, respectively. This is apparently because the NTR is based on a Bayesian scheme where a greater 

number of observed samples decrease uncertainties in state variables. 

 



 

                                                 (a)                                                                                         (b) 

Figure b.6, Result of error analysis with regard to the number of the radar nodes. Bias and standard 

errors of (a) log(Nw) and (b) D0. The errors are represented with six different quantiles (i.e., <2, 2–2.5, 

2.5–3, 3–3.5, 3.5–4, >4 for log(Nw), and 0–1.5, 1.5–2, 2–2.5, 2.5–3, 3–3.5, >3.5 for D0.) In each panel, 

the dotted, dashed, and solid lines correspond to the 2-, 4-, and 8-NTR, respectively (lines are drawn 

with slight shifts for clarity). 

 

2) Ranges of varying μ 
 
Varying μ of the actual precipitation could give significant errors to the NTR since constant μ is assumed 

in each radar beam in the zeroth step (SRR). To evaluate those errors, dual-polarization measurements 

were calculated with three different ranges of varying μ, where μu and μl are 1) 0.0 and 0.0; 2) 2.0 and 

−0.5; and 3) 5.0 and −1.0, respectively.The second μ range is the same one as in section 3a. These values 

of μu and μl were prepared by referring to Ulbrich and Atlas (1998) and Moisseev and Chandrasekar 

(2007). The expression (μu, μl) = (0.0, 0.0) results in a constant μ model and is equivalent to the 

Marshall–Palmer DSD (Marshall and Palmer 1948). In Fig. b.7, bias and standard errors of Nw and D0 are 

shown. Dotted, dashed, and solid lines correspond to μ ranges 1–3, respectively. With the μ range 1, the 

NTR outputs retrievals with bias and standard errors of −0.00 and 0.05 in log(Nw), and 0.00 and 0.06 in 

D0, respectively, which are the best accuracy throughout the error analysis, as shown in Table b.2. The 

bias errors occur only because of spatial disagreements between the reference and the NTR. While the 

reference values of DSD parameters were calculated on the common Cartesian coordinate, dual-

polarization measurements in each radar node were calculated from DSD parameters on each radar 

polar coordinate. Then the standard deviations are due to a combination of the coordinate 

disagreement and the fluctuations in the dual-polarization measurements. Errors due to the constant μ 

assumption of the SRR appear in the μ ranges 2 and 3, as shown in Fig. b.7, where μ monotonically 

decreases along D0. This is because of the disagreement of the SRR’s assumption of constant μ with the 

spatial variation of μ. Both bias and standard errors increase with a higher variation of μ. Table b.2 



indicates that evaluation with the μ range 3 outputs the largest bias and standard errors in the three μ 

ranges, which are −0.10 and 0.14 in log(Nw), and 0.07 and 0.13 in D0, respectively These evaluated 

values are possibly the worst errors caused by the variation of μ because varying μ from −1.0 to 5.0 is 

naturally too large to exist in the entire target area. 

 

 

                                                  (a)                                                                                         (b) 

Figure b.7, Result of error analysis with regard to the ranges of varying μ. Bias and standard errors of (a) 

log(Nw) and (b) D0. The errors are represented with six different quantiles (i.e., <2, 2–2.5, 2.5–3, 3–3.5, 

3.5–4, >4 for log(Nw), and 0–1.5, 1.5–2, 2–2.5, 2.5–3, 3–3.5, >3.5 for D0.) In each panel, the dotted, 

dashed, and solid lines correspond to the three μ ranges with μu and μl of 0.0 and 0.0, 2.0 and −0.5, and 

5.0 and −1.0, respectively (lines are drawn with slight shifts for clarity). 

 

3) Axis ratio models 
 
Errors caused by incompatibility of the axis ratio between the NTR assumption (the BC model used in 

this paper) and actual precipitation were confirmed in this subsection. Two numerical simulations where 

dual-polarization measurements were calculated using the Pruppacher and Beard (PB) model 

(Pruppacher and Beard 1970) and the Thurai and Bringi (TB) model (Thurai and Bringi 2005) are 

compared with the BC model. In Fig.b. 8, the bias and standard errors of Nw and D0 are shown. Dotted, 

dashed, and solid lines correspond to the PB, TB, and BC models, respectively. As in the error analysis of 

the μ range, it is seen in Fig. b.8b that the bias error of the PB and TB models monotonically depend on 

D0. This is because an axis ratio is a function of D. In the simulation with the PB model, the bias and 

standard errors are −0.11 and 0.15 in log(Nw), and 0.12 and 0.12 in D0, respectively. In the TB model, 

those errors are −0.22 and 0.21 in log(Nw), and 0.16 and 0.24 in D0, respectively. According to Table b.2, 

the bias and standard errors could be affected up to 2 times greater than those of the varying μ from 



−1.0 to 5.0. Note that the area of interest is too large to have precipitation with a uniform axis ratio 

model. Therefore, the evaluated bias and standard errors are the possible worst errors caused by the 

axis ratio model. 

 

 

                                                   (a)                                                                                         (b) 

Figure b.8, Result of error analysis with regard to the axis ratio models. Bias and standard errors of (a) 

log(Nw) and (b) D0. The errors are represented with six different quantiles (i.e., <2, 2–2.5, 2.5–3, 3–3.5, 

3.5–4, >4 for log(Nw), and 0–1.5, 1.5–2, 2–2.5, 2.5–3, 3–3.5, >3.5 for D0.) In each panel, the dotted, 

dashed, and solid lines correspond to the PB, TB, and BC models, respectively (lines are drawn with 

slight shifts for clarity). 

 

4) System bias errors 
 
Radars may have system bias errors in their measurements from several causes such as a water-coated 

radome, temperature-dependent amplifier gain, and so on. Although these kinds of errors are typically 

calibrated in the quality control process, it is difficult to correct them completely. To make an error 

analysis of this problem, the ZHm and ZDRm of all eight nodes were independently and randomly 

biased. Bias values of ZHm were generated by a Gaussian random number generator with a mean value 

of 0 dBZ and a standard deviation of 1 dBZ. Random biases with a mean value of 0 dB and a standard 

deviation of 0.2 dB were given for ZDRm. Note that the measurements are biased by the same value in 

an arbitrary radar node. Twenty independent simulations of 8-NTR showed that the bias and standard 

errors of log(Nw) are −0.09 and 0.15, and that those of D0 are 0.07 and 0.14, respectively. As shown in 

Table 2, these system biases could give almost 2 times worse bias errors and about 1.5 times worse 

standard errors than the standard setting in both log(Nw) and D0 retrievals. 

 



B.3. Conclusions 
 
An integrated DSD retrieval algorithm for an X-band dual-polarization radar network is proposed. The 
proposed algorithm, the NTR, is based on our previous work, which is a DSD retrieval method on a single 
radar, the SRR (Yoshikawa et al. 2014). The NTR is configured with the three steps, as below. In the 
preface, the SRR is implemented in all the radar beams of all the radar nodes included in a radar 
network. In the first step, the SRR solutions in each radar node are transformed to a posterior PDF; that 
is, a covariance matrix of the SRR solutions is calculated from known error covariance by linearly 
approximating the governing equation around the SRR solution. In the second step, the SR R solutions 
and their covariance matrices are transited from polar gridded ones to a common Cartesian gridded one 
using a transition matrix. In the final step, the SRR solutions and their covariance matrices on the 
common Cartesian grid are integrated based on a Bayesian scheme. It is concluded that the integrated 
solution of the NTR is theoretically the best estimation in the Gaussian stochastic sense.  
 
Numerical simulations were carried out to verify the estimation accuracy, supposing a radar network in 
which two, four, or eight X-band radars are deployed on a circle whose diameter is 30 km. The reference 
value of DSD parameters was created from the CSU–CHILL radar data. Dual-polarization radar 
measurements of each radar node were calculated from the reference values of DSD parameters on the 
assumption of a spheroid raindrop shape and a fixed axis ratio model (see Table 1 for details of setting 
parameters.) As described in Fig.b.4, the NTR properly corrects the wrong spatial discontinuities of the 
SRR, which is because the SRR retrieves DSD parameters in respect to each radar beam independently. 
Error analyses to evaluate the performance of the NTR in possible situations of a radar network were 
carried out. Specifically, statistical evaluations were implemented with the numerical simulation by 
changing the setting parameters of the numerical simulation with respect to the number of radar nodes, 
ranges of varying μ, axis ratio models, and system bias errors. Because the NTR is based on a Bayesian 
scheme, the number of radar nodes works to reduce standard errors in the retrievals. The constant μ 
assumption of the SRR yields bias and standard errors of −0.10 and 0.14 in log(Nw), and 0.07 and 0.13 in 
D0 with varying μ from −1.0 to 5.0, respectively. Incompatibility of axis ratio models between the NTR 
assumption and actual precipitation gives retrieval errors up to 2 times greater than varying μ from −1.0 
to 5.0. Further, system bias errors of about 1 dBZ and 0.2 dB (both of which are root -mean-square 
values) in ZHm and ZDRm, respectively, give bias and standard errors of −0.09 and 0.15 in log(Nw), and 
0.07 and 0.14 in D0, respectively. In actual observation, a natural combination of these error sources 
should be included, and each of the error sources could be heavier than the settings of the error 
analyses. Our future work will entail performance evaluations in the CASA experiment or the 
Midlatitude Continental Convective Clouds Experiment (MC3E) by comparing ground-based devices, 
such as disdrometers, with DSD parameters and rainfall rate. 
 

The concept of the NTR can be expanded from a radar network to a multisensor network, and the 

expansion will be a part of our future work. In the case of a weather observation campaign, many kinds 

of sensors such as radars at several frequencies, rain gauges, and disdrometers are deployed. In general, 

ground-based devices are utilized as hard constraints, where radar-retrieved physical parameters of 

precipitation are corrected so as to exactly match a measurement of ground-based devices. However, a 

ground-based device would have uncertainty due to not only its accuracy but also gaps of positions and 

resolution volumes. Therefore, a hard constraint generally gives a bias error by neglecting those 

uncertainties. On the other hand, the concept of the NTR offers soft constraints based on a Bayesian 



scheme, which appropriately improves radar-retrieved physical parameters of precipitation by 

considering both uncertainties of a radar retrieval and measurement of a ground-based device. 

 

 

C. Characterizing falling snow using multifrequency dual-polarization measurements 

Combinations of dual-polarization measurements at various radar frequencies and elevation angles 

together with realistic scattering computations of snowflakes are compared in order to study how they 

can be used to characterize falling snow. In the study, we use seven different ice crystal habits, 

including graupel, and different types of aggregates. The single-particle scattering is modeled using the 

discrete-dipole approximation, and the backscattering cross sections are integrated over exponential 

size distributions. We take advantage of statistical properties of the large set of scattering results to 

determine which combination of measurements provide overall best characterizat ion of snow types. 

We find that a combination of the differential reflectivity and the depolarization ratios, especially in the 

circular basis, is useful in the characterization, while the dual-frequency ratios at higher frequencies 

than the Ku band are almost as good. Also, the assumption of preferential orientation for single ice 

crystals plays an important role when analyzing the results. These conclusions are tested against both 

airborne and ground-based radar measurements obtained during the Global Precipitation 

Measurement Cold-season Precipitation Experiment field campaign in 2012. The results show that 

dual-polarization and dual-frequency measurements provide complimentary information and can 

narrow down the characterization of falling snow considerably. 

 

C.1. Numerical Methods 
 
C.1.1 Shape Models for Snowflakes 
 
Due to the importance of shape in scattering at the resonance regime (size parameter x = ka > 1, where 

k = 2π/λ is the wave number and λ the wavelength of the incident wave, and a the volume-equivalent-

sphere radius of the particle), it is advisable to use a physically realistic model for the various shapes for 

snowflakes and ice crystals (see section 1). In the present study, we use six different pristine ice crystal 

types: hexagonal column, hexagonal plate, needle, ordinary dendrite, fern-like dendrite, and six-bullet 

rosette, covering most of the more common types occurring at various atmospheric conditions and 

altitudes. In order to mimic natural shapes, we use the measured thickness-to-diameter and length-to-

diameter ratios reported by Pruppacher and Klett [1997] for the different types of ice crystals (see 

Table c.1). 

 

Needles are modeled as long circular cylinders, while for the dendrites, we use the crystal growth 

algorithm by Reiter [2005]. It is based on a 2-D cellular automaton using two parameters that control 

the amount of water available for the cells both locally and globally. This model was chosen mainly due 

 



 

Table c.1 Snowflake Properties for the Computations 

 

 
to its simplicity and physical basis, whereas some other models may be more realistic [Libbrecht, 2005; 
Gravner and Griffeath, 2009]. For the six-bullet rosettes, we adopted the shapes by Um and McFarquhar 
[2007], which are based on aircraft measurements from cirrus clouds.  
 
For the purpose of comparison, we also include lump graupel generated with the fractal model by 
Ishimoto [2008]. In the fractal model, the snowflake is generated using an iterative method, which adds 
ice cells into a cubic lattice. The amount of ice added is controlled by two parameters: the fractal 
dimension fD and the total number of iterations. For generating graupel, the fractal dimension fD=2.7 
was chosen in order to get a proper fit to the measured mass-diameter relationship by Heymsfield and 
Kajikawa [1987]. This value is also close to the maximum possible with the current implementation. For 
the number of iterations, we use 4, 5, 6, and 7. 
 
To generate realistic aggregates, we use the physically based aggregation model by Westbrook [2004]. It 
mimics the aggregation process in a stochastic way by iteratively determining the probability of collision 
between randomly chosen ice crystals, which depends on the size and fall speed of the candidates. Due 
to the lack of observations, we assume random orientation and a narrow Gaussian size distribution for 
the ice crystals in an aggregate because of the complex flow around the snowflakes. The ice crystals are 
attached without overlapping to their nearest neighbor, which can make the aggregates a bit too fluffy. 
For the aggregates of needles, we use the method by Kajikawa et al. [2000] to attach similar -sized 
crystals. 
 



In the study, we use aggregates of needles, ordinary dendrites, fern-like dendrites, and six-bullet 
rosettes, i.e. four out of six pristine types. Aggregates of the other types are not as common and are 
therefore omitted from this study. The number of crystals (or monomers) in each aggregate is var ied 
and depends on the ice crystal type. For needles and dendrites, we use 2, 10, 20, 30, 40, and 50 
monomers, while for the six-bullet rosettes, we use 2, 5, 10, 15, and 20. These values are arbitrary in the 
sense that natural particles can have any number of monomers, although there is a physical limit to the 
maximum number due to breakup. Also, the smaller number of crystals for rosette aggregates than for 
dendrites/needles is based on aircraft measurements [Um and McFarquhar, 2007].  

 

Single ice crystals tend to fall in preferential orientation [Cho et al., 1981; Thomas et al., 1990; Matrosov 
et al., 2005; Noel and Sassen, 2005]. To simulate this, we orient the generated ice crystals according to 
the measurements by Noel and Sassen [2005] for warmer clouds, which indicate highly horizontal 
orientation with an average canting angle of about 2° and a Gaussian distribution with a standard 
deviation of 1°. It should be noted that these values are based on observations of planar crystals and 
may not be representative of all the types used in this study. The orientation of the aggregates is 
assumed to be random, although a recent study by Hogan et al. [2012] indicates a preferential 
orientation. 
 
Examples of the modeled shapes for the different ice crystal types and their aggregates are shown in 

Figure c.1. Note that we only model dry pristine particles and their aggregates. We are neglecting 

melting, riming, and breakup, which are more poorly understood and need more in situ measurements 

in order to make the shape models realistic. Also, the irregularity/asymmetry of natural ice crystals is 

also neglected mainly due to the lack of observations. 

 

 
 

Figure c.1 Examples of the modeled snowflakes as viewed at 90° elevation angle. (top to bottom) The 

crystal types are hexagonal column, hexagonal plate, needle, ordinary dendrite, fern-like dendrite, six-



bullet rosette, and lump graupel. The number of crystals in an aggregate is shown on the upper right 

corner, while for the lump graupels, it shows the total number of iterations. The average size for each 

type is also shown at the bottom. 

 

C.1.2 Physical Properties of Modeled Snowflakes 
 
In Figure 2, we show the mass of both the modeled particles and the measured values from various field 

studies as a function of the maximum diameter Dmax, which can be computed in arbitrary plane: xy, xz, 

or yz [Korolev and Isaac, 2003]. The single ice crystals and lump graupels are shown in Figure c.2 (left), 

while the aggregates are in Figure c.2 (right). 

 

The agreement between the measurements and the shape models is overall good, but some crystal 

types, such as the single dendrites, exhibit larger mass for the models. There are two main reasons for 

the differences for single crystals. First, the measured m–D relationship and the thickness-diameter ratio 

for ice crystals are from different studies, which can produce a selection bias. Second, the thickness-

diameter ratio may not be constant over the whole crystal, as we have assumed in our 2-D dendritic 

 

 
Figure c.2 (left) The mass of single ice crystals and lump graupel and (right) aggregates of ice crystals as a 

function of the maximum diameter. Hexagonal columns are shown in blue symbols, hexagonal plates in 

black, ordinary dendrites in red, fern-like dendrites in gray, needles in green, six-bullet rosettes in cyan, 

and lump graupels in magenta. The corresponding mass-diameter relationships from field 

measurements is also shown for each crystal type in Figure c.1 (left), and more general relationships for 

aggregates in Figure c.1 (right). 

 

shape model. Natural dendrites accumulate more ice to the center of the branches as they grow, which 
produces less overall mass than our model. 
 



For the aggregates (Figure c.2, right), the agreement between the measurements and shape models is 
also reasonable, although the modeled aggregates of needles and ordinary dendrites seem to have a 
factor of about 0.5 less mass than the measurements on average. However, it should be noted that 
some of the measurements include various mixtures of ice crystal types and their aggregates including 
both partly melted and rimed snow making a direct comparison unreliable.  
 
The aspect ratio α is defined as the ratio between Dmax derived in some direction and the maximum 
diameter Dw perpendicular to this direction 

                                (c.1) 
 

 

In this study, we average over three perpendicular directions (xy, xz, and yz). 
 
Figure c.3 shows the aspect ratio for the same particles. The solid lines indicate average values for each 
snow type. As can be seen in Figure 3 (left) for single crystals, the aspect varies between almost unity 
(graupel and rosettes) to about 0.06 (dendrites) with fairly large standard deviation. Gaps between 
clusters of data points for some particle types are due to discretization limits, since the thickness or 
diameter has a minimum size of one dipole. The aspect ratio for aggregates is more constrained, varying 
between 0.9 and 0.6 (Figure c.3, right), but does indicate slight dependence on the monomer type.  
 

 
 
                                          Figure c.3, Same for the figure c.2, but for the aspect ratio. 
 
Roundness β has been used to characterize cloud ice particles by Heymsfield et al. [2002] and Korolev 
and Isaac [2003], modeled fractal particles by Ishimoto [2008], and modeled aggregate particles by 
Tyynelä et al. [2011]. In this study, we use the definition by Ishimoto [2008]: 
 

                (c.2) 

 
 

where Axy, Axz, and Ayz are the apparent areas in three perpendicular directions. The roundness (or 



area ratio) is averaged over these directions. 
 
In Figure c.4, we show the roundness for the modeled ice crystals (left panel) and aggregates (right 
panel) as a function of Dmax. As can be seen, the roundness as defined in equation (2) is sensitive to the 
difference in ice crystal shapes varying between about 0.07 and 0.6 on average. Even aggregates 
produce distinct differences in roundness for different monomer types. Single ice crystals also indicate a 
dependence on Dmax, which is due to both the change in aspect ratio and preferential orientation.  
 
 
C.1.3 Scattering Properties and Computations 
 
To model backscattering using complex shapes, we use the discrete-dipole approximation (DDA), which 
is a method where the particle is divided into small volume elements (dipoles) that are placed into a 
regular cubic lattice [Purcell and Pennypacker, 1973]. This allows a high degree of detail in the particle 
shape, which can be controlled by the number of volume elements used in the shape model. The 
accuracy of DDA is determined both by the number of dipoles and the dipole spacing kd relative to the 
wavelength. Typically, it is required that |m|kd < 0.5, where m is the refractive index of the material. In 
this study, d is fixed to 20 μm for all particles, except the fern-like dendrites, which have d= 40 μm, and 
|m|kd is 0.58 at maximum. This ensures that there are enough dipoles to approximate the shapes of 
 

 
 

Figure c.4, Same for the figure c.2 but for the roundness. 

smallest ice crystals while still keeping the memory requirements feasible for the largest particles. The 
refractive index of solid ice is taken from Jiang and Wu [2004]. The Amsterdam DDA program by Yurkin 
and Hoekstra [2011] was chosen for this study. 
 
A volume observed by a radar is composed of many dissimilar particles in different orientations and 
sizes. In this paper, we are not mixing the pristine ice crystal types in a volume,  since we want to show 
how they differ in the backscattering properties. For this purpose, we generate 1000 individual ice 
crystals for each type randomly chosen within the appropriate size range and 100 random aggregates of 
ice crystals for each type and for each number of crystals in the aggregate. For graupels, we use 100 
random fractals for each number of iterations. The total number of different snowflakes used in this 



study is 8700. The details of these numbers are also shown in Table 1. The radar observables are 
computed by numerically averaging over different size ranges depending on the snowflake type. Also, 
due to the preferential orientation of the ice crystals, the elevation angle of the radar is varied: 0°, 15°, 
30°, 45°, 60°, 75°, and 90°. 
 
The ADDA program produces single-particle scattering matrices, which are used together with a particle 
size distribution (PSD) function in computing the radar observables. We assume an exponential PSD for 
all the snowflakes [Matrosov, 2007; Heymsfield et al., 2008]: 
 

                      (c.3) 
 
 
 

where N0 is the intercept parameter and Λ the slope parameter. The median volume diameter D0 is 
derived from 

    (c.4) 
 
 

where Dlower and Dupper are the minimum and maximum diameters for each snow type. The 
relationship between Λ and D0 is shown in Figure c.5. 
 

 
 

Figure c.5 The median-volume diameter D0 as a function of the slope parameter 
Λ for different snow types. 

 
In Table c.1, we show Dmax and D0 ranges for each snowflake type. The Dmax ranges have been chosen 
to reflect the natural variation in snowflakes and are based on the values shown by Pruppacher and 
Klett [1997] with slightly broader ranges. The Λ values vary in steps of 0.1 mm−1 while N0 has been fixed 
to 104 mm−1m−3. The Λ values vary between from almost flat to highly peaked distributions. Note that 
we do not have DDA results for single fern-like dendrites, only their aggregates, since we wanted to 
balance the relative contributions from single ice crystals and aggregates to the statistical analysis.  



 
When computing the scattering properties, we have adopted the conventions of Bohren and Huffman 
[1983]. The equivalent radar reflectivities (in units of mm6m−3) at different linear polarization states 
(hh, vv, hv, and vh) are derived from 

  (c.5) 
 
 

where K = (m2−1)/(m2+2) is the dielectric factor, σvv/hh/hv/vh=4π|Svv/hh/hv/vh(180°,0°)|/k2 the 
backscattering cross section for linearly polarized incident wave (h and v), and Svv/hh/hv/vh are the 
elements of the amplitude scattering matrix. Due to reciprocity at backscattering, Ze, vh=Ze, hv leaving 
three independent reflectivities. These can be combined to define two radar observables: the 
differential reflectivity Zdr=Ze,hh/Ze,vv and the linear depolarization ratio LDRvh=Ze,vh/Ze,hh.  
 
The linear polarization states can be transformed to circular polarization basis (l and r) by adding a phase 
difference of ±π/2 between the linear polarization vectors. The corresponding radar reflectivities in this 
case are 

(c.6) 
 
 

where σrr/ll/rl/lr=4π|Srr/ll/rl/lr(180°,0°)|/k2 is the backscattering cross sections for circularly polarized 
incident wave. The relationships between the linearly and circularly polarized amplitude scattering 
matrix elements are 

                         (c.7) 
 
 

Similar to the linear polarization basis in equation (5), we can also define the circular depolarization ratio 
CDRrl=Ze,rr/Ze,rl. 
 
The correlation between different polarization states of the scattered wave is defined by the correlation 
coefficients. A common observable for dual-polarization radars is the copolarized correlation coefficient: 
 

      (c.8) 
 
 

where ρhv is the amplitude and δhv is the argument of the correlation coefficient. δhv is also known as 
the backscatter differential phase and is typically expressed in degrees. As ρhv is not a strong function of 
shape for dry snow, we only use δhv, when analyzing the computations. 
 



The specific differential phase is the difference between the propagation constants of h- and v-polarized 
waves 

   (c.9) 
 
 

where S22(0°,0°) and S11(0°,0°) are the forward-scattered elements of the amplitude scattering matrix 
defined in the forward scattering alignment convention [Ulaby and Elachi, 1990]. Note that the other 
observables are defined in the backscattering alignment convention. Kdp is expressed in units of deg 
km−1. 
 
Dual-frequency ratio (DFR) between two frequency bands (f1 and f2) is defined as 
 

                          (c.10) 
 
Note that Zdr, LDR, CDR, and DFR are independent on both the intercept parameter N0 and the 
dielectric factor K. Also, in this study we categorize DFRs and some polarimetric measurements a s a 
single measurement for convenience even though they are already a combination of measurements.  
 
 
C.1.4 Statistical Measures to Analyze a Data Set 
 
Taking into account the various snowflake types used in this study, their PSD parameters, and 
measurement parameters, such as the elevation angle, radar frequency, and radar observables, the 
resulting data space becomes infeasible to analyze with simple methods. A systematic study of all 
possible data element combinations is difficult to present in a coherent fashion and does not reveal 
hidden trends and statistical significance. However, a large scattering database can be seen as a 
distribution in a multidimensional space and can be analyzed statistically by measuring how well 
clustered it is with respect to different combinations of measurement parameters. This can help in 
devising an optimal measurement strategy to characterize falling snow. 
 
The goal in clustering algorithms is to use statistical measures to find a set of clusters from the data set 
without a priori knowledge of the optimal clustering [Halkidi et al., 2001]. In our case, the partitions, 
which correspond to the different snow types, are already known beforehand, so we only need to 
measure how clustered the partitions are. Although the measures for quantifying data clustering vary 
[Rendón et al., 2011], they are commonly called cluster validation indices (CVIs). Each CVI is defined in a 
different way and can have values ranging widely with some having a closed interval of values and some 
having values up to infinity. Comparing CVI values from different CVI methods can therefore be 
ambiguous. However, using several methods at the same time can reveal common trends and provide a 
more reliable basis for determining which combinations of measurement parameters are better than 
others in characterizing snow. Instead of comparing absolute CVI values, which can be difficult to 
interpret, we concentrate on the relative order for different measurements. Notice that the most 
promising results are those where the CVIs produce mutually similar ordering and agree with each 
other. 
 
There are generally two types of CVI methods: external, which uses data from a predetermined 
structure to evaluate all the clusters, and internal, which uses only the data in the clusters themselves. 



Since we have no preferred cluster in this study, we have chosen three common internal CVIs: the 
Davies-Bouldin index (DBI) [Davies, 1978], Dunn index (DI) [Dunn, 1973], and the Silhouette index (SI) 
[Rousseeuw, 1987]. 
 
The Davies-Bouldin index is defined as 
 

            (c.11) 
 
 

where Xi,j is the data point j in the cluster i, Ni the number of data points in the cluster i, Ai the centroid 
of the cluster, Nc the number of clusters, S1i within-cluster separation of the data points, M1ij the 
between-cluster separation for clusters i and j, and DBI the Davies-Bouldin index. DBI varies between 
zero and infinity. The smaller it is, the more clustered is the data set.  
 
The Dunn index is defined as 

    (c.12) 
 
 

where S2i is the maximum within-cluster separation of all the data points in the cluster i, M2ij the 
minimum between-cluster separation for clusters i and j, and DI the Dunn index. Like DBI, DI varies 
between zero and infinity, but unlike DBI, a larger value indicates better clustering.  
The Silhouette index is defined as 

   (c.13) 
 
where S3i,j is the average within-cluster distance for data point j in the cluster i, M3i,j the average 
distance between data point j in the cluster i and the closest other cluster, Sili,j the silhouette of t he 
data point, and SI the average Silhouette index. SI varies between −1 and 1. The closer it is to one, the 
more clustered the data is. Note that we use Euclidean distances and norms in all the CVIs.  
 
In this study, the clusters represent different snow types, and the data points Xi,j different radar 
observable values with varying elevation angle, radar frequency, and PSD parameters (Λ and N0).  
 
C.2 Results 



 
In this section, we first analyze the backscattering properties statistically to reveal measurement s and 
their combinations that can be used to characterize falling snow, then show some of these properties in 
more detail, and finally apply them to field measurements obtained during the GCPEx campaign.  
 
C.2.1 Statistical Analysis of Backscattering Properties and Their Combinations 
 
Tables c.2 and c.3 show some of the results of analyzing all of the integrated/averaged backscattering 
properties using the statistical measures described above. It should be noted that measurement limits 
and attenuation of the radar signal have not been taken into account, when computing the CVIs, which 
may result in unpractical characterization in some cases.  
 
 

Table c.2 luster Validation for the Backscattering Properties Using the Davies-
Bouldin (DBI), Dunn (DI), and Silhouette (SI) Indices 

 
 
 
 
 



 
Table c.3 Same as in Table 2 but for Combinations of Measurements 

 

 
 
In Table c.2, both the optimal frequency bands and elevation angles are shown for each type of 
measurement together with the corresponding CVI values (shown in parenthesis). For DBI, smaller 
values are better, while for DI and SI larger values are better. The best CVI values in each column are 
shown in bold font. It is clear that Zhh by itself is not as good as the other polarimetric observables for 
characterization, but higher frequencies seem to work better. Ka and W bands show overall best 
characterization for Zdr, LDR, CDR, and δhv. Slightly off-nadir elevation angles provide best results for 
Zdr due to the preferential orientation of the ice crystals. Both δhv and Kdp perform better than Zhh, 
but not as good as the other observables. There are no common trends for the elevation angles. 
 
For DFRs, higher frequencies provide better characterization. However, 75° seems to be slightly better 
than nadir measurements. This may be due to the fact that at slightly off-nadir direction, the oriented 
ice crystals appear more asymmetrical and therefore more nonspherical, which increases the variation 
in σhh. Having a large difference in frequencies (S/W and Ku/W) results in worse characterization than 
having two higher frequencies (Ka/W, Ka/G, and W/G), although Ku/Ka combination seems to be a good 
pairing showing similar characterization to Ku/W. 
 
Table c.3 shows optimal frequencies and elevation angles for combinations of measurements showed in 
Table c.2. As can be seen, combining measurements constrains the backscattering properties into 
smaller areas in the parameter space and results in better clustering/characterization overall than the 
results shown in Table 2. When combining two DFRs, which share one frequency, it is obvious that 
higher frequencies are better. Again, Ku/Ka band combination seems to be a special case showing better 
results than Ku/W and S/Ka combinations. For Zdr and LDR/CDR combination, Ka and W bands are 
optimal having better CVI values than combination of DFRs. There does not seem to be any noticeable 



trend with the optimal elevation angles for DFR combinations. 
 
At the Ku and Ka bands, combining DFR and Zdr provides a reasonable characterization at lower 
elevation angles due to the preferential orientation. The best overall characterization in this st udy is 
provided by combining polarimetric observables (Zdr and LDR/CDR) at the Ka and W bands.  
 
We also checked the CVI values for the single crystals and graupel omitting the aggregates (not shown 
here). The overall characterization improved significantly throughout, but the relative results remained 
similar. Again, Zdr and CDR showed best characterization at Ka and W bands in addition to δhv. Overall, 
the optimal frequency bands were lower. 
 
C.2.2 Example Combinations of Measurements 
 
Figure c.6 shows the DFRKu/Ka and DFRKa/W combination plotted together at 0° (Figure 6, left) and 90° 
(Figure c.6, right) elevation angles. The results are similar to those in studies by Kneifel et al. [2011] and 
Leinonen et al. [2012] showing that the aggregates separate from the more spherical graupels, which 
have larger DFRKa/W values. This may indicate that higher-frequency measurements near nadir that 
produce DFRs similar to spheroidal models are due to heavily rimed snow or graupel. Note that single 
crystals, with the exception of rosettes, are difficult to characterize at 90° elevation (Figure 6, right) due 
to the preferential orientation of the crystals, which produces Rayleigh-type backscattering. However, at 
0° (Figure c.6, left) they show larger separation with the dendrites and hexagonal plates clearly 
separating from the aggregates. On the other hand, different aggregate types are difficult to distinguish 
from each other. 

 
 
Figure c.6, The dual-frequency ratios DFRKu/Ka and DFRKa/W plotted at (left) 0° and (right) 90° 
elevation angles. Single crystals are shown in square symbols and aggregates in triangles with different 
colors representing different crystal types. Color coding is the same as in Figure c.1. 
 
In Figure c.7, we show Zdr and CDR plotted against each other at the Ka band and at 0° (Figure c.7, left) 
and 60° (Figure c.7, right) elevation angles. As can be seen, at 0° this provides a fairly good 
characterization and produces five different clusters/snow types: hexagonal plates, dendrites, 
columns/needles, aggregates, and graupels/rosettes. At 60°, the clusters are closer to each other, but 
the variation within each cluster/snow type is smaller. This results in better overall clustering as shown 



in Table c.3. 
 

 
 
Figure c.7, The differential reflectivity Zdr and the circular depolarization ratio CDR plotted at (left) 0° 
and (right) 60° at the Ka band. Snow types are the same as in Figure c.6. 
 
The relative ordering and behavior of the CDR values for different ice crystal types with respect to 
elevation angle is similar to the measurements shown by Reinking et al. [2002]. The only differences are 
the absolute levels in dB, which can be due to the different depolarization state, difference in PSD 
values, attenuation, etc. 
 
C.2.3 Snowfall Case During GCPEx 
 
The goal of the GPM Cold-season Precipitation Experiment (GCPEx) was to study how passive and active 
multifrequency sensors could characterize falling snow by collecting both in situ microphysical and 
remote sensing data. In this study, we use the measurement data from the mobile NASA D3R ground-
based radar, which is a dual-polarization Doppler radar operating at Ku and Ka bands, and the APR2 
radar on board the NASA DC-8 aircraft also operating at Ku and Ka bands. We also use in situ probe data 
from the University of North Dakota's Citation aircraft, which was flying at different altitudes during the 
radar measurements. For the case study, we have selected 27 January during which there was reported 
snowfall. During 27 January, the D3R radar was operating close to the DC-8 aircraft route and scanning 
within 15° in the azimuthal direction from the aircraft flight path (see Figure c.8). The APR2 radar was 
pointing toward the ground. The Ka data from the D3R radar could not be used in this case due to the 
low power of the transmitter. 
 



 
 

Figure c.8, Location and measurement direction of the D3R radar and the 
flight path of the APR2 radar. 

 
In Figure c.9, we show Zhh at Ku band (top) and Zdr (middle) measured by the D3R radar, and DFRKu/Ka 
measured by the APR2 radar (bottom). As can be seen, there is a melting layer above 1 km altitude with 
a visible bright band (top). Between 2 and 4 km height, there are two bright (Zhh>15 dBZ) areas driven 
by wind shear. These areas are also associated with low Zdr values (<1 dB) and large DFRKu/Ka values 
(>4 dB) indicating aggregates (see Figures c.6 (right) and c.7 (left)). There are also many less bright areas 
(Zhh<5 dBZ) close to the aggregation areas which show larger Zdr values (>1 dB) and lower DFRKu/Ka 
values (<4 dB) indicating oriented ice crystals (see Figures c.6 and c.7). The Zdr values were adjusted due 
to an average bias of about 0.33 dB, and a local Φdp-based attenuation correction was performed for 
the snow volumes at the upper right part of the range-height indicators [Bringi and Chandrasekar, 2001]. 
 
 

 
 

Figure c.9, (top) The equivalent reflectivity Zhh and (middle) the differential reflectivity 
Zdr at the Ku band measured by the D3R radar, and (bottom) the dual-frequency ratio 
DFRKu/Ka measured by the APR2 radar. The projected flight path of the aircraft with the 
particle probes is shown in the black line. Two incidents of the probe data selected for 
this study are shown as black dots. 



 
For the probe data, we have selected two example cases, which indicate different particle types present 
in the radar volumes. The time stamp for the case 1 is 02:54 UTC and for the case 2 it is 03:19 UTC. Note 
that the time stamp for the radar measurements is 03:05 UTC. We show in Figure c.10 (top) an image 
from the Cloud Imaging Probe (CIP) as case 1, which is the site close to the D3R radar (see Figure c.9). 
The image reveals the presence of needle crystals and smaller irregular snow particles. When compared 
to Figure c.9, it is evident that these particles produce relatively low Zhh and DFR values, while also 
producing larger Zdr values. In Figure c.10 (bottom), we show an image from the High Volume 
Precipitation Spectrometer (HVPS) as case 2, which is the site further away from the D3R radar. This 
image reveals the presence of single needles as well as their aggregates. Again, when compared to the 
radar measurements in Figure c.9, they correspond to higher Zhh and DFR values, and low Zdr values. 
 
Figure c.11 shows a scatterplot with Zdr and DFRKu/Ka plotted together using all the range-height cells 
in Figure c.9 with the copolarized correlation coefficient ρhv>0.9 above 2 km height. The measurements 
are divided into two categories: larger reflectivities (Zhh>10 dBZ) plotted as black dots and smaller 
reflectivities (Zhh<10 dBZ) plotted as blue dots. We also plot the results from the DDA computations 
with needles shown in a green area bounded by green lines, and ordinary dendrites in a red area  
bounded by red lines. For the computations, we have mixed the single ice crystals, their aggregates, and 
small irregular snow particles approximated by soft spheres in the radar volumes by varying their   
 
 
 

 
 

Figure c.10, Example images from the (top) Cloud Imaging Probe (CIP) and 
(bottom) High Volume Precipitation Spectrometer (HVPS) on board the UND 



Citation aircraft. The vertical widths of the CIP and HVPS images are 1.6 mm and 
19.2 mm, respectively. 

 
relative mixing ratios between 0 and 1. We also vary D0 for all the particles as well as elevation for Zdr. 
For the soft spheres, we use the m–D relationship of graupels. 
 

 
Figure c.11 The dual-frequency ratio DFRKu/Ka (X axis) and the differential reflectivity Zdr (Y axis). 
The radar measurements by both D3R and APR2 are shown as plus symbols. The DDA computations 
are shown as a green area for needles and a red area for ordinary dendrites. Note that the simulated 
radar volumes are a mixture of single ice crystals, their aggregates, and small irregular particles,  
which are approximated as soft spheres. 

 
 
It is clear that in order to cover most of the measurement variation for both Zdr and DFR, three different 
particle models are needed. The edges of the computational areas correspond to the different particle 
types. Also, Zhh and DFR show strong correlation with the aggregates separating into a separate 
category (black dots). In order to quantify the error between the two models and the measurements, we 
use the CVIs presented above sections. In this case, smaller error corresponds to poorer 
separation/clustering between the model and the data. The CVI values for dendrites and needles are 
3.0614 and 6.5659 for DBI, 3.4389e−6 and 1.5492e−5 for DI, and 0.4258 and 0.3369 for SI, respectively. 
Both DBI and SI indicate that needles have a smaller error than dendrites, while DI indicates the 
opposite. The fact that the in situ probe data show that the radar volumes contain needles and not 
dendrites is therefore also supported by the computational methods.  
 
It should be noted that the large spread of the values in Figure c.11 may be due to the spatial and 
temporal differences between the D3R and APR2 measurements. A better volume matching will likely 
decrease the spread and provide a better retrieval of snow types.  
 
 
C.3 Conclusion 
 
In the present study, we have modeled physically realistic snowflakes of various shapes and sizes to 



analyze their size-integrated backscattering properties. The backscattering properties have been 
computed at C, S, X, Ku, Ka, W, and G bands and then compared to radar observations in order to 
characterize snowflake types. 
 
The results confirm that DFRs, especially at higher radar frequencies, are promising measurements to 
characterize snow, as already demonstrated by other studies [Kneifel et al., 2011; Leinonen et al., 2012]. 
They also show that, in principle, using even higher-frequency bands (G band; 220 GHz) than W can 
improve the characterization. However, attenuation of the radar signal may hinder its applicability. The 
transition region from Rayleigh scattering to the resonance region between Ku and Ka bands seems to 
provide overall the best characterization, while also avoiding the possible attenuation problems.  
 
The presence of single, preferentially oriented ice crystals has a profound effect on the polarimetric 
backscattering properties. The results indicate that Zdr and the depolarization ratios (LDR and CDR) 
provide better characterization than DFRs, and this is enhanced even further by combining these 
measurements at the same time. 
 
When the computations are compared to radar measurements from aircraft and ground, they show that 
modeling results together with dual-polarization multifrequency measurements can be used to 
characterize snow. They also demonstrate the advantage of combining dual-polarization measurements, 
especially Zdr, with dual-frequency ratios, which can narrow down characterization. Additional 
advantage of using these observables is that they are both independent on the intercept parameters in 
PSDs and therefore require less assumptions of the snowfall. 
 
 
 

D.   BAECC field experiment. 
 

The PI participated in the field experiment phase of the ASR supported filed experiment namely BAECC. 
This was a unique experiment with a large number of ground instruments for in-situ snow observations  
and radar that actually had an influence on the future ARM program instrumentation. The participation 
resulted in a multi author BAMS article and the summary of the activity is as follows: 
 
During "Biogenic Aerosols - Effects on Clouds and Climate (BAECC)", the U.S. Department Energy's 
Atmospheric Radiation Measurement (ARM) Program deployed the ARM 2nd Mobile Facility (AMF2) to 
Hyytiälä, Finland, for an 8-month intensive measurement campaign for February to September 2014. 
The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiälä is 
host to SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), one of the world's 
most comprehensive surface in-situ observation sites in a boreal forest environment. The station has 
been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant 
to atmosphere biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 
with surface-based in-situ SMEAR-II observations allow the processes at the surface to be directly 
related to processes occurring throughout the entire tropospheric column. Together with the inclusion 
of extensive surface precipitation measurements, and intensive observation period involving aircraft 
flights and novel radiosonde launches, the complementary observations provide a unique opportunity 
for investigating aerosol cloud interactions, and cloud-to precipitation processes, in a boreal 
environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol 
sources and transport, cloud microphysical processes, and boundary-layer structures. In addition, 



numerical models are being used to bridge the gap between surface-based and tropospheric 
observations. 

 
Figure D.1 Sensitivity enhancement demonstrated with the radar observations from NSA site.  
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