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Contributions by research topics:

A. DevelopmentforCloud drizzle separationstudies for the ENA site based on Doppler Spectra.



Separation of cloud and drizzle microphysics and turbulence in warm clouds is extremely useful to shed
light on precipitation initiation, including the role of aerosols and dynamics. Beyond the basic
development of precipitation, the consequences of the in-cloud formation of drizzle and its sub-cloud
evaporation are potentially critical determinants of cloud structural variationin the marine boundary
layer, which impacts the development and maintenance of warm clouds and the corresponding radiative
effects. This section preparesa robust data product just to address this problem from profiling cloud
radars, using a robust mathematical technique developed by the Pls teamtermed PTDM (parametric
time domain method). A journal articleis being prepared based on this work. Doppler spectral analysis
of radar observations have been pursued since the early days of radar meteorology. This has been used
extensively in clear air and precipitation profilers extensively. Spectral analysis in the standard weather
radars have also come a long way enabled by the rapid advancement in high speed signal processors.
Precipitation profilers have significantly advanced the art of separating the various components within
the verticallooking Doppler observation profiles (Gage, 1990, Gossard 1988, Moissev and Chandrasekar
,2007). More recently Luke and Kollias (2013) used spectral analysis technigues to separate cloud and
precipitation components using vertical profile of Doppler Spectra. Spectral analysis is a very well
developed topic in the study of signal processing and it spans multiple disciplines all the wayfrom
geosciences to engineering. In this context we propose anadvanced signal processing technique
developed by the Pl group to study the cloud drizzle separation and parameter estimation using ARM
vertically pointing cloud radarsin conjunction with other instruments.

Radar signals can be represented as a sum of individual signals coming from scattersin the radar
resolution volume. Because the individual signals have similar statistical properties, the joint probability
density function of real and imaginary parts of the received signal can be considered to be zeromean
normal ( Bringi and Chandrasekar 2001). The multivariate probability density function of the complex
voltage can be expressed through its joint distribution function (Bringi and Chandrasekar 2001).

The multivariate probability density function of the complex voltage can be written as:

1 _
fv) = N det(R) det(R) exp(—VHR™V)
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Where, V is the vector of the received signal samples, R = E(VV*) s the covariance matrix and
Ry = VV*H is the sample covariance matrix. Here, superscript H denotes the Hermitian. If different

echo types are present within the same radar observation volume, then the observed Doppler Spectrum
can be writtenas
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We can use this model to make cloud particle spectrum and drizzle particle spectra as two different sets
of radarechoes.

When we have just cloud and drizzle together N is 2. The spectral moments of the signals canbe
obtained by minimizing the negative log-likelihood as

L(z) = In(det(R())) Hrace(liR’l(u)) (A4)

Where
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The likelihood function in (7) can have several minima. To retrieve unknown parametersone needs to
make sure that an optimization outcome of (7) converges to a global minimum. To achieve this, itis
important to properly select seed values for the nonlinear optimization procedure.

Where R() and R are the sample covariance matrix and the model covariance matrix, respectively. When
the signal only contains one type of echo, its Doppler power spectrum follows a Gaussian shape (N=1).
However, in the present of drizzle and cloud mixture, the resulting spectral shape can depart from
Gaussian. In such case, goodness of fit parameters could be used to detect the present of drizzlein the
mixture which is described in the error structure of the procedure

The cloud drizzle separation algorithmis summarized as follows:

- First, the cloud, drizzle map (C/D map) is created using PTDM goodness of fit parameters. It is noted
that PTDM is only applied to signals above Cloud base.

- The C/D map s processed (smoothened) to reduce the estimate uncertainty.

- Re-apply PTDM with two-echo model for the gateswith the presence of drizzle.



Classify cloud and drizzle echoes in a way so that it remains the continuity of drizzle signals below and
above the Cloud base. The architecture of the cloud drizzle separation is shown in Fig Al.

The advanced parametric modeling method works with a single radar power spectra profile and
performs well in most scenarios. Drizzle reflectivity can be obtained accurately without the need of a
compensation factor when cloud and drizzle echoes overlap heavily. The applications of the technique

include inference of the vertical air motion, drizzle drop size distribution, and the dynamical and
microphysical processes during the transition from cloud to drizzle.
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Figure Al. The Architecture of the Cloud Drizzle separation System.



Fig A2 shows an example retrieval of cloud drizzle separation from ARM cloud radar. The figure on the
left shows the time resolved vertical profile of reflectivity and velocity whereas the figure in the middle

shows the cloud profiles and the figure on the right shows the drizzle profiles. These profiles are directly
from the code, and no corrections have been made that shows the robustness of the procedure.

The following Fig A2 shows the cloud drizzle separation methodology for one spectrogram. This canbe
implemented and extended over time to get full scale retrieval. This technique is a further expansion
and refinement of the spectra based technique developed by Luke et al (2013). Subsequently the
observations can be developed into a cloud drizzle separation product as shown in Fig A3.
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Figure A2. Radar Doppler spectrum and the Figure A3. Time profile of cloud drizzle separation
spectral separation

Advanced radar retrieval for the SGP site.

This research essentially focused on microphysical retrievals to get the retrievals from both X band
radars and networked observations in SGP. A raindrop size distribution (DSD) retrieval method for a
weather radar network consisting of several X-band dual-polarization radars is proposed. An iterative
maximum likelihood (ML) estimator for DSD retrieval in a single radar was developed in our previous
work, and the proposed algorithm in this paper extends the single radar retrieval to radar networked
retrieval, where ML solutions in each single radar node are integrated based on a Bayesian scheme in
order to reduce estimation errors and enhance accuracy. Statistical evaluations of the proposed
algorithm were carried out using radar simulations. The results with eight radar nodes showed that bias
and standard errors are - 0.05 and 0.09 in log(Nw); Nw (mm-1m-3 33 ) and 0.04 and 0.09 in DO (mm) in
an environment with fluctuations in dual-polarization radar measurements (normal distributions with
standard deviations of 0.8 dBZ, 0.2 dB, and 1.5 deg in Zhm, Zdrm, and ®DPm, respectively). Further
error analyses indicated that estimation accuracy depended on the number of radar nodes, ranges of
varying W, raindrop axis ratio model, and system bias errors in dual-polarization radar measurements.
These results have been reported in multiple articles.

The SGP site is a unique site and has a network of X-band radars and a C-band radar (in addition to K and
W band systems). The PI specialized in developing networked radar retrieval algorithms, which have




resulted that have been published in peer-reviewed literature. Single radar algorithms were also
published in peer-reviewed literature.

B.1. Methodology

B.1.1. Background

The three dual-polarization measurements of measured reflectivity—horizontal polarization, ZHm;
measured differential reflectivity, ZDRm; and measured differential propagation phase, ®DPm—are the
inputs of the NTR. Strictly speaking, these three measurements are input to the SRR, and then the
results of the SRR are input to the NTR. In this subsection, the relations between the three dual-
polarization measurements and the DSD are described as follows:
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where ZH, ZDR, and KDP are equivalent reflectivity factor at horizontal polarization, differential
reflectivity, and differential propagation phase, respectively. Terms AH and ADP are precipitation
attenuations for ZH and ZDR, respectively. And nZHm, nZDRm, and nODPm are random variables
corresponding to the statistical properties of ZHm, ZDRm, and ®DPm, respectively. Thus, ZHm, ZDRm,

and ODPm are also random variables in the NTR. Terms ZH, ZDR, KDP, AH, and ADP are expressed by
DSD, N(D), as
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where (1) = 109197 g o (r) = 102" Terms shh,vwv(D) are backscattering amplitudes at horizontal and
vertical polarizations, and fhh,vv(D) are forward-scattering amplitudes at horizontal and vertical



polarizations, respectively. TermsRe[s] andIm[e] are a real part and an imaginary part, respectively. Term
A is the wavelength of transmitting electromagnetic wave (mm). Term Kw is defined by a complex index
of refraction of water € as

e —1
K =
woogl 42 (B.9)

In the NTR, N(D) is defined by the normalized gamma DSD (Ulbrich 1983; Testud et al. 2001) to describe
the natural variability of the DSD, as below:
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and D is a diameter of a raindrop (mm), Nw is an intercept parameter (mm-1 m-3), DO is a median
volume diameter (mm), W is a shape factor that is dimensionless, and I'(®) is a gamma function.

B.1.2. SRR

This subsection describes the SRR, whose details are elaborated in Yoshikawa et al. (2014). The SRR is
implemented as the preprocessing of the NTR, as shown in Fig. b.1. The SRR is an iterative ML approach
to fit a range profile of the DSD parameters to dual-polarization measurements. A likelihood function of
a range profile in the mth beam of the Ith radar node is expressed as

p(},[m.“ x(m.H} — J\‘Iﬂ(};im.h | F(K{mJ] :L EE."L” :"

(m=1,....M, [=1,....L), (B.13)

where N(x/m., 8.) js a Gaussian PDF whose mean vector and covariance matrix are represented as mx
and Sx, respectively. Terms x(m,l) and y(m,l) are the range profiles of the DSD parameters and the dual-
polarization measurements, respectively. Term F(x(m,l)) is the relation between x(m,l) and y(m,l),
corresponding to Egs. (1)—(12). Term Zy(m,l) is a covariance matrix of y(m,l), which is assumed to be
known. Term M is the number of beams, and L is the number of radar nodes in the radar network.
Terms x(m,l) and y(m, 1) are represented as follows:
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where the superscript n indicates a parameter in the nth range bin rn of N range bins. Terms N'w,
D0,and p' are applied as state variables, which are defined to avoid physical impossibilities through the
iterative process,
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where p is assumed to be a constant value, uC, in whole range of a radar beam as

ul(r) = p- (B.19)

Thus, Nw and DO are kept positive and p is squashed from -1 to 5 without any constraints to N'w, D'O,

and W' In summary, the SRR solution, X"} | is calculated by minimizing a cost function, which is derived
from the likelihood function of Eq. (13), as shown below:
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where oZH, oZDR, and o®DP are standard deviations for each dual-polarization measurement,
respectively, which are diagonal elements of 2y(m,l). The iterative minimization is reasonably converged
by the Gauss—Newton (GN) method (Nocedal and Wright 1999).
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Figure b.1, Processing flow of DSD retrieval through the observation, the SRR, and the NTR.



B.1.3 NTR

A flowchart of the NTR is shown in Fig. b.2, which indicates that the NTR integrates the SRR solutions
through three steps.
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Figure b.2, Flowchart of the NTR

In step 1, posterior PDFs in eachradar node are calculated from the SRR solutions. Step 2 transforms the
posterior PDFs on the radar polar coordinate of eachradar node to those on the common Cartesian
coordinate defined in the radar network. In step 3, the posterior PDFs of each radar node on the
common Cartesiangrid are integrated optimally in a Gaussian stochastic sense.

1) Step 1: Posteriors of radar node

A posterior PDF in the mth beam of the Ith radar node is theoretically derived by the product of a
likelihood function and a prior PDF as

F(x{m'” | y[m.l’]] . p{},[mﬂ Klm.f})p(.xfm.n'}J . (321)

With a linear approximation of F(x(m, 1)) around x'"'¥) the likelihood function of Eq. (13) is transformed
as
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Supposing asituation without any other prior information, a noninformative PDF,
Pro-info(X) = N(x|0, al)(ex — “], is applied to the prior PDF. Thus, Eq. (B.21)is transformed as
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Assuming that range profiles of DSD parametersare independent of each other, the posterior PDF,
including all the beams of the Ith radar node, is expressed as
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2) Step 2: Transitions to a common Cartesian grid

A posterior PDF in the Ith radar node on the Ith radar polar coordinate is transited to that on a common
Cartesian coordinate, as shown below:
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where xC(i) is a vector including the two DSD parametersin the ith grid of | common Cartesian grids,
defined as

i AN ]
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Note that ' is omitted because the SRR does not consider a range profile of p. Term T(i,l) is a transition
matrix from a polar coordinate of the Ith radar node to the ith grid of the common Cartesian grid.
Transition methods from polar to Cartesian coordinates have been described (Trapp and Doswell 2000).
The closest-point method, which is primitive in radar meteorology, is applied in this paper. Equation (29)
indicates that other linear transition methods can be alternated.

3) Step 3: Integration



Posterior PDFs of all the radar nodes on the common Cartesian coordinate have now been prepared.
Assuming that posterior PDFs calculated by each radar node are independent and identically distributed
(i.i.d), their joint distribution is theoretically given as
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. R . . . .
Thus, the integrated solution "[c is the best solution of the radar network in a Gaussian stochastic sense.

where

B.2. Evaluation by numerical simulation
B.2.1. Specifications of numerical simulation

Numerical simulations of the NTR are carried out to confirm their performance. Two-dimensional
distributions of reference values of the DSD parameters are shown in Fig. b.3, where Nw and DO are in
Figs. b.3a and 3b, respectively. The reference values of Nw and DO were generated from observed data
on the Colorado State University—University of Chicago—lllinois State Weather Survey (CSU—CHILL) radar.
The observation was carried out on 20 June 2000. The area shown in Fig. b.3 is placed inside the area of
the observation. The observed data were converted to the reference values of DSD parameters with the
use of the algorithm proposed by Gorgucciet al. (2002). The algorithm by Bringi et al. (2002) was applied
in cases where the obtained KDP was noisy. Since it is well known that p varies depending on DO, a
varying 1 model is applied in order to simulate a natural variation of pu. The p of each range bin is
determined by a linear u—DO relation as

'u'n’ — 'u'n'

= D (DLJ Dllmin) t Iu'n b

Omax DUmin (B34)

where DOmax and DOmin are the maximum and minimum DO in the dataset, respectively. Terms pu and
pl are the largest and smallest values in a horizontal profile of . In this section, 2.0 and -0.5 were
selected for pu and pl, respectively. Observed parameters ZHm, ZDRm, and ®DPm at a frequency of 9.5
GHz (X band) were calculated from these generated reference values of DSD parameters on the
assumption of spheroidal raindrops with the axis ratio of the Beard and Chuang (BC) model (Beard and
Chuang 1987). Then, normally distributed fluctuations were added to the three observed parameters,
whose standard deviations are 0.8 dBZ, 0.2 dB, and 1.5°, respectively. These values of the standard
deviations were chosen by referring to Bringi and Chandrasekar (2001, chapter 6), wherein the

o, n

theoretical fluctuations in the dual-polarization measurements are derived. The “x” marks in both



panels of Fig. 3 indicate the positions of each radar node, which are assumed to be deployed with the
same interval on a circle whose diameter is 30 km as connected by dashed lines. Numbers labeled at
each radar node are noted beside each x mark. A square area bounded by the dotted line (its side length
is about 21 km) is an area of interest in which DSD parameters are retrieved by the NTR. It is assumed
that eight X-band radars are deployed on the field with a maximum observation range of 30 km and
1024 range bins; that is, each range bin is about 30 m long. A disagreement between polar coordinates
of the CSU—CHILL radar and the assumed X-band radar was solved by linear interpolation.

(a) Reference of log(\y) (b) Reference of Dy
ode | .
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k3
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Figure b.3, 2D distributions of reference values of DSD parameters: (a) reference of log(Nw) [Nw (mm-1
m-3)] (b) reference of DO (mm). In each panel, “x” marks indicate the position of each radar node;
nodes are located on a circle whose diameter is 30 km with the same interval as connected by dashed
lines. Numbers labeled for each radar node are noted beside each x mark. A square area bounded by a
dotted line is a target space.

In the proposed algorithm, the same assumptions as in the calculation of the dual-polarization
measurements from the reference values of DSD parameters—spheroidal raindrops and the BC model—
are applied (see Bringi and Chandrasekar 2001, chapter 4). In the zeroth step (the SRR), it is assumed in
the algorithm that 16 adjacent range bins have the same DSD in order to reduce the effect of
fluctuations in measurements and calculation costs. Thus, the algorithm has 64 state variables for both
Nw and DO in a radar beam. On the basis of this assumption, three measurements in a chunk of 16 range
bins are calculated by one DSD, which means that solutions in this simulation have a range resolution of
about 480 m. The iteration process of the GN method is stopped by a defined threshold of an iterating
update or iteration count. These settings in the SRR are the same as in our previous work (Yoshikawa et
al. 2014). An area of interest for the NTR is separated by 128 x 128 square grids. The closest-point



method is applied for transition to the common grid. All these settings of the simulation are summarized
in Table b.1.

Table b.1, Simulation characteristics.

Radar
Frequency 9.5GHz
Coverage range 0-30km
No. of range bins 1024
Fluctuations Normal distributions with std dev of 0.8 dBZ, 0.2 dB, and 1.5° in Zym, Zprms and @ppp,,

respectively
Simulated precipitation

Dataset 269 range profiles of N,, and D generated from data observed in the CSU-CHILL radar on 20 Jun
2000

DSD model Normalized gamma DSD (Testud et al. 2001) with every 0.1-mm equivolume spherical diameter
from 0.5 to 8.0 mm

Raindrop shape Spheroid

Axis ratio model PB. BC, or TB model

SRR

No. of chunks of range bins 16

Raindrop shape Spheroid

Axis ratio model BC model

Stabilization factors (¢ ni. @ po) (2.00, 3.00)

AN PN | < 1078
Convergence criteria | AD |||/ Dy, ||" <107% | ori=2M +1,
[Buclipclial” <107
where x|;_, is a vector of a DSD profile in the i — 1th iteration and Ax|, is an update vector of a DSD
profile in the GN method. Term M is the number of chunks of range bins (=64 in this paper).

NTR
Integrated 2D grid field 128 X 128 grids in 21 km X 21 km
Number of radar nodes 2,4, and 8

The integration of the NTR is performed in each common Cartesian grid as shown in Eq. (B.31); that is,
16 384 retrievals of the NTR are evaluated in the single 2D distribution of precipitation. In addition, the
dataset of DSD parameters is the same as the one used in our previous work (Yoshikawa et al. 2014),
where it is indicated that the statistical properties of the reference values almost agree with a long-term
observational result by a Joss—Waldvogel disdrometer [see Fig. 2 in Yoshikawa et al. (2014) and Fig. 7.17
in Bringi and Chandrasekar (2001)]. Therefore, this numerical simulation covers a wide range of
precipitation and includes a sufficient number of attempts to confirm the theoretical performance of the
NTR.

B.2.2. Improvement from the SRR

Figure b.4 shows the retrieved results. Figures b.4a and b.4b are horizontal distributions of Nw retrieved
by the SRR on nodes 0 and 4, respectively, and Figs. b.4d and 4e are those of DO. The NTR results of Nw
and DO are shown in Figs. b.4c and 4f respectively, where they are retrieved by the NTR integration with
nodes 0 and 4 (2-NTR), respectively. On the upper sides of Figs. b.4a and b.4d which indicate a weak
precipitation region, discontinuities along the azimuth direction significantly appear. The ZH are roughly
25-31 dBZ in this area, which is reasonable to make the SRR unstable. Compared with the reference
shown in Fig. b.3, the retrievals in this area have larger errors than ones in the other areas. As seenin
Figs. b.4c and b.4f, the NTR properly corrects the discontinuity in the upper area of node 0.
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Figure b.4, 2D distributions of retrieved DSD parameters: (a) the SRR retrievals of Nw in node 0, (b) the
SRR retrievals of Nw in node 4, (c) the NTR retrievals of Nw with nodes 0 and 4, (d) the SRR retrievals of
DO in node O, (e) the SRR retrievalsof DOin node 4, and (f) the NTR retrievals of DO with nodes 0 and 4.

Figure b.5, showing horizontal distributions of standard deviations of the SRR solutions of nodes 0 and 4
(corresponding to the square roots of the diagonal elements of 2" andX!”, respectively), indicates how
integration of the NTR works. Figures 5a—5d show those of Nw in node 0, Nw in node 4, DO in node O,
and DO in node 4, respectively. As pointed out in Yoshikawa et al. (2014), the SRR is unstable in the case
of weak precipitation throughout a beam because the DSD parameters have less sensitivity to the dual-
polarization measurements in such a case due to a characteristic of the nonlinear function expressed in

!
Egs. (B.1)—(B.12). However, the covariance matrix, Eij, includes large variances in the diagonal elements
corresponding to those unstable solutions. This is seen in the upper side of Figs. b.5a and b.5c. In the
NTR, the DSD parametersare integrated considering each covariance based on a Bayesian scheme —that

is, an accurate solution is obtained as long as one node in a radar network has a stable solution by the
NTR utilizing a multidirectional observation environment. On the other hand, in the case of all nodes



having a stable solution in a desired grid, the SRR retrievals in each node are integrated with almost
equivalent averaging to derive retrieval with lower fluctuations.
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Figure b.5 2D distributions of standard deviations of the SRR solutions: (a) the standard deviations of Nw

in node 0, (b) the standard deviations of Nw in node 4, (c) the standard deviations of DOin node 0, and
(d) the standard deviations of DO in node 4.

B.2.3. Error analyses

To confirm the performance of the NTR with possible radar network situations, statistical evaluations
are carried out by changing setting parameters of the numerical simulation with respect to the number
of radar nodes, ranges of varying |, axis ratio models, and system bias errors. Hereafter, 8-NTR s
implemented on the assumption that the BC axis ratio model is applied, 2.0 and -0.5 are selected for pu
and pl of the u model, respectively, and no system bias error is considered in all the radar nodes if not
specified. Throughout the error analyses, evaluated bias and standard errors are summarized in Table 2.



Table b.2 Bias and standard errors of log(Nw) [Nw (mm-1 m-3)] and DO (mm) resulting from the
numerical simulations; bias error (standard error). Standard setting; 8-NTR, (uu, ul) = (2.0, -0.5), BC
model, and no-biased measurements. In the others, the standard setting is applied if not specified.

log(N..) Do
Standard setting -0.05 (0.09) 0.04 (0.09)
2-NTR -0.05 (0.12) 0.03 (0.12)
4-NTR —0.05 (0.10) 0.04 (0.09)
(Keer 1) = (0.0, 0.0) —0.00 (0.05) 0.00 (0.06)
(1t 0) = (5.0, =1.0) -0.10 (0.14) 0.07 (0.13)
PB model —=0.11 (0.15) 0.12 (0.12)
TB model —0.22 (0.21) 0.16 (0.24)
Randomly biased —0.09 (0.15) 0.07 (0.14)

1) Number of radar nodes

The 2- and 4-NTR, where nodes 0 and 4 and nodes 0, 2, 4, and 6 were applied, respectively, were
compared to the 8-NTR. In Fig. b.6, bias and standard errors of Nw and DO calculated by comparing the
NTR results with the reference values are shown. Figures b.6a and b.6b correspond to those of Nw and
DO, respectively. Each panel indicates bias and standard errors separately calculated in six different
quantiles of each DSD parameter (i.e., <2, 2-2.5, 2.5-3, 3-3.5, 3.5-4, >4 for log(Nw), and 0-1.5, 1.5-2,
2-2.5, 2.5-3, 3-3.5, >3.5 for D0.) For example, in Fig. b.6a, the three biases and standard errors in the
leftmost row are those with reference values of log(Nw) less than 2. Dotted, dashed, and solid lines are
bias and standard errors, represented with the vertical bars of the 2-, 4-, and 8-NTRs, respectively. For
clarification purposes, the lines of bias and standard errors are plotted with slight shifts along the
horizontal axis. Bias errors are equivalent among the NTRs through all the quantiles of each DSD
parameters. Smaller standard errors appear by increasing the number of radar nodes. Table b.2 also
indicates that bias errors of the 2-, 4-, and 8-NTRsare —0.05in log(Nw) and either 0.03 or 0.04 in DO. The
standard errors of the 2-, 4-, and 8-NTRs are 0.12, 0.10, and 0.09 in log(Nw) and 0.12, 0.09, and 0.09 in
DO, respectively. This is apparently because the NTR is based on a Bayesian scheme where a greater
number of observed samples decrease uncertainties in state variables.
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Figure b.6, Result of error analysis with regard to the number of the radar nodes. Bias and standard
errors of (a) log(Nw) and (b) DO. The errors are represented with six different quantiles (i.e., <2, 2-2.5,
2.5-3, 3-3.5, 3.5-4, >4 for log(Nw), and 0-1.5, 1.5-2, 2-2.5, 2.5-3, 3-3.5, >3.5 for DO.) In each panel,
the dotted, dashed, and solid lines correspond to the 2-, 4-, and 8-NTR, respectively (lines are drawn
with slight shifts for clarity).

2) Rangesof varying u

Varying u of the actual precipitation could give significant errors to the NTR since constant p is assumed
in each radar beam in the zeroth step (SRR). To evaluate those errors, dual-polarization measurements
were calculated with three different ranges of varying p, where pu and pl are 1) 0.0 and 0.0; 2) 2.0 and
-0.5; and 3) 5.0 and -1.0, respectively.The second u range is the same one as in section 3a. These values
of pu and pl were prepared by referring to Ulbrich and Atlas (1998) and Moisseev and Chandrasekar
(2007). The expression (pu, ul) = (0.0, 0.0) results in a constant p model and is equivalent to the
Marshall-Palmer DSD (Marshall and Palmer 1948). In Fig. b.7, bias and standard errors of Nw and DO are
shown. Dotted, dashed, and solid lines correspond to p ranges 1-3, respectively. With the p range 1, the
NTR outputs retrievals with bias and standard errors of —0.00 and 0.05 in log(Nw), and 0.00 and 0.06 in
DO, respectively, which are the best accuracy throughout the error analysis, as shown in Table b.2. The
bias errors occur only because of spatial disagreements between the reference and the NTR. While the
reference values of DSD parameters were calculated on the common Cartesian coordinate, dual-
polarization measurements in each radar node were calculated from DSD parameters on each radar
polar coordinate. Then the standard deviations are due to a combination of the coordinate
disagreement and the fluctuations in the dual-polarization measurements. Errors due to the constant p
assumption of the SRR appear in the p ranges 2 and 3, as shown in Fig. b.7, where u monotonically
decreases along DO. This is because of the disagreement of the SRR’s assumption of constant p with the
spatial variation of u. Both bias and standard errors increase with a higher variation of p. Table b.2



indicates that evaluation with the p range 3 outputs the largest bias and standard errors in the three p
ranges, which are —0.10 and 0.14 in log(Nw), and 0.07 and 0.13 in DO, respectively These evaluated

values are possibly the worst errors caused by the variation of yu because varying u from -1.0 to 5.0 is
naturally too large to exist in the entire target area.
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Figure b.7, Result of error analysis with regard to the ranges of varying p. Bias and standard errors of (a)
log(Nw) and (b) DO. The errors are represented with six different quantiles (i.e., <2, 2-2.5, 2.5-3, 3-3.5,
3.5-4, >4 for log(Nw), and 0-1.5, 1.5-2, 2-2.5, 2.5-3, 3-3.5, >3.5 for DO.) In each panel, the dotted,
dashed, and solid lines correspond to the three p ranges with pu and pl of 0.0 and 0.0, 2.0 and -0.5, and
5.0 and -1.0, respectively (lines are drawn with slight shifts for clarity).

3) Axis ratio models

Errors caused by incompatibility of the axis ratio between the NTR assumption (the BC model used in
this paper) and actual precipitation were confirmed in this subsection. Two numerical simulations where
dual-polarization measurements were calculated using the Pruppacher and Beard (PB) model
(Pruppacher and Beard 1970) and the Thurai and Bringi (TB) model (Thurai and Bringi 2005) are
compared with the BC model. In Fig.b. 8, the bias and standard errors of Nw and DO are shown. Dotted,
dashed, and solid lines correspond to the PB, TB, and BC models, respectively. As in the error analysis of
the W range, it is seen in Fig. b.8b that the bias error of the PB and TB models monotonically depend on
DO. This is because an axis ratio is a function of D. In the simulation with the PB model, the bias and
standard errors are -0.11 and 0.15 in log(Nw), and 0.12 and 0.12 in DO, respectively. In the TB model,
those errors are —0.22 and 0.21 in log(Nw), and 0.16 and 0.24 in DO, respectively. According to Table b.2,
the bias and standard errors could be affected up to 2 times greater than those of the varying p from



-1.0 to 5.0. Note that the area of interest is too large to have precipitation with a uniform axis ratio
model. Therefore, the evaluated bias and standard errors are the possible worst errors caused by the
axis ratio model.
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Figure b.8, Result of error analysis with regard to the axis ratio models. Bias and standard errors of (a)
log(Nw) and (b) DO. The errors are represented with six different quantiles (i.e., <2, 2-2.5, 2.5-3, 3-3.5,
3.5-4, >4 for log(Nw), and 0-1.5, 1.5-2, 2-2.5, 2.5-3, 3-3.5, >3.5 for DO.) In each panel, the dotted,
dashed, and solid lines correspond to the PB, TB, and BC models, respectively (lines are drawn with
slight shifts for clarity).

4) System bias errors

Radars may have system bias errors in their measurements from several causes such as a water-coated
radome, temperature-dependent amplifier gain, and so on. Although these kinds of errors are typically
calibrated in the quality control process, it is difficult to correct them completely. To make an error
analysis of this problem, the ZHm and ZDRm of all eight nodes were independently and randomly
biased. Bias values of ZHm were generated by a Gaussian random number generator with a mean value
of 0 dBZ and a standard deviation of 1 dBZ. Random biases with a mean value of 0 dB and a standard
deviation of 0.2 dB were given for ZDRm. Note that the measurements are biased by the same value in
an arbitrary radar node. Twenty independent simulations of 8-NTR showed that the bias and standard
errors of log(Nw) are -0.09 and 0.15, and that those of DO are 0.07 and 0.14, respectively. As shown in

Table 2, these system biases could give almost 2 times worse bias errors and about 1.5 times worse
standard errors than the standard setting in both log(Nw) and DO retrievals.



B.3. Conclusions

An integrated DSD retrieval algorithm for an X-band dual-polarization radar network is proposed. The
proposed algorithm, the NTR, is based on our previous work, which is a DSD retrieval method on a single
radar, the SRR (Yoshikawa et al. 2014). The NTR is configured with the three steps, as below. In the
preface, the SRR is implemented in all the radar beams of all the radar nodes included in a radar
network. In the first step, the SRR solutions in each radar node are transformed to a posterior PDF; that
is, a covariance matrix of the SRR solutions is calculated from known error covariance by linearly
approximating the governing equation around the SRR solution. In the second step, the SRR solutions
and their covariance matrices are transited from polar gridded ones to a common Cartesian gridded one
using a transition matrix. In the final step, the SRR solutions and their covariance matrices on the
common Cartesian grid are integrated based on a Bayesian scheme. It is concluded that the integrated
solution of the NTR is theoretically the best estimation in the Gaussian stochastic sense.

Numerical simulations were carried out to verify the estimation accuracy, supposing a radar network in
which two, four, or eight X-band radars are deployed on a circle whose diameter is 30 km. The reference
value of DSD parameters was created from the CSU—CHILL radar data. Dual-polarization radar
measurements of each radar node were calculated from the reference values of DSD parameters on the
assumption of a spheroid raindrop shape and a fixed axis ratio model (see Table 1 for details of setting
parameters.) As described in Fig.b.4, the NTR properly corrects the wrong spatial discontinuities of the
SRR, which is because the SRR retrieves DSD parameters in respect to each radar beam independently.
Error analyses to evaluate the performance of the NTR in possible situations of a radar network were
carried out. Specifically, statistical evaluations were implemented with the numerical simulation by
changing the setting parameters of the numerical simulation with respect to the number of radar nodes,
ranges of varying p, axis ratio models, and system bias errors. Because the NTR is based on a Bayesian
scheme, the number of radar nodes works to reduce standard errors in the retrievals. The constant p
assumption of the SRR yields bias and standard errors of -0.10 and 0.14 in log(Nw), and 0.07 and 0.13 in
DO with varying u from -1.0 to 5.0, respectively. Incompatibility of axis ratio models between the NTR
assumption and actual precipitation gives retrieval errors up to 2 times greater than varying pu from -1.0
to 5.0. Further, system bias errors of about 1 dBZ and 0.2 dB (both of which are root-mean-square
values) in ZHm and ZDRm, respectively, give bias and standard errors of —-0.09 and 0.15 in log(Nw), and
0.07 and 0.14 in DO, respectively. In actual observation, a natural combination of these error sources
should be included, and each of the error sources could be heavier than the settings of the error
analyses. Our future work will entail performance evaluations in the CASA experiment or the
Midlatitude Continental Convective Clouds Experiment (MC3E) by comparing ground-based devices,
such as disdrometers, with DSD parameters and rainfall rate.

The concept of the NTR can be expanded from a radar network to a multisensor network, and the
expansion will be a part of our future work. In the case of a weather observation campaign, many kinds
of sensors such as radars at several frequencies, rain gauges, and disdrometers are deployed. In general,
ground-based devices are utilized as hard constraints, where radar-retrieved physical parameters of
precipitation are corrected so as to exactly match a measurement of ground-based devices. However, a
ground-based device would have uncertainty due to not only its accuracy but also gaps of positions and
resolution volumes. Therefore, a hard constraint generally gives a bias error by neglecting those
uncertainties. On the other hand, the concept of the NTR offers soft constraints based on a Bayesian



scheme, which appropriately improves radar-retrieved physical parameters of precipitation by
considering both uncertainties of a radar retrieval and measurement of a ground-based device.

C. Characterizing falling snow using multifrequencydual-polarization measurements

Combinations of dual-polarization measurements at various radar frequencies and elevation angles
together with realistic scattering computations of snowflakes are compared in order to study how they
can be used to characterize falling snow. In the study, we use seven different ice crystal habits,
including graupel, and different types of aggregates. The single-particle scattering is modeled using the
discrete-dipole approximation, and the backscattering cross sections are integrated over exponential
size distributions. We take advantage of statistical properties of the large set of scattering results to
determine which combination of measurements provide overall best characterization of snow types.
We find that a combination of the differential reflectivity and the depolarization ratios, especially in the
circular basis, is useful in the characterization, while the dual-frequency ratios at higher frequencies
than the Ku band are almost as good. Also, the assumption of preferential orientation for single ice
crystals plays an important role when analyzing the results. These conclusions are tested against both
airborne and ground-based radar measurements obtained during the Global Precipitation
Measurement Cold-season Precipitation Experiment field campaign in 2012. The results show that
dual-polarization and dual-frequency measurements provide complimentary information and can
narrow down the characterization of falling snow considerably.

C.1. Numerical Methods
C.1.1 Shape Models for Snowflakes

Due to the importance of shape in scattering at the resonance regime (size parameter x = ka > 1, where
k = 2rt/A is the wave number and A the wavelength of the incident wave, and a the volume-equivalent-
sphere radius of the particle), it is advisable to use a physically realistic model for the various shapes for
snowflakes and ice crystals (see section 1). In the present study, we use six different pristine ice crystal
types: hexagonal column, hexagonal plate, needle, ordinary dendrite, fern-like dendrite, and six-bullet
rosette, covering most of the more common types occurring at various atmospheric conditions and
altitudes. In order to mimic natural shapes, we use the measured thickness-to-diameter and length-to-
diameter ratios reported by Pruppacher and Klett [1997] for the different types of ice crystals (see
Table c.1).

Needles are modeled as long circular cylinders, while for the dendrites, we use the crystal growth
algorithm by Reiter [2005]. It is based on a 2-D cellular automaton using two parameters that control
the amount of water available for the cells both locally and globally. This model was chosen mainly due



Table c.1 Snowflake Properties for the Computations

Snowflake Type D max (Mm) D o (mm) Dimensions (cm) Number of Crystals
Hexagonal column (N1e) 0.1-2.0 0.7-1.6 o =0.03527 L(I).J,W 1
max
Hexagonal plate (P1a) 0.1-2.0 0.7-1.6 h =0.0141 D(HN 1
max
Needle (N1a) 0.3-3.0 1.6-2.2 g =0.030487 L()M()?R 1
max
Ordinary dendrite (P1e) 0.4-4.3 2.1-34 p =0009022 150.377 1
max
Fernlike dendrite (P1f) 0.9-7.0 3.5-5.6 h =0.009022 D()"W? 1
max
Six-bullet rosette (C3b) 0.2-1.4 0.7-1.1 g =0.0151 7 0.455 1
max
Lump graupel (R4b) 0.5-5.0 2.0-4.0 - -
Aggregate of needles 0.3-8.0 2.2-6.4 - 2,10, 20, 30, 40, 50
Aggregate of ordinary dendrite 0.6-17.8 1.9-13.6 - 2,10, 20, 30, 40, 50
Aggregate of fernlike dendrite 1.4-24.0 5.6-17.5 - 2,10, 20, 30, 40, 50
Aggregate of rosettes 0.3-4.4 1.5-3.4 - 2,5,10, 15,20

to its simplicity and physical basis, whereas some other models may be more realistic [Libbrecht, 2005;
Gravner and Griffeath, 2009]. For the six-bullet rosettes, we adopted the shapes by Um and McFarquhar
[2007], which are based on aircraft measurements from cirrus clouds.

For the purpose of comparison, we also include lump graupel generated with the fractal model by
Ishimoto [2008]. In the fractal model, the snowflake is generated using an iterative method, which adds
ice cells into a cubic lattice. The amount of ice added is controlled by two parameters: the fractal
dimension fD and the total number of iterations. For generating graupel, the fractal dimension fD=2.7
was chosen in order to get a proper fit to the measured mass-diameter relationship by Heymsfield and
Kajikawa [1987]. This value is also close to the maximum possible with the current implementation. For
the number of iterations, we use 4, 5, 6, and 7.

To generaterealisticaggregates, we use the physically based aggregation model by Westbrook [2004]. It
mimics the aggregation process in a stochastic way by iteratively determining the probability of collision
between randomly chosen ice crystals, which depends on the size and fall speed of the candidates. Due
to the lack of observations, we assume random orientation and a narrow Gaussian size distribution for
the ice crystals in an aggregate because of the complex flow around the snowflakes. The ice crystals are
attached without overlapping to their nearest neighbor, which can make the aggregates a bit too fluffy.
For the aggregates of needles, we use the method by Kajikawa et al. [2000] to attach similar-sized
crystals.



In the study, we use aggregates of needles, ordinary dendrites, fern-like dendrites, and six-bullet
rosettes, i.e. four out of six pristine types. Aggregates of the other types are not as common and are
therefore omitted from this study. The number of crystals (or monomers) in each aggregate is varied
and depends on the ice crystal type. For needles and dendrites, we use 2, 10, 20, 30, 40, and 50
monomers, while for the six-bullet rosettes, we use 2, 5, 10, 15, and 20. These values are arbitrary in the
sense that natural particles can have any number of monomers, although there is a physical limit to the
maximum number due to breakup. Also, the smaller number of crystals for rosette aggregates than for
dendrites/needles is based on aircraft measurements [Um and McFarquhar, 2007].

Single ice crystals tend to fall in preferential orientation [Cho et al., 1981; Thomas et al., 1990; Matrosov
et al., 2005; Noel and Sassen, 2005]. To simulate this, we orient the generated ice crystals according to
the measurements by Noel and Sassen [2005] for warmer clouds, which indicate highly horizontal
orientation with an average canting angle of about 2° and a Gaussian distribution with a standard
deviation of 1°. It should be noted that these values are based on observations of planar crystals and
may not be representative of all the types used in this study. The orientation of the aggregates is
assumed to be random, although a recent study by Hogan et al. [2012] indicates a preferential
orientation.

Examples of the modeled shapes for the different ice crystal types and their aggregates are shown in
Figure c.1. Note that we only model dry pristine particles and their aggregates. We are neglecting
melting, riming, and breakup, which are more poorly understood and need more in situ measurements
in order to make the shape models realistic. Also, the irregularity/asymmetry of natural ice crystals is
also neglected mainly due to the lack of observations.

Figure c.1 Examples of the modeled snowflakes as viewed at 90° elevation angle. (top to bottom) The
crystal types are hexagonal column, hexagonal plate, needle, ordinary dendrite, fern-like dendrite, six-



bullet rosette, and lump graupel. The number of crystals in an aggregate is shown on the upper right
corner, while for the lump graupels, it shows the total number of iterations. The average size for each

type is also shown at the bottom.

C.1.2 Physical Properties of Modeled Snowflakes

In Figure 2, we show the mass of both the modeled particles and the measured values from various field
studies as a function of the maximum diameter Dmax, which can be computed in arbitrary plane: xy, xz,
or yz [Korolev and Isaac, 2003]. The single ice crystals and lump graupels are shown in Figure c.2 (left),
while the aggregatesarein Figure c.2 (right).

The agreement between the measurements and the shape models is overall good, but some crystal
types, such as the single dendrites, exhibit larger mass for the models. There are two main reasons for
the differences for single crystals. First, the measured m—D relationship and the thickness-diameter ratio
for ice crystals are from different studies, which can produce a selection bias. Second, the thickness-
diameter ratio may not be constant over the whole crystal, as we have assumed in our 2-D dendritic
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Figure c.2 (left) The mass of single ice crystals and lump graupeland (right) aggregatesof ice crystals as a
function of the maximum diameter. Hexagonal columns are shown in blue symbols, hexagonal platesin
black, ordinary dendrites in red, fern-like dendrites in gray, needles in green, six-bullet rosettes in cyan,
and lump graupels in magenta. The corresponding mass-diameter relationships from field
measurements is also shown for each crystal type in Figure c.1 (left), and more general relationships for

aggregates in Figure c.1 (right).

shape model. Natural dendrites accumulate more ice to the center of the branches as they grow, which
produces less overall mass than our model.



For the aggregates (Figure c.2, right), the agreement between the measurements and shape models is
also reasonable, although the modeled aggregates of needles and ordinary dendrites seem to have a
factor of about 0.5 less mass than the measurements on average. However, it should be noted that
some of the measurements include various mixtures of ice crystal types and their aggregates including
both partly melted and rimed snow making a direct comparison unreliable.

The aspect ratio a is defined as the ratio between Dmax derived in some direction and the maximum
diameter Dw perpendicular to this direction

(c.1)

In this study, we average over three perpendicular directions (xy, xz, and yz).

Figure c.3 shows the aspect ratio for the same particles. The solid lines indicate average values for each
snow type. As can be seen in Figure 3 (left) for single crystals, the aspect varies between almost unity
(graupel and rosettes) to about 0.06 (dendrites) with fairly large standard deviation. Gaps between
clusters of data points for some particle types are due to discretization limits, since the thickness or
diameter has a minimum size of one dipole. The aspect ratio for aggregates is more constrained, varying
between 0.9 and 0.6 (Figure c.3, right), but does indicate slight dependence on the monomer type.
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Figure c.3, Same for the figure c.2, but for the aspect ratio.

Roundness B has been used to characterize cloud ice particles by Heymsfield et al. [2002] and Korolev
and Isaac [2003], modeled fractal particles by Ishimoto [2008], and modeled aggregate particles by
Tyynela et al. [2011]. In this study, we use the definition by Ishimoto [2008]:

Ay + A+ Ay

3JT Dl%lilf( (C 2)

where Axy, Axz, and Ayz are the apparent areas in three perpendicular directions. The roundness (or



area ratio) is averaged over these directions.

In Figure c.4, we show the roundness for the modeled ice crystals (left panel) and aggregates (right
panel) as a function of Dmax. As can be seen, the roundness as defined in equation (2) is sensitive to the
difference in ice crystal shapes varying between about 0.07 and 0.6 on average. Even aggregates
produce distinct differences in roundness for different monomer types. Single ice crystals also indicate a
dependence on Dmax, which is due to both the change in aspect ratio and preferential orientation.

C.1.3 Scattering Properties and Computations

To model backscattering using complex shapes, we use the discrete-dipole approximation (DDA), which
is a method where the particle is divided into small volume elements (dipoles) that are placed into a
regular cubic lattice [Purcell and Pennypacker, 1973]. This allows a high degree of detail in the particle
shape, which can be controlled by the number of volume elements used in the shape model. The
accuracy of DDA is determined both by the number of dipoles and the dipole spacing kd relative to the
wavelength. Typically, it is required that |m|kd < 0.5, where m is the refractive index of the material. In
this study, d is fixed to 20 um for all particles, except the fern-like dendrites, which have d= 40 um, and
|m|kd is 0.58 at maximum. This ensures that there are enough dipoles to approximate the shapes of
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Figure c.4, Same for the figure c.2 but for the roundness.

smallest ice crystals while still keeping the memory requirements feasible for the largest particles. The
refractive index of solid ice is taken from Jiang and Wu [2004]. The Amsterdam DDA program by Yurkin
and Hoekstra [2011] was chosen for this study.

A volume observed by a radar is composed of many dissimilar particles in different orientations and
sizes. In this paper, we are not mixing the pristine ice crystal types in a volume, since we want to show
how they differ in the backscattering properties. For this purpose, we generate 1000 individual ice
crystals for each type randomly chosen within the appropriate size range and 100 random aggregates of
ice crystals for each type and for each number of crystals in the aggregate. For graupels, we use 100
random fractals for each number of iterations. The total number of different snowflakes used in this



study is 8700. The details of these numbers are also shown in Table 1. The radar observables are
computed by numerically averaging over different size ranges depending on the snowflake type. Also,
due to the preferential orientation of the ice crystals, the elevation angle of the radar is varied: 0°, 15°,
30°, 45°, 60°, 75°, and 90°.

The ADDA program produces single-particle scattering matrices, which are used together with a particle
size distribution (PSD) function in computing the radar observables. We assume an exponential PSD for
all the snowflakes [Matrosov, 2007; Heymsfield et al., 2008]:

N(D) = N[,cxp(—AD,m‘). (C3)

where NO is the intercept parameter and A the slope parameter. The median volume diameter DO is
derived from

Dy 1 Dypper

f D exp(—AD)D = ;f D? exp(—AD)AD,

Diower < J Digyer (C 4)

where Dlower and Dupper are the minimum and maximum diameters for each snow type. The
relationship between A and DO is shown in Figure c.5.
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Figure c.5 The median-volume diameter DO as a function of the slope parameter
A for different snow types.

In Table c.1, we show Dmax and DO ranges for each snowflake type. The Dmax ranges have been chosen
to reflect the natural variation in snowflakes and are based on the values shown by Pruppacher and
Klett [1997] with slightly broader ranges. The A values vary in steps of 0.1 mm-1 while NO has been fixed
to 104 mm-1m-3. The A values vary between from almost flat to highly peaked distributions. Note that
we do not have DDA results for single fern-like dendrites, only their aggregates, since we wanted to
balance the relative contributions from single ice crystals and aggregates to the statistical analysis.



When computing the scattering properties, we have adopted the conventions of Bohren and Huffman
[1983]. The equivalent radar reflectivities (in units of mmém-3) at different linear polarization states
(hh, vv, hv, and vh) are derived from

8 x 10'8

Ze, wibh/hvivh = TKKE

“um\'l
/ Oyvvmhmvivh (D)YN(D)dAD,
I) jower
‘ (c.5)

where K = (m2-1)/(m2+2) is the dielectric factor, ovv/hh/hv/vh=4m|Swv/hh/hv/vh(180°,0°)|/k2 the
backscattering cross section for linearly polarized incident wave (h and v), and Svwv/hh/hv/vh are the
elements of the amplitude scattering matrix. Due to reciprocity at backscattering, Ze, vh=Ze, hv leaving
three independent reflectivities. These can be combined to define two radar observables: the
differential reflectivity Zdr=Ze,hh/Ze,vv and the linear depolarization ratio LDRvh=Ze,vh/Ze,hh.

The linear polarization states can be transformed to circular polarization basis (I and r) by adding a phase
difference of +1/2 between the linear polarization vectors. The corresponding radar reflectivities in this
case are
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where orr/ll/rl/Ir=41t|Srr/Il/rl/Ir(180°,0°)|/k2 is the backscattering cross sections for circularly polarized
incident wave. The relationships between the linearly and circularly polarized amplitude scattering
matrix elements are

1 . 8
S = :(S\-\- + Shyv + 1(Spp + Swi))
1 . .
Sy = ;(S\-\- — Shv + 1(Shh — Swh))
, I . o .
Sir = ;(5\-\- — Shv — 1(Shh — Swh))
1 i
$i= ;(Sn— + Shy — 1(Shh + Swh)).

(c.7)

Similar to the linear polarization basis in equation (5), we can also define the circular depolarization ratio
CDRrl=Ze,rr/Ze,rl.

The correlation between different polarization states of the scattered wave is defined by the correlation
coefficients. A common observable for dual-polarization radars is the copolarized correlation coefficient:
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(c.8)

where phv is the amplitude and 6hv is the argument of the correlation coefficient. 8hv is also known as
the backscatter differential phase and is typically expressed in degrees. As phv is not a strong function of
shape for dry snow, we only use &hv, when analyzing the computations.



The specific differential phase is the difference between the propagation constants of h- and v-polarized
waves

27 Dypper
Kgp = — R:-f [i $22(0°, 0°, D) — i8,,(0°, 0°, D)] N(D)dD,
k= Diower (C 9)

where 522(0°,0°) and S11(0°,0°) are the forward-scattered elements of the amplitude scattering matrix
defined in the forward scattering alighment convention [Ulaby and Elachi, 1990]. Note that the other
observables are defined in the backscattering alignment convention. Kdp is expressed in units of deg
km-1.

Dual-frequency ratio (DFR) between two frequency bands (f1 and f2) is defined as

Ze hhfy

DFR_."I.-"_J": = 7 o

e,hh,f> (ClO)
Note that Zdr, LDR, CDR, and DFR are independent on both the intercept parameter NO and the
dielectric factor K. Also, in this study we categorize DFRs and some polarimetric measurements as a
single measurement for convenience even though they are already a combination of measurements.

C.1.4 Statistical Measures to Analyze a Data Set

Taking into account the various snowflake types used in this study, their PSD parameters, and
measurement parameters, such as the elevation angle, radar frequency, and radar observables, the
resulting data space becomes infeasible to analyze with simple methods. A systematic study of all
possible data element combinations is difficult to present in a coherent fashion and does not reveal
hidden trends and statistical significance. However, a large scattering database can be seen as a
distribution in a multidimensional space and can be analyzed statistically by measuring how well
clustered it is with respect to different combinations of measurement parameters. This can help in
devising an optimal measurement strategy to characterize falling snow.

The goal in clustering algorithms is to use statistical measures to find a set of clusters from the data set
without a priori knowledge of the optimal clustering [Halkidi et al., 2001]. In our case, the partitions,
which correspond to the different snow types, are already known beforehand, so we only need to
measure how clustered the partitions are. Although the measures for quantifying data clustering vary
[Renddn et al., 2011], they are commonly called cluster validation indices (CVIs). Each CVI is defined in a
different way and can have values ranging widely with some having a closed interval of values and some
having values up to infinity. Comparing CVI values from different CVI methods can therefore be
ambiguous. However, using several methods at the same time can reveal common trends and provide a
more reliable basis for determining which combinations of measurement parameters are better than
others in characterizing snow. Instead of comparing absolute CVI values, which can be difficult to
interpret, we concentrate on the relative order for different measurements. Notice that the most
promising results are those where the CVIs produce mutually similar ordering and agree with each
other.

There are generally two types of CVI methods: external, which uses data from a predetermined
structure to evaluate all the clusters, and internal, which uses only the data in the clusters themselves.



Since we have no preferred cluster in this study, we have chosen three common internal CVls: the
Davies-Bouldin index (DBI) [Davies, 1978], Dunn index (DI) [Dunn, 1973], and the Silhouette index (SI)
[Rousseeuw, 1987].

The Davies-Bouldin index is defined as
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(c.12)

where Xi,j is the data point j in the cluster i, Ni the number of data points in the cluster i, Ai the centroid
of the cluster, Nc the number of clusters, S1i within-cluster separation of the data points, M1ij the
between-cluster separation for clusters i and j, and DBI the Davies-Bouldin index. DBI varies between
zero and infinity. The smaller it is, the more clustered is the data set.

The Dunn index is defined as
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where S2i is the maximum within-cluster separation of all the data points in the cluster i, M2ij the
minimum between-cluster separation for clusters i and j, and DI the Dunn index. Like DBI, DI varies
between zero and infinity, but unlike DBI, a larger value indicates better clustering.

The Silhouette index is defined as
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where S3i,j is the average within-cluster distance for data point j in the cluster i, M3i,j the average
distance between data point j in the cluster i and the closest other cluster, Sili,j the silhouette of the
data point, and SI the average Silhouette index. Sl varies between -1 and 1. The closer it is to one, the
more clustered the data is. Note that we use Euclidean distances and norms in all the CVls.

In this study, the clusters represent different snow types, and the data points Xi,j different radar
observable values with varying elevation angle, radar frequency, and PSD parameters (A and NO).

C.2 Results



In this section, we first analyze the backscattering properties statistically to reveal measurements and
their combinations that can be used to characterize falling snow, then show some of these propertiesin
more detail, and finally apply them to field measurements obtained during the GCPEx campaign.

C.2.1 Statistical Analysis of Backscattering Properties and Their Combinations

Tables c.2 and c.3 show some of the results of analyzing all of the integrated/averaged backscattering
properties using the statistical measures described above. It should be noted that measurement limits
and attenuation of the radar signal have not been taken into account, when computing the CVIs, which
may result in unpractical characterization in some cases.

Table c.2 luster Validation for the Backscattering Properties Using the Davies-
Bouldin (DBI), Dunn (DI), and Silhouette (SI) Indices

Optimal Frequency Band Optimal Elevation Angle (deg)
Measurement DBI DI Sl DBI DI Sl
Z tn S (1.86) W (7.5e-8) W (-0.40) 45(3.32) 75(1.1e-7) 0(-0.39)
Z g Ka (0.71) Ka (9.2e-3) W (0.42) 60 (0.44) 60 (1.0e-2) 60(0.33)
LDR W (1.04) W (4.7e-4) Ka (0.56) 60(0.52) 0 (4.5e-4) 90 (0.46)
CDR W (0.69) Ka (3.4e-4) Ka (0.68) 0(0.43) 0(9.7e-4) 0(0.63)
S hy Ka (1.77) W (2.7e-4) Ka (-0.04) 90 (3.81) 0 (2.8e-4) 0(-0.07)
K dp W (3.07) X (4.6e-5) W (-0.12) 90(1.27) 30 (6.4e-5) 90 (-0.07)
DFRku/Ka - - - 30(0.93) 30(9.3e-5) 75(0.21)
DFRsw - - - 30(0.85) 45 (5.0e-5) 75 (0.04)
DFRkumw - - - 30(0.89) 15 (1.0e-4) 75(0.07)
DFRkamw - - - 90 (1.16) 45 (1.3e-4) 75 (0.30)
DFRkasg - - - 90 (0.88) 0 (5.5e-4) 75 (0.58)
DFRw/G - - - 75(1.23) 75 (4.0e-4) 75 (0.34)

a CVlvalues are shown in parenthesis.



Table c.3 Same as in Table 2 but for Combinations of Measurements

Optimal Frequency Band Optimal Elevation Angle (deg)
Measurement Combination DBI DI Sl DBI DI Sl
DFRyu/ka + DFRka/w - - - 45(0.94) 30 (1.2e-3) 90 (0.29)
DFRg/ka + DFRkamw - - - 45 (0.90) 30 (4.7e-4) 75(0.14)
DFRg/ku + DFRkuska - - - 30(0.93) 90 (2.0e-4) 75 (0.22)
DFRkuna + DFRkasG - - - 90 (0.71) 15 (3.6e-3) 75 (0.48)
DFRyumw + DFRw/G - - - 0(0.67) 15 (1.8e-3) 90 (0.30)
DFRkamw + DFRw/g - - - 90(0.81) 15 (7.6e-3) 75(0.47)
DFRwrka * Z drku - - - 0(0.31) 30 (1.3e-2) 0(0.42)
Z 4 + CDR Ka (0.32) Ka (7.6e-2) W (0.60) 75(0.42) 60 (7.1e-2) 0(0.44)
Z 4 +LDR Ka (0.36) Ka (6.5e-2) W (0.54) 75 (0.42) 75 (5.2e-2) 75(0.38)

In Table c.2, both the optimal frequency bands and elevation angles are shown for each type of
measurement together with the corresponding CVI values (shown in parenthesis). For DBI, smaller
values are better, while for DI and SI larger values are better. The best CVI values in each column are
shown in bold font. It is clear that Zhh by itself is not as good as the other polarimetric observables for
characterization, but higher frequencies seem to work better. Ka and W bands show overall best
characterization for Zdr, LDR, CDR, and 6hv. Slightly off-nadir elevation angles provide best results for
Zdr due to the preferential orientation of the ice crystals. Both hv and Kdp perform better than Zhh,
but not as good as the other observables. There are no common trends for the elevation angles.

For DFRs, higher frequencies provide better characterization. However, 75° seems to be slightly better
than nadir measurements. This may be due to the fact that at slightly off-nadir direction, the oriented
ice crystals appear more asymmetrical and therefore more nonspherical, which increases the variation
in ohh. Having a large difference in frequencies (S/W and Ku/W) results in worse characterization than
having two higher frequencies (Ka/W, Ka/G, and W/G), although Ku/Ka combination seems to be a good
pairing showing similar characterization to Ku/W.

Table c.3 shows optimal frequencies and elevation angles for combinations of measurements showed in
Table c.2. As can be seen, combining measurements constrains the backscattering properties into
smaller areas in the parameter space and results in better clustering/characterization overall than the
results shown in Table 2. When combining two DFRs, which share one frequency, it is obvious that
higher frequencies are better. Again, Ku/Ka band combination seems to be a special case showing better
results than Ku/W and S/Ka combinations. For Zdr and LDR/CDR combination, Ka and W bands are
optimal having better CVI values than combination of DFRs. There does not seem to be any noticeable



trend with the optimal elevation angles for DFR combinations.

At the Ku and Ka bands, combining DFR and Zdr provides a reasonable characterization at lower
elevation angles due to the preferential orientation. The best overall characterization in this study is
provided by combining polarimetric observables (Zdr and LDR/CDR) at the Ka and W bands.

We also checked the CVI values for the single crystals and graupel omitting the aggregates (not shown
here). The overall characterization improved significantly throughout, but the relative results remained
similar. Again, Zdr and CDR showed best characterization at Ka and W bands in addition to 6hv. Overall,
the optimal frequency bands were lower.

C.2.2 Example Combinations of Measurements

Figure c.6 shows the DFRKu/Ka and DFRKa/W combination plotted together at 0° (Figure 6, left) and 90°
(Figure c.6, right) elevation angles. The results are similar to those in studies by Kneifel et al. [2011] and
Leinonen et al. [2012] showing that the aggregates separate from the more spherical graupels, which
have larger DFRKa/W values. This may indicate that higher-frequency measurements near nadir that
produce DFRs similar to spheroidal models are due to heavily rimed snow or graupel. Note that single
crystals, with the exception of rosettes, are difficult to characterize at 90° elevation (Figure 6, right) due
to the preferential orientation of the crystals, which produces Rayleigh-type backscattering. However, at
0° (Figure c.6, left) they show larger separation with the dendrites and hexagonal plates clearly
separating from the aggregates. On the other hand, different aggregate types are difficult to distinguish
from each other.
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Figure c.6, The dual-frequency ratios DFRKu/Ka and DFRKa/W plotted at (left) 0° and (right) 90°
elevation angles. Single crystals are shown in square symbols and aggregates in triangles with different
colors representing different crystal types. Color coding is the same as in Figure c.1.

In Figure c.7, we show Zdr and CDR plotted against each other at the Ka band and at 0° (Figure c.7, left)
and 60° (Figurec.7, right) elevation angles. As can be seen, at 0° this provides a fairly good
characterization and produces five different clusters/snow types: hexagonal plates, dendrites,
columns/needles, aggregates, and graupels/rosettes. At 60°, the clusters are closer to each other, but
the variation within each cluster/snow type is smaller. This results in better overall clustering as shown



in Table c.3.
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Figure c.7, The differential reflectivity Zdr and the circular depolarization ratio CDR plotted at (left) 0°
and (right) 60° at the Ka band. Snow types are the same as in Figure c.6.

The relative ordering and behavior of the CDR values for different ice crystal types with respect to
elevation angle is similar to the measurements shown by Reinking et al. [2002]. The only differences are

the absolute levels in dB, which can be due to the different depolarization state, difference in PSD
values, attenuation, etc.

C.2.3 Snowfall Case During GCPEx

The goal of the GPM Cold-season Precipitation Experiment (GCPEx) was to study how passive and active
multifrequency sensors could characterize falling snow by collecting both in situ microphysical and
remote sensing data. In this study, we use the measurement data from the mobile NASA D3R ground-
based radar, which is a dual-polarization Doppler radar operating at Ku and Ka bands, and the APR2
radar on board the NASA DC-8 aircraft also operating at Ku and Ka bands. We also use in situ probe data
from the University of North Dakota's Citation aircraft, which was flying at different altitudes during the
radar measurements. For the case study, we have selected 27 January during which there was reported
snowfall. During 27 January, the D3R radar was operating close to the DC-8 aircraft route and scanning
within 15° in the azimuthal direction from the aircraft flight path (see Figure c.8). The APR2 radar was

pointing toward the ground. The Ka data from the D3R radar could not be used in this case due to the
low power of the transmitter.
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Figure c.8, Location and measurement direction of the D3R radar and the
flight path of the APR2 radar.

In Figure c.9, we show Zhh at Ku band (top) and Zdr (middle) measured by the D3R radar, and DFRKu/Ka
measured by the APR2 radar (bottom). As can be seen, there is a melting layer above 1 km altitude with
a visible bright band (top). Between 2 and 4 km height, there are two bright (Zhh>15 dBZ) areas driven
by wind shear. These areas are also associated with low Zdr values (<1 dB) and large DFRKu/Ka values
(>4 dB) indicating aggregates (see Figures c.6 (right) and c.7 (left)). There are also many less bright areas
(Zhh<5 dBZ) close to the aggregation areas which show larger Zdr values (>1 dB) and lower DFRKu/Ka
values (<4 dB) indicating oriented ice crystals (see Figures c.6 and c.7). The Zdr values were adjusted due
to an average bias of about 0.33 dB, and a local ®dp-based attenuation correction was performed for
the snow volumes at the upper right part of the range-height indicators [Bringi and Chandrasekar, 2001].

Z,,, [dBZ),GCPEX D3R 27JAN2012 03:05

7] 30

6 gg
= o
& ) 15
= . 10
23 s
I 2 0

1 -5

06 15 -10

Range [km]
z. Ku [dB],GCPEX D3R 27JAN2012 03:05

7 v .

6|L 5
E 5 5
= 4, =ig.5
S 3 5
T3
T 2! 5

1+ SR T T ST

o 10 =

30

k=)

15
Range fkml
DFR, ... [0B],GCPEX APR2 27JAN2012 03:05

Figure c.9, (top) The equivalent reflectivity Zhh and (middle) the differential reflectivity
Zdr at the Ku band measured by the D3R radar, and (bottom) the dual-frequency ratio
DFRKu/Ka measured by the APR2 radar. The projected flight path of the aircraft with the
particle probes is shown in the black line. Two incidents of the probe data selected for
this study are shown as black dots.



For the probe data, we have selected two example cases, which indicate different particle types present
in the radar volumes. The time stamp for the case 1is 02:54 UTC and for the case 2 it is 03:19 UTC. Note
that the time stamp for the radar measurements is 03:05 UTC. We show in Figure c.10 (top) an image
from the Cloud Imaging Probe (CIP) as case 1, which is the site close to the D3R radar (see Figure c.9).
The image reveals the presence of needle crystals and smaller irregular snow particles. When compared
to Figure c.9, it is evident that these particles produce relatively low Zhh and DFR values, while also
producing larger Zdr values. In Figure c.10 (bottom), we show an image from the High Volume
Precipitation Spectrometer (HVPS) as case 2, which is the site further away from the D3R radar. This
image reveals the presence of single needles as well as their aggregates. Again, when compared to the
radar measurements in Figure c.9, they correspond to higher Zhh and DFR values, and low Zdr values.

Figure c.11 shows a scatterplot with Zdr and DFRKu/Ka plotted together using all the range-height cells
in Figure c.9 with the copolarized correlation coefficient phv>0.9 above 2 km height. The measurements
are divided into two categories: larger reflectivities (Zhh>10 dBZ) plotted as black dots and smaller
reflectivities (Zhh<10 dBZ) plotted as blue dots. We also plot the results from the DDA computations
with needles shown in a green area bounded by green lines, and ordinary dendrites in a red area
bounded by red lines. For the computations, we have mixed the single ice crystals, their aggregates, and
small irregular snow particles approximated by soft spheres in the radar volumes by varying their
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Figure c.10, Example images from the (top) Cloud Imaging Probe (CIP) and
(bottom) High Volume Precipitation Spectrometer (HVPS) on board the UND



Citation aircraft. The vertical widths of the CIP and HVPS images are 1.6 mm and
19.2 mm, respectively.

relative mixing ratios between 0 and 1. We also vary DO for all the particles as well as elevation for Zdr.
For the soft spheres, we use the m-D relationship of graupels.
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Figure c.11 The dual-frequency ratio DFRKu/Ka (X axis) and the differential reflectivity Zdr (Y axis).
The radar measurements by both D3R and APR2 are shown as plus symbols. The DDA computations
are shown as a greenarea for needles and a red area for ordinary dendrites. Note that the simulated

radar volumes are a mixture of single ice crystals, their aggregates, and small irregular particles,
which are approximated as soft spheres.

Itis clearthat in order to cover most of the measurement variation for both Zdr and DFR, three different
particle models are needed. The edges of the computational areas correspond to the different particle
types. Also, Zhh and DFR show strong correlation with the aggregates separating into a separate
category (black dots). In order to quantify the error between the two models and the measurements, we
use the CVIs presented above sections. In this case, smaller error corresponds to poorer
separation/clustering between the model and the data. The CVI values for dendrites and needles are
3.0614 and 6.5659 for DBI, 3.4389e-6 and 1.5492e-5 for DI, and 0.4258 and 0.3369 for SI, respectively.
Both DBI and Sl indicate that needles have a smaller error than dendrites, while DI indicates the
opposite. The fact that the in situ probe data show that the radar volumes contain needles and not
dendrites is therefore also supported by the computational methods.

It should be noted that the large spread of the values in Figure c.11 may be due to the spatial and

temporal differences between the D3R and APR2 measurements. A better volume matching will likely
decrease the spread and provide a better retrieval of snow types.

C.3 Conclusion

In the present study, we have modeled physically realistic snowflakes of various shapes and sizes to



analyze their size-integrated backscattering properties. The backscattering properties have been
computed at C, S, X, Ku, Ka, W, and G bands and then compared to radar observations in order to
characterize snowflake types.

The results confirm that DFRs, especially at higher radar frequencies, are promising measurements to
characterize snow, as already demonstrated by other studies [Kneifel et al., 2011; Leinonen et al., 2012].
They also show that, in principle, using even higher-frequency bands (G band; 220 GHz) than W can
improve the characterization. However, attenuation of the radar signal may hinder its applicability. The
transition region from Rayleigh scattering to the resonance region between Ku and Ka bands seems to
provide overall the best characterization, while also avoiding the possible attenuation problems.

The presence of single, preferentially oriented ice crystals has a profound effect on the polarimetric
backscattering properties. The results indicate that Zdr and the depolarization ratios (LDR and CDR)
provide better characterization than DFRs, and this is enhanced even further by combining these
measurements at the same time.

When the computations are compared to radar measurements from aircraft and ground, they show that
modeling results together with dual-polarization multifrequency measurements can be used to
characterize snow. They also demonstrate the advantage of combining dual-polarization measurements,
especially Zdr, with dual-frequency ratios, which can narrow down characterization. Additional
advantage of using these observables is that they are both independent on the intercept parametersin
PSDs and therefore require less assumptions of the snowfall.

BAECC field experiment.

The PI participated in the field experiment phase of the ASR supported filed experiment namely BAECC.
This was a unique experiment with a large number of ground instruments for in-situ snow observations
and radar that actually had an influence on the future ARM program instrumentation. The participation
resulted in a multi author BAMS article and the summary of the activity is as follows:

During "Biogenic Aerosols - Effects on Clouds and Climate (BAECC)", the U.S. Department Energy's
Atmospheric Radiation Measurement (ARM) Program deployed the ARM 2nd Mobile Facility (AMF2) to
Hyytiala, Finland, for an 8-month intensive measurement campaign for February to September 2014.
The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytidla is
host to SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), one of the world's
most comprehensive surface in-situ observation sites in a boreal forest environment. The station has
been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant
to atmosphere biosphere interactions continuously since 1996. Combining vertical profiles from AMF2
with surface-based in-situ SMEAR-II observations allow the processes at the surface to be directly
related to processes occurring throughout the entire tropospheric column. Together with the inclusion
of extensive surface precipitation measurements, and intensive observation period involving aircraft
flights and novel radiosonde launches, the complementary observations provide a unique opportunity
for investigating aerosol cloud interactions, and cloud-to precipitation processes, in a boreal
environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol
sources and transport, cloud microphysical processes, and boundary-layer structures. In addition,



numerical models are being used to bridge the gap between surface-based and tropospheric
observations.
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Figure D.1 Sensitivity enhancement demonstrated with the radar observations from NSA site.
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