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Abstract.

Solar eruptions are often driven by magnetohydrodynamic instabili-
ties such as the torus and kink instabilities that act on line-tied mag-
netic flux ropes. Recent laboratory experiments designed to study
these eruptive instabilities have demonstrated the key role of both
dynamic [Myers et al., Nature 528, 526 (2015)] and quasi-static [My-
ers et al., Phys. Plasmas, submitted (2016)] magnetic tension forces
in contributing to the equilibrium and stability of line-tied magnetic
flux ropes. In this paper, we synthesize these laboratory results and
explore the relationship between the dynamic and quasi-static tension
forces. While the quasi-static tension force is found to contribute to
the flux rope equilibrium in a number of regimes, the dynamic tension
force is significant mostly in the so-called failed torus regime where
magnetic self-organization events prevent the flux rope from erupting.
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Magnetic tension forces in line-tied flux ropes
1. Introduction

The magnetic tension force is a fundamental restoring
force that contributes to the equilibrium and stability
of toroidal magnetohydrodynamic systems. The
tension force of interest in this paper is generated
by the toroidal curvature of the magnetic field.
This toroidal field tension force contributes to the
equilibrium of fusion devices such as the tokamak [1,2],
and it has recently been shown to play a key role
in both the equilibrium and stability of solar-relevant
line-tied magnetic flux ropes [3,4]. In the case of
the line-tied flux rope, two tension force contributions
have been identified: (1) a quasi-static tension force
that contributes to the flux rope equilibrium; and (2)
a dynamic tension force that can exceed the quasi-
static term and prevent the flux rope from erupting. In
this paper, we analyze the relationship between these
two tension force contributions, which were originally
reported in Refs. 4 and 3, respectively.

A line-tied magnetic flux rope is an arched
bundle of helical magnetic field lines and confined
plasma that is anchored, or line-tied, at two fixed
footpoints. Line-tied flux ropes are found most notably
in the solar corona where they store large amounts
of magnetic energy for long periods of time [5-10].
This stored energy is suddenly and catastrophically
released during solar eruptive events [11, 12], which
are of great interest due to their role in generating
space weather in Earth’s magnetosphere [13]. Many
solar eruptive events are thought to be driven by ideal
magnetohydrodynamic instabilities such as the kink
[14-17] and torus instabilities [18,19]. Predicting if
and when these instabilities can trigger an eruption,
however, remains an area of active research.

Traditionally, ideal magnetohydrodynamic insta-
bilities in the corona are studied with a combination
of remote observations [20-25] and numerical mod-
eling [26-31]. While substantial progress has been
made, additional research is required to fully under-
stand instability-driven flux rope eruptions. To this
end, a dedicated laboratory experiment has recently
been developed to study the torus and kink instabil-
ities in a well-controlled laboratory setting [3, 4, 32].
This experiment is the first to generate long-lived labo-
ratory magnetic flux ropes that evolve in a quasi-static
equilibrium with the possibility of erupting due to ei-
ther the kink or the torus instabilities. In this paper,
we synthesize the key results of this experiment, which
demonstrate the role of the toroidal field tension force
both in setting the quasi-static equilibrium of the flux
rope and in preventing certain flux ropes from erupt-
ing. The paper is organized as follows: In Section 2,
the laboratory setup is briefly introduced along with
an experimental characterization of the torus and kink
instability parameter space. Then, in Section 3, direct
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measurements of the quasi-static and dynamic mag-
netic tension forces are presented. The relative ampli-
tudes and parameter dependence of these tension force
contributions are compared. We end with a brief sum-
mary and discussion in Section 4.

2. Laboratory setup and results on flux rope
stability

The laboratory experiments reported in this paper are
conducted in the Magnetic Reconnection Experiment
(MRX) [33] at Princeton Plasma Physics Laboratory.
The experimental setup is described extensively
elsewhere [3,4,32], so we only briefly review it here.
A custom-built apparatus comprised of two electrodes
mounted on a glass substrate and two sets of magnetic
field coils is inserted into the MRX device to produce
the line-tied flux rope plasmas. Four independent
magnetic field coil sets are used to produce a variety of
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Figure 1. Laboratory setup and magnetic probe geometry for
the line-tied flux rope experiments. Seven linear magnetic probes
(yellow) extend vertically into the flux rope plasma (pink).
Magnetic measurements acquired in the (a) toroidal and (b)
poloidal cross-sections of the rope are shown on the right. In each
case, the vectors represent the in-plane field, while the colors
represent the out-of-plane field. The magnetic axis is located at
the reversal point of the poloidal magnetic field, Bp = By. The
toroidal field shown here is the plasma-produced internal field,
Br;, which is paramagnetic with respect to the vacuum guide
field, By. This figure reprinted with permission from Ref. 3.
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vacuum (potential) field configurations. These vacuum
fields are comprised of ‘guide field’ components that
run toroidally along the flux rope and ‘strapping field’
components that run orthogonally to the rope. Once
the vacuum field has been created, a capacitor bank
breaks down the flux rope plasma. Non-potential
magnetic energy is driven by the capacitor bank into
the flux rope on a timescale of 150 ps, which is two
orders of magnitude longer than the dynamic Alfvén
time (74 ~ 3 ns) and substantially shorter than the
resistive diffusion time (75 ~ 500 ps). While these are
not the first laboratory experiments to produce arched
line-tied flux ropes [34-36], they are the first to achieve
this crucial separation of timescales, which mirrors the
separation of timescales in the solar corona [12].

The MRX flux rope plasmas are diagnosed with
a distributed, in situ magnetic probe array (see Fig.
1). The probe array is comprised of seven linear
probes that are inserted vertically into the plasma.
Inside each linear probe, miniature magnetic pickup
coils are grouped in orthogonal sets of three at 4 cm
intervals. Since the probes are also spaced horizontally
at 4 cm intervals, the probe array measures all three
components of the vector magnetic field on a 4 cm X
4 cm grid. The probe array can be rotated between
discharges to acquire magnetic field data from various
cross-sections of the flux rope.

One key measurement provided by the probe
array is the flux rope magnetic axis height. This is
determined by finding the location where the poloidal
magnetic field, Bp = B,, reverses sign (see Fig. 1).
This information can be used to construct a height-
time plot for each flux rope discharge (see Fig. 2).
The subpanels in Fig. 2b show the height of the flux
rope apex, Zqp(t), overlaid on the measured poloidal
magnetic field, Bp(t, z). In each discharge the plasma
current is nominally the same (Fig. 2a), but the
height-time evolution varies widely. This is because the
vacuum magnetic field configuration has been modified
in each case in order to explore the torus versus kink
instability parameter space.

The stability criteria for the torus [18,19, 30, 37—
41] and kink [14-17,26-29] instabilities form a two-
dimensional instability parameter space that can be
studied in the laboratory. The torus instability is
parameterized by the vacuum field decay index,

_ z  0|Byacl _ 3
n(e) = - > 5 1)
where B, is the vacuum magnetic field and z is
the height above the footpoints. The decay index
quantifies how quickly the vacuum field, which provides
the restoring forces on the flux rope, decays with
height. If the restoring forces decay too quickly (high
n), then the flux rope experiences a so-called loss-of-
equilibrium and erupts. The kink instability, on the
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Figure 2. Height-time evolution of four different flux rope

discharges. (a) Mean and standard deviation of the nominally
identical flux rope current waveforms. (b) Apex height, zqp(t),
(black) overlaid on the poloidal magnetic field, Bp = By,
measured for each of the four cases. The equilibrium, or quasi-
static, position of the magnetic axis is shown in red. (c) Table of
instability parameters for each discharge. This figure reprinted
with permission from Ref. 3.

other hand, is parameterized by the edge safety factor,

2n  2ma Bpg,
ta L Bpg
Here, ¢, is the rotational transform, which measures
the field line twist along the length of the flux rope [42].
Additionally, a is the flux rope minor radius, L is the
flux rope length, Bp, is the edge toroidal field, and
Bp, = Ir/2ma is the edge poloidal field, where Ip
is the toroidal flux rope current. Here, we assume
that Bp, is the vacuum field and that I is 90% of
the power supply current, giving a 10% uncertainty
in g, (see Ref. 3). For each laboratory flux rope
discharge, the instability control parameters n and q,
are evaluated at the maximum flux rope equilibrium
height (the maximum of the red traces in Fig. 2b).
The resulting values of n and ¢, for the four discharges
in Fig. 2b are listed in Fig. 2c.

The discharge-by-discharge analysis in Fig. 2 can
be applied to all of the flux rope plasmas in the MRX
database. The results of this extended analysis are
shown in Fig. 3, which plots flux rope eruptivity
across the torus versus kink (n vs. g,) instability
parameter space. The color in the plot corresponds to
the normalized instability amplitude, (dz)/xf, which
is a metric developed to quantify the eruptivity of a
given flux rope. Here, the instability amplitude, (0z), is
defined as the maximum of the envelope of the dynamic
spatial oscillations about the equilibrium position of

Ga =

< 1. (2)
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Figure 3. The torus versus kink (n vs. ¢, ) instability parameter
space. The normalized instability amplitude, (dz)/x¢, which
represents the spatial extent of the dynamic evolution of the flux
rope, is shown in color. Each point in the scatterplot contains 2—
5 flux rope discharge taken with identical experimental settings
such that more than 800 discharges are represented. The stable,
eruptive, and failed kink regimes are expected, but the failed
torus regime constitutes a new discovery. This figure reprinted
with permission from Ref. 3.

the flux rope. This instability amplitude is normalized
to the footpoint major radius, xy. Values of (0z)/x;
for the four discharges in Fig. 2b are listed in Fig. 2c.

Four distinct stability regimes are identified in
Fig. 3, with the gray bars representing the empirical
boundaries between them. The stable and eruptive
regimes are anticipated in that both the torus and
kink instabilities are (de)stabilized at (high) low n
and (low) high ¢,. The failed kink regime is also
anticipated in that it is qualitatively consistent with
numerical simulations of line-tied flux ropes [37]. Here,
the kink instability is present, but it saturates at low
amplitude. The conclusion is that, without the torus
instability, the kink alone cannot drive an eruption.
The surprisingly low torus instability threshold of n ~
0.8 is discussed in Section 4. The fourth and final
regime in Fig. 3 is the failed torus regime, which
constitutes a new discovery. In this regime, flux ropes
that are otherwise torus unstable (high n) fail to
erupt. As will be described, this behavior is due to
a previously unknown dynamic magnetic tension force
that prevents the flux rope from erupting.

3. Quasi-static and dynamic tension forces

The laboratory observations presented in the previous
section show that the flux rope can persist in a
quasi-static equilibrium (Fig. 2) and that unexpected
stability can be found in the failed torus regime (Fig.
3). Both of these phenomena are linked to the toroidal
field tension force that is the focus of this paper. In this
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section, we summarize our experimental results on the
quasi-static and dynamic components of the toroidal
field tension force. We then investigate the parameter
dependences and the origins of these two tension force
contributions.

In order to study the toroidal field tension force
in the laboratory, the various force terms that act
on the flux rope must be directly measured from
the experimental data. The key force terms and the
force measurement procedure are describe elsewhere in
full detail [3,4], so we only briefly summarize them
here. In all, three force terms are considered: (1)
the upwardly directed hoop force; (2) the downwardly
directed strapping force; and (3) the downwardly
directed toroidal field tension force.

The hoop force is a poloidal-field-generated force
that is derived from the toroidal curvature of the flux
rope. Increased magnetic pressure on the inside of the
rope and decreased pressure on the outside results in a
net upward force. Shafranov [43] gives the hoop force
expression in the large aspect ratio limit to be

_ mol?

B O R

where Ir is the toroidal current in the flux rope, R
is the major radius, @ is the minor radius, and ¢; is
the normalized internal inductance. This expression
is derived for a toroidally symmetric ring of current
such that corrections are necessary for the non-circular
shape of a line-tied flux rope [4].

The strapping force is a poloidal-field-generated
restoring force that is due to the interaction between
the flux rope toroidal current, I7, and the vacuum
strapping field, Bi:

F, =1y x B, = —I7B,. (4)

F

Here the strapping force is written with an explicit
negative sign such that Iz and By are positive-definite.
The final force term is the toroidal field tension
force. Much like the hoop force, the tension force
is derived from the toroidal curvature of the flux
rope. The key field component for the tension force
is the internal toroidal field, Bp;. This magnetic field
component arises in the cross-section of the flux rope in
order to achieve minor radius force balance. In low-f3
(low thermal pressure) systems such as our laboratory
experiments and the solar corona, Brp; is paramagnetic
with respect to the vacuum toroidal guide field, B,.
This paramagnetism creates a minor radius magnetic
pressure gradient that opposes the minor radius pinch
force generated by the toroidal flux rope current.
When bent into an arch, the paramagnetic internal
toroidal field, Bp; and its associated poloidal currents,
Jp, interact to produce a strong downward force on
the inside of the rope and a weak upward force on the
outside. This asymmetry results in a net downward
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restoring force on the flux rope. As derived in Ref. [4],
the tension force can be expressed as

B2 _B2
= 3 na) [P T2, ®)

where (B2) is the cross-section averaged square of the
total toroidal field and R, is the radius-of-curvature of
the flux rope.

The various force terms described above are
measured in the experiment by collecting all three
components of the magnetic field, B, and the current
density, J, in discharges with the probe array aligned
in the poloidal cross-section of the flux rope (see Fig.
1b). The vector magnetic field is measured directly
by the probe array, and the toroidal (out-of-plane)
current density, Jr, can be computed by taking the
curl of the poloidal (in-plane) magnetic field, Bp. If
local toroidal symmetry is assumed, then the in-plane
current density, Jp, can be computed from the out-
of-plane magnetic field, Br; [4]. With the vector
fields and currents in hand, the following equation can
be evaluated to convert the volumetric force density,
f =é,-J x B, to the force per unit length, F', acting
at the flux rope apex, z = zgp:

Flzay) = Ric /0 w0 /0 i [rhr(2) 7(r.0)]. (6)

Here, 0 is the poloidal field coordinate, r is the minor
radius coordinate, a is the minor radius, and hp(z)
is the curvilinear scale factor that accounts for the
toroidal curvature of the flux rope. The evaluation of
this equation is described in full detail in Ref. 4.

Figure 4a shows a comparison of experimentally
measured forces to analytical predictions for a
characteristic flux rope discharge in MRX. The three
experimentally measured force terms are shown as solid
patches, while the analytical predictions are shown as
solid lines of the same color. The hoop force is positive
and pushes upward as expected, while the strapping
force and tension force are negative and therefore
combine to hold the flux rope in equilibrium. The net
sum of the three experimentally measured force terms
is shown as a black line. This net sum is approximately
zero throughout the discharge, indicating that a force-
free equilibrium is measured. With regard to the
analytical predictions for this sample discharge, the
strapping and tension forces match reasonably well,
while the hoop force that is measured is substantially
smaller than the hoop force that is predicted.

In Fig. 4b, the experimentally measured force
terms are condensed to scalar values that can be used
to assess the flux rope force balance. These scalar
force values, (F;), are obtained by low-pass filtering
and then averaging the corresponding force waveform
over the time period where the plasma current is within
5% of its maximum. The dynamic tension force, § Fy,
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Figure 4. (a) Comparison of experimentally measured (solid
patches) and analytically predicted (colored lines) forces for a
sample flux rope discharge. The net measured force is shown
in black. The forces are normalized to Fhorm = /J,()I%/47T£Ef,
where It is the toroidal plasma current and 2z is the footpoint
separation distance. A force-free equilibrium is measured, which
confirms that these experiments are low-f3. The measured hoop
force is weaker than the analytical prediction, while the tension
and strapping forces are comparable. (b) The various force terms
are condensed to scalar values by averaging over the time when
the plasma current is within 5% of its maximum. Regarding
the tension force, the quasi-static contribution, (F}), is the
average of the low-pass-filtered tension force, while the dynamic
contribution, §F%, is the maximum transient in excess of (Fy).
In this example, 6 F} is larger in magnitude than (Fy), indicating
that the dynamic tension force can be significant.

on the other hand, represents the maximum difference
between the measured tension force waveform, Fi(t),
and its quasi-static average, (F}). As Fig. 4b shows,
the dynamic tension force can match and even exceed
the magnitude of the quasi-static tension force.

The force analysis techniques introduced here can
be applied across the MRX flux rope database to assess
statistical trends in the forces. First, it is desirable
to conduct a database-wide comparison between
analytical predictions and experimental measurements
of the quasi-static forces. As shown in Fig. 5,
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Figure 5. Comparison of measured and predicted quasi-static
flux rope forces. Again, the forces are normalized to Fhorm =
MOI% /4mxy. The measured hoop force is weaker than predicted,
the strapping force is well-predicted, and the tension force can
exceed predicted values by as much as a factor of two. When the
various force terms are summed, a force-free equilibrium (zero
net force) is measured but not predicted. This figure reprinted
with permission from Ref. 4.

the trend of a weaker-than-expected hoop force holds
consistently across the database, while the strapping
field is well-predicted throughout. The quasi-static
tension force, on the other hand, is sometimes well-
predicted, though it can often exceed its analytical
prediction by as much as a factor of two. The quasi-
static tension force, which is often ignored in solar
eruption models, contributes substantially to the force
balance in all of the MRX flux rope equilibria [4].
Next, the three quasi-static force terms can be
summed to determine the net force in each flux rope
discharge. The single black dot with error bars in
Fig. 5 shows the aggregate measured and predicted
net force. We see that, to within error bars, a net
force of zero is measured experimentally, but that
a mnet positive force is predicted analytically. This
implies that the theoretical equilibria are predicted to
evolve toward higher altitudes than are observed in the
laboratory. This disparity persists in spite of efforts
to compensate for the line-tied shape of the flux rope
[4]. As such, we conclude that additional low-aspect-
ratio and line-tying effects are responsible for the lower
altitude equilibria that are observed experimentally.
The fact that a net force-free equilibrium is measured
in the experiments confirms the assumption that these
laboratory flux ropes, like those in the solar corona,
are low-3 and therefore dominated by J xB forces.
With the quasi-static force analysis in hand, the
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Figure 6. Parameter dependence of the dynamic toroidal field
tension force. The dynamic tension force fraction, §Fy/[(Fs) +
(Fp)], is plotted over the same m vs. ¢, instability parameter
space that is shown in Fig. 3. The black dots are the data points
where no force measurements are available due to either probe
alignment or flux rope volatility. Each viable data point contains
2-5 flux rope discharges. Interestingly, the dynamic tension force
is most prevalent in the failed torus regime, somewhat noticeable
in the failed kink regime, and entirely absent from the stable flux
rope regime.

final task is to investigate the impact of the dynamic
toroidal field tension force, §F;, on the flux rope
behavior. To this end, in Fig. 6, we examine the
dynamic tension force fraction, which is defined as:

SF;
(Fs) + (Fy)” ()

This ratio between the dynamic component of the
tension force, 0 F}, and the total quasi-static restoring
force, (Fy)+ (F}), reveals the parameter regimes where
the dynamic tension force contributes significantly to
the total force on the flux rope. The axes in Fig. 6
represent the same n vs. ¢, parameter space that is
defined in Fig. 3. The black dots in Fig. 6 are data
points where force measurements are not available due
to either the probe alignment or flux rope volatility.
Among the viable data points, which each contain
measurements from 2-5 flux rope discharges, it is clear
that the dynamic tension force can be quite large, and
that in many cases it reaches a substantial fraction
of the total quasi-static restoring force (strapping +
tension). In terms of parameter regimes, Fig. 6
reveals the following: (1) that the dynamic tension
force contributes most prominently in the failed torus
regime; (2) that it plays a lesser role in the failed
kink regime; and (3) that it is absent altogether in
the stable flux rope regime. The concentration of the
dynamic tension force in the failed torus regime hints
that this force may be the key to the unexpected lack
of eruptivity observed in the experiments.

To demonstrate that the dynamic tension force is

Dynamic tension fraction =
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Figure 7. Analysis of a characteristic failed torus event. (a) Height-time trace showing that the flux rope initially rises before
abruptly saturating and collapsing back to its initial location. (b) Comparison of toroidal and poloidal fluxes showing the rapid
exchange of poloidal and toroidal fluxes during the failed torus event. (c) Comparison of flux rope forces showing the initial dominance
of the hoop force that is overtaken by the dynamic toroidal field tension force, which causes the event to fail. (d)/(e) Toroidal current
density, Jr, and internal toroidal field, Bp;, profiles showing the internal reconfiguration of the flux rope. Simultaneously, the Jr
profile hollows out and the Bp; profile is enhanced, giving rise to the dynamic tension force that halts the rise of the flux rope. This

figure reprinted with permission from Ref. 3.

the key physical mechanism that prevents eruptions in
the failed torus regime, we now examine the flux rope
evolution during a characteristic failed torus event.
Figure 7 shows one such event, which evolves over
just a few Alfvén times, 74. First, in Fig. T7a, the
spatial evolution of the failed torus event shows that
the flux rope initially rises before saturating and then
abruptly collapsing back to its initial position. In Fig.
7d, four spatial snapshots of the poloidal magnetic
field, Bp, and the corresponding toroidal current
density, Jp, show that the flux rope undergoes an
internal reconfiguration during the failed torus event.
In particular, the initially uniform Jp profile becomes
strikingly hollow. At the same time, the paramagnetic
internal toroidal field, Br;, is transiently enhanced (see
Fig. 7e). This transiently enhanced Br; produces the
dynamic toroidal field tension force.

The hollowing of Jr and the enhancement of Br;
can best be understood by examining the toroidal
and poloidal magnetic fluxes entrained in the flux
rope (see Fig. 7b). Initially, the toroidal flux
decreases and the poloidal flux increases as the flux
rope rises. When the current profile hollows out,

however, there is a rapid exchange of toroidal and
poloidal fluxes. This exchange is interpreted as the
signature of a magnetic self-organization event [44,45]
wherein magnetic reconnection facilitates the internal
reconfiguration of the flux rope [3]. The details of
the self-organization process in these flux ropes are
investigated more closely in Yamada et al. [46]. The
key concept is that flux ropes in the failed torus regime
can find a lower energy state through internal self-
organization rather than external eruption.

Lastly, the J x B force measurement techniques
described earlier in the paper can be used to assess
the impact of the magnetic self-organization process
on the flux rope forces. In Fig. 7c, the absolute values
of the three force terms are compared. Initially, the
hoop force exceeds the combined strapping + tension
restoring force. During the self-organization event,
however, the enhanced Bp; generates a very large
dynamic toroidal field tension force that overtakes the
hoop force and prevents the flux rope from erupting.
In this way, the dynamic toroidal field tension force
that is observed throughout the failed torus regime in
Fig. 6 is the direct cause of the unexpected failed torus
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behavior that is observed in MRX.

4. Summary and discussion

In this paper, we report on the key role of both
quasi-static and dynamic magnetic tension forces in
the equilibrium and stability of line-tied magnetic
flux ropes. These forces are studied in a laboratory
experiment that is expressly designed to produce quasi-
statically evolving flux ropes that may be driven to
erupt by ideal magnetohydrodynamic instabilities such
as the kink and torus instabilities. Four different
stability regimes are observed in the experiment. The
failed torus regime, where nominally torus-unstable
flux ropes fail to erupt, constitutes a new discovery.

Direct measurements of the flux rope forces
provide a deep understanding of the role of the quasi-
static and dynamic tension forces. First, the quasi-
static tension force contributes a restoring force that
is of the same order as the strapping force in all
of the measured laboratory equilibria. Furthermore,
this quasi-static tension force can exceed analytical
predictions by as much as a factor of two. As such, the
quasi-static tension force must be considered in loss-
of-equilibrium solar eruption models. The dynamic
tension force, on the other hand, has an even more
profound impact in the failed torus regime where it
prevents the flux rope from erupting. Measurements
show that magnetic self-organization events reconfigure
the internal structure of the flux rope, thereby creating
a transiently enhanced paramagnetic toroidal field and
a corresponding dynamic toroidal field tension force.
This dynamic tension force overtakes the hoop force
and halts the eruption.

In the effort to connect these laboratory results to
events in the solar corona, several experimental factors
must be considered. First, the laboratory flux rope
and power supply circuit differs from the solar case
in that there is a large external series inductance in
the laboratory that largely maintains the flux rope
current during an eruption. In the solar case, on the
other hand, the current is expected to drop as the rope
expands in order to conserve poloidal flux [19]. Thus,
the quasi-current-source behavior in the laboratory, in
concert with the partial torus instability considerations
of Olmedo & Zhang [40], contributes to the observed
n ~ 0.8 torus instability threshold.

A second consequence of the series inductance in
the laboratory circuit is that a large inductive electric
field persists following the eruption and ejection of a
flux rope. This latent inductive electric field is likely
responsible for the rapid reformation and re-eruption
of the flux rope plasma that is observed in the eruptive
regime (see Fig. 2b). A further consideration is that
the inductive electric field and the proximity of vessel
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wall are likely to influence how the flux rope detaches in
the later stages of the eruption. These considerations
argue for future experiments with a larger chamber and
a modified power supply with a smaller inductance and
larger capacitance to elucidate these phenomena.

A final consideration for future work is to
develop a better understanding of the magnetic self-
organization process observed here. Though some
evidence for an internal reconfiguration via magnetic
reconnection has been identified [46], the reconnection
process has yet to be measured directly. Furthermore,
the threshold for failed torus events independent of
the kink instability should be identified. This is
likely to involve further investigations of the role of
magnetic helicity in this phenomenon, possibly through
dedicated numerical simulations. Regardless, it is
clear that the enhanced toroidal magnetic field and
the resulting dynamic magnetic tension force that it
generates can cause torus-driven flux rope eruptions
to fail. This dynamic tension force is not accounted
for in standard solar eruption models and therefore
must be added to improve our ability to interpret and
eventually predict solar eruptive events.
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