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SALSA3D: A Tomographic Model of Compressional Wave Slowness
in the Earth’s Mantle for Improved Travel-Time Prediction
and Travel-Time Prediction Uncertainty
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Young, Andre V. Encarnacao, Eric P. Chael, and W. Scott Phillips

Abstract The task of monitoring the Earth for nuclear explosions relies heavily on
seismic data to detect, locate, and characterize suspected nuclear tests. Motivated by
the need to locate suspected explosions as accurately and precisely as possible, we
developed a tomographic model of the compressional wave slowness in the Earth’s
mantle with primary focus on the accuracy and precision of travel-time predictions for
P and Pn ray paths through the model. Path-dependent travel-time prediction uncer-
tainties are obtained by computing the full 3D model covariance matrix and then
integrating slowness variance and covariance along ray paths from source to receiver.
Path-dependent travel-time prediction uncertainties reflect the amount of seismic data
that was used in tomography with very low values for paths represented by abundant
data in the tomographic data set and very high values for paths through portions of the
model that were poorly sampled by the tomography data set. The pattern of travel-time
prediction uncertainty is a direct result of the off-diagonal terms of the model covari-
ance matrix and underscores the importance of incorporating the full model covari-
ance matrix in the determination of travel-time prediction uncertainty. The computed
pattern of uncertainty differs significantly from that of 1D distance-dependent travel-
time uncertainties computed using traditional methods, which are only appropriate for

use with travel times computed through 1D velocity models.

Introduction

The goal of nuclear explosion monitoring is to detect
nuclear explosions that are detonated anywhere on the Earth,
including underground, in the oceans, and in the atmosphere.
Signals generated by explosions in these environments are
detected using seismic, hydroacoustic, and infrasound sen-
sors, respectively. In addition to the waveform technologies,
radionuclide detectors measure radioactive particles gener-
ated during a nuclear explosion and provide the ultimate
confirmation that a detected explosion was, in fact, nuclear.

Since the early 1980s, all nuclear tests have been con-
ducted underground, with their seismic signatures providing
the first indication of their occurrence. When an underground
nuclear test occurs, many questions arise as to its nature, in-
cluding its location, yield, and the type of device detonated.
The location of the event is particularly important because
the Comprehensive Nuclear-Test-Ban Treaty specifies that
the international community may conduct an onsite inspec-
tion in an area of 1000 km? (Comprehensive Nuclear-Test-
Ban Treaty Organization [CTBTO], 1996), necessitating that
the location of the suspected event be known to at least that
accuracy and precision.

These considerations motivate the need to locate seismic
events as accurately and precisely as possible. For under-
ground explosions that do not generate a surface expression,
seismic signals provide the only evidence to locate the event.
Seismic event location is generally performed by starting
with an initial estimate of the event origin time and location
and computing residuals between observed arrival times and
arrival times predicted using an Earth model of the seismic-
slowness distribution in the Earth. The event origin time and
location hypotheses are updated in some systematic way in
order to minimize the difference between the observed and
predicted travel-time data (Geiger, 1910). The accuracy of
this approach relies to a significant degree on the accuracy
of the travel-time predictions computed with the Earth
model, and event mislocations can be significant when pre-
dictions are erroneous.

Historically, Earth models used to predict travel times
for seismic event location have been 1D models, in which the
seismic slowness of the materials that comprise the Earth
are assumed to vary only as a function of radius, and
lateral heterogeneity of the slowness distribution is ignored.
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Examples of 1D models that have been used extensively for
seismic event location include the preliminary reference Earth
model (PREM; Dziewonski and Anderson, 1984), iasp91l
(Kennett and Engdahl, 1991), and ak135 (Kennett et al.,
1995). To first order, the 1D slowness distribution assumption
is very good, and travel-time predictions produced using this
approach can be calculated very efficiently (Buland and Chap-
man, 1983; Crotwell et al., 1999). However, the accuracy and
precision of travel times computed using 1D slowness models
is limited because they ignore lateral heterogeneity of seismic
slowness in the Earth that is known to exist. The deleterious
effects of lateral inhomogeneity are most pronounced at local
and regional distances where the seismic rays spend most of
their time in the highly heterogeneous shallow parts of the
Earth. The effects can also be significant when network geom-
etry is poor and incorrect slowness estimates in the region be-
tween the event location and the locations of the stations can
pull or push the calculated event location closer to or further
from the locations of the stations.

Many approaches have been adopted to improve the
accuracy of travel-time predictions and hence event loca-
tions. One approach is to apply empirical corrections to
travel-time predictions derived with 1D slowness models.
The International Data Centre (IDC) of the CTBTO currently
uses this approach, applying source-specific station correc-
tions to travel-time predictions obtained with the iasp91 model
in order to improve their accuracy (Firbas et al., 1998). An-
other implementation of empirical corrections is described by
Schultz et al. (1998), who use the kriging method to imple-
ment correction interpolation.

Although many studies have been published describing
multidimensional models that were developed for the pur-
pose of understanding Earth structure and dynamics (Li et al.,
2008, and Simmons et al., 2010, are just two examples),
fewer models have been developed expressly for improving
travel-time prediction accuracy. Phillips et al. (2007) show
that by approximating the velocity structure of the upper man-
tle as a simple laterally varying velocity gradient, Pn travel
times can be predicted with good accuracy. The regional seis-
mic travel-time model (Myers ef al., 2010) builds on this work
to develop a comprehensive tomographic model that is used to
predict P and § regional and local phases. Simmons et al.
(2012) have also produced a tomographic model motivated by
the goal of improving seismic event locations. Other notable
examples include Hartog et al. (2003).

In addition to improving the accuracy of event locations,
reliable estimates of the uncertainty of their locations are also
required. An example is the scenario in which a seismic event
occurs near a suspected nuclear test site. Because of meas-
urement and model errors, the computed event location is
unlikely to coincide exactly with the suspected test site,
and a reliable estimate to the uncertainty of the event location
is required in order to convincingly attribute the event to the
site. Most methods of determining event-location uncertain-
ties depend to a significant degree on the uncertainties of the

travel-time predictions used to compute the locations (Flinn,
1965; Evernden, 1969; Jordan and Sverdrup, 1981).

It should be noted that travel-time prediction uncertain-
ties affect not only the size and shape of the hypocenter un-
certainty ellipsoids but also influence the locations of the
events as well. This is because the travel-time residuals used
in location are generally weighted by the combined uncer-
tainties of the measurements and the predictions, with highly
precise observations and predictions receiving more weight
in the location calculation compared to those with lower pre-
cision. So, we seek to improve both the accuracy and the
precision of seismic locations by improving both the accu-
racy and the precision of the travel-time predictions. In turn,
improvements in travel-time prediction accuracy and preci-
sion can be achieved by improving the accuracy and preci-
sion of the Earth models upon which they depend.

To develop an Earth model specifically for locating the
seismic events accurately and precisely, we performed a 3D
tomographic inversion of an extensive seismic travel-time
data set. Throughout the process, we focused on the uncer-
tainty of all aspects of the model in order to derive the most
reliable estimates of the uncertainty of the model parameters
and the travel-time predictions derived from those parame-
ters, all with the ultimate goal of producing reliable estimates
of the uncertainty of seismic event locations. In this article,
we describe the methodology used to compute our model
and the travel-time predictions and prediction uncertainties
derived therefrom. In a subsequent article, we will describe
the improvements in the accuracy and precision of seismic
event locations that are obtained using our model.

Data Set

The data set used for tomographic inversion comprises
~12 million P and Pn travel-time picks from 13,000 stations
and 122,000 events (Begnaud, 2005; Fig. 1). All of the events
used are thought to have an epicenter accuracy of 25 km or
better (GT25), according to the Bondar criteria (Bondar et al.,
2004; Bondar and McLaughlin, 2009). The arrival-time data
and the resulting locations come from a variety of sources in-
cluding the International Seismological Centre (ISC), the IDC
Reviewed Event Bulletin (REB), the U.S. Geological Survey
Earthquake Data Report (USGS EDR), the USArray, the Deep
Seismic Sounding (DSS) in the former Soviet Union (Li and
Mooney, 1998), the Engdahl-van der Hilst-Buland (EHB)
catalog (Engdahl er al., 1998), as well as various regional net-
works, temporary deployments, and in-house arrival picks.

Model Domain

We invert for the compressional wave slowness in the
Earth’s mantle from the Moho down to the core—mantle
boundary, with no limitations in the geographic dimensions.
We limit our inversion to the mantle because most seismic
nuclear monitoring event location is done with P and Pn
phases, which bottom in the Earth’s mantle. For example,
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Figure 1.

75% of the location time-defining signal detections in the
IDC’s REB are P and Pn. We infer from this that significant
improvements in travel-time predictions and prediction
uncertainty for these phases will provide the bulk of the im-
provement that is to be readily obtained. We omit the crust
from our inversion because rays for phases P and Pn travel
predominantly vertically through the crust with only short
components of horizontal travel. This ray geometry contrib-
utes few crossing rays for these phases in the crust, providing
minimal constraint on the slowness distribution in that layer
of the Earth. Inclusion of shear-wave slowness, crustal
phases, core phases, and other secondary phases will be the
subject of future modeling efforts.

All of the seismic rays in our data set traverse the crust
on the receiver side, and most do on the source side as well.
Because we do not invert for the slowness of the crust, we
include in our global model a crustal model that reflects the
true crust as accurately as possible. Our model of the crust
consists of the National Nuclear Security Administration
(NNSA) Unified Model for Eurasia (Pasyanos et al., 2004;
Steck et al., 2004) with the CRUST2.0 model elsewhere
(Laske and Masters, 1997; Laske et al., 2000). The Unified
Model was developed by dividing identified tectonic regions
into numerous polygons and assigning 1D crustal/upper-
mantle models to each polygon based on surveys of the best
available regional models for that region.

Although the compressional slowness of the Earth’s
mantle will be optimized during tomographic inversion, it is
very important to select an appropriate starting model of the
slowness of the mantle from which to begin the inversion.

Stations (triangles) and events (circles) used for global tomography inversion.

Starting with a highly featured model, with heterogeneities
hypothesized to exist in order to satisfy other constraints un-
related to P-wave travel time, might constrain the model to
local minima and prevent the inversion from finding the com-
pressional wave slowness distribution that optimally satisfies
the P-wave travel-time data. For this reason, we chose to start
with a very simple smooth model and heavily damp the
inversion during early iterations to only allow it to move
slowly away from the starting mode, at least initially. Our
starting model for the mantle consists of a heavily smoothed
version of the NNSA Unified Model in the upper mantle be-
neath Eurasia, with the ak135 model everywhere else. We
chose the Unified Model for Eurasia because the preliminary
tomographic models suggested that the upper-mantle veloc-
ities in the ak135 model were clearly much too slow beneath
the Siberian craton as revealed by the very limited amount of
Pn data from that region. We chose to extend the fast upper-
mantle velocities to other parts of the region that were also
poorly sampled by the available data.

To represent the compressional wave slowness distribu-
tion on Earth, we use a model parameterization based on the
GeoTess open-source software package (Ballard er al., 2016;
see Data and Resources).

Tomographic Methodology

We solve for the P-wave model slowness distribution in
the Earth’s mantle using the Bayesian inference method pro-
posed by Tarantola (2005) and Nolet (2008). This method
casts the problem in terms of a normal probability distribu-
tion that uses a prior model to represent the behavior of the
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Figure 2.  Normalized uncertainty of the prior covariance matrix.

Earth’s model parameters as determined by existing geo-
physical knowledge. The associated prior covariance is used
as a regulation control structure to stabilize the tomography
inversion. This approach is generally more physically repre-
sentative, from a geophysical point of view, over the more
common Tikhonov regularization method of imposing arbi-
trary damping and smoothing constraints that do not neces-
sarily include Bayesian information directly.

Tikhonov regularization is the most common method for
stabilizing ill-conditioned discrete inverse problems. Aster
et al. (2005) give a thorough and complete discussion of
the approach for the interested reader. Typically, standard Ti-
khonov regularization may define a regularization method in
which amplitude damping is handled by simply defining an
identity matrix. More general approaches may go further and
formulate a regularization matrix in which the first- and/or
second-order derivative changes are also damped. The reader
is directed to Tarantola and Valette (1982), Spakman and No-
let (1988), Spakman et al. (1993), and Bijwaard and Spak-
man (2000), for useful examples.

In our Bayesian approach, we define a shape for the am-
plitude damping, specifically depth-based amplitude damping.
Figure 2 illustrates the shape of the a priori covariance matrix.
The slowness uncertainty is deemed to be geographically invari-
ant and to vary only as a function of depth in the Earth. The
slowness uncertainty of the crust is relatively high, decreases

sharply at the top of the mantle, and then decreases linearly with
depth all the way to the core—mantle boundary where the value
is a factor of 2 less than the value at the Moho. We describe only
the shape of the slowness uncertainty distribution but not its
magnitude because the magnitude of the prior uncertainty and
the damping term in our regularization (see equation 2) are
inextricably intertwined. In practice, we specify the damping
term and modify it throughout the tomographic inversion as is
described later, ensuring that in the end, our posterior travel-
time uncertainties in poorly sampled areas of our model attain
large but still reasonable values.

The following discussion presents the mathematical
framework for the Bayesian approach that builds off exten-
sive prior research dealing with travel-time prediction uncer-
tainty in the development of the SALSA3D model (e.g.,
Young et al., 2008, 2009; Hipp et al., 2011). The details of
this approach are described in significant detail in Tarantola
(2005), but only the result is given here. The set of normal
equations that results from the minimization that finds the
maximum-likelihood solution is given by

C;'?A(m) Cc;'d
[ dc’—n1/2 m = C;ﬁ/zm0 : (1)

Assume the number of data observations for our problem is
Np and that the number of grid points that we are solving for
(in the mantle) is given by N. Then the following definitions
apply: the matrix A is the Np x N data matrix composed of
the sensitivities for each data observation defined at each
model grid location and depend on the model parameters
(m) in a nonlinear fashion; C, is the N, x N, observational
data covariance matrix (diagonal in our case), which could
also include parameterization errors in an additive way; C,, is
the Ng X N a priori model covariance matrix that repre-
sents the best guess variances and covariances of the prior
model distribution defined at all grid positions; m is the
N x 1 vector of model parameters for which we are solving
(in our case, P-wave slowness); m, is the Ng x 1 vector of
initial a priori model parameters; and d is the Ng x 1 vector
of data observations (P-wave travel times).

We solve the above system of equations using the least-
squares (LSQR) method (Paige and Saunders, 1982), which
can be numerically unstable if regions of little or no data cov-
erage are present. Although the a priori covariance constraint
largely solves the coverage problem, its magnitude, espe-
cially at the beginning iterations of the solution, may be too
small. So, similar to standard regularization approaches,
additional solution damping is generally required to ensure
stable convergence. Adding damping « to equation (1) yields

C;'>A(m) c;'%a
[ Wi ™| acsm, | @

In addition to damping, our solution contains the sensitivity
matrix A that is functionally dependent on the model param-
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eter m. Therefore, we must solve the above equation in a
nonlinear fashion and iterate and update m several times
to obtain a converged global minimum solution. We accom-
plish this during a single iteration by solving for small locally
linear changes in the model parameters. Assuming we have a
solution at iteration k, the next update is given by

m; = Amg g +my. (3)

Substituting this expression into the previous set of normal
equations and simplifying yields

C—1/2A -1/2,4
|: adC—1/2k:|Amk+1 = |:Cd (do Agm) SN C))

in which we now write the data matrix with explicit depend-
ence on the previously solved model parameters.

The solution of equation (4) produces a new model
(my, ) in a least-squares sense, which will not precisely
equal the residual terms on the right side (RHS) after the
model multiplies the sensitivity and constraint matrix
assembly on the left side (LHS). To reduce the remaining
RHS residual further, we include a set of constant travel-time
corrections, in which a single correction is associated with
each unique receiver defined in the input observation data
set. These receiver “site terms” are calculated by modifying
equation (4) as

C,'’A, C;'R; Am,., C,'*(d-A;my)
+
aCy'? 0 = 0 :
0 (XSTI 0
®)

in which Ry is an N x Ny sparse matrix, N is the number
of unique receivers in the observation data set, agy is the site
term damping parameter, I is the identity matrix, and T'gy is
the set of site terms for which we are solving, in addition to
the model parameters m. The matrix Rz is a sparse matrix
with a single nonzero entry on each row, with a value of 1,
defined in the column of R that represents the receiver used
by that particular data ray. Equation (5) is only used after a
maximum-likelihood model has been determined using
equation (4). Additional information concerning the use of
site terms and how they are calculated is included in the
Tomographic Procedure section.

Equation (4) represents the final set of normal equations
that we solve nonlinearly to obtain our new 3D model param-
eters m;_ ;. However, we still need a way of defining the
a priori covariance matrix such that incorporating Bayesian
knowledge is not overly difficult. We could begin by defining
the a priori covariance matrix as a sparse matrix, in which
nonzero covariance terms have some spatial proximity to one
another and fall to zero over prescribed distances (Rodi and
Myers, 2013). However, if we begin with such a definition,

then the inverse square root of the a priori matrix in equa-
tion (4) will be a full matrix of a very large grid for which a
solution of equation (4) becomes numerically intractable.
Instead, we approach the problem by defining the inverse
square root a priori covariance matrix directly. This produces
a sparse, yet manageable, matrix for purposes of performing
the tomography LSQR solution. We then invert this matrix to
produce an a priori covariance matrix. By setting the diago-
nal of the initial inverse square root a priori matrix to the
desired Bayesian diagonal, we can iterate the inversion sev-
eral times to force the a priori covariance matrix to possess
approximately the defined Bayesian diagonal. This process is
explained in more detail in the Appendix.

Equations (3), (4), (A1), and (A2), and the iteration pre-
scription for the prior covariance defined in equations (A5)
and (A6) represent the mathematical framework with which
we solve for a new model given a set of data observations,
a ray tracer for populating the sensitivity matrix, an initial
a priori set of smoothing parameter definitions, and an a priori
best guess of the slowness uncertainty at each of our model
grid points.

In addition to the framework above, we also solve for the
model resolution and the posterior covariance. These expres-
sions are given by Tarantola (2005) as

R=C,AC;'A =1-C,C;,. (6)

in which ém is the Ng X N posterior model covariance
defined by

C, =[ATC;'A + ;1. (7)

The resolution matrix is used as part of our grid adaption algo-
rithm, which is defined in the Tomographic Procedure section.
The posterior covariance is used to produce ray-path uncertain-
ties from our calculated Earth model, which is described in the
Travel-Time Predictions and Uncertainty section.

Our model is composed of approximately 230K grid
nodes, requiring about 0.2 TB of memory to store. We solve
for the resolution and covariance matrices using blocked
submatrix out-of-core techniques (D’ Azevedo and Dongarra,
2000). The solution requires roughly 12 hrs to compute using
~400 threads distributed over 10 machines, each possessing
64-768 GB of memory per machine.

Tomographic Procedure

A single application of equation (4) is embedded in an
iterative tomographic procedure consisting of three nested
loops (see Fig. 3). The algorithm begins with the initial data
set and a coarsely sampled version of the starting model. The
mantle is represented with triangles with ~8° edge lengths
and the radial grid spacing is 125, 50, and 30 km in the lower
mantle, transition zone, and upper mantle, respectively. The
damping parameter « is initially set to a relatively high value
so that the model slowness changes very slowly with each
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Figure 3. Flowchart defining the tomographic procedure used

to generate SALSA3D.

application of LSQR, thereby reducing the probability that
the solution will be trapped in local minima.

The innermost loop of the tomographic procedure con-
sists of the following steps: (1) form the a priori inverse
square-root covariance matrix (constraint) using the iterative
equations (AS5) and (A6) for the current model grid. (2) Trace
all the rays in the tomography data set using the pseudobend-
ing algorithm (Um and Thurber, 1987; Zhao and Lei, 2004;
Ballard et al., 2009). Populate the matrix of data kernels A
with the model parameter weights derived by interpolating
the data ray paths through the model, and the vector of data
residuals Ad with the difference between observed and
computed travel times, weighted by the data uncertainties.
(3) Execute an LSQR calculation and update the slowness
values in the tomographic model using the solution vector
Am. Repeat steps 2 and 3 until changes to model slowness
are small. Convergence is typically achieved after about a
half-dozen iterations. We refer to this inner loop as an adap-
tion iteration.

At the conclusion of each adaption iteration, the
N x Ng model resolution matrix of the latest model is com-
puted (equation 6). The diagonal elements of the resolution
matrix provide an indication of the ability of the available
data to resolve the slowness of the model, given the current
spatial resolution of the model grid. Using the GeoTess soft-
ware package (Ballard ef al., 2016, see Data and Resources),
we refine the spatial resolution of the model grid in the vicin-
ity of grid nodes, in which the diagonal of the model reso-
lution matrix exceeds a user-specified threshold, usually
0.25. We also reduce the damping factor a by a factor of 2
and repeat additional adaption iterations until no points in the
model exceed the model resolution threshold. We refer to this
sequence of adaption iterations as a relocation iteration.
Figure 4 illustrates the diagonal of the model resolution ma-
trix and the corresponding spatial grid resolution in the lower
mantle as a function of adaption iteration count.

At the conclusion of the first adaption iteration, com-
puted with uniform 8° triangles (Fig. 4a), high resolution is
observed in the vicinity of the Black Sea extending eastward
to the subduction zones in the western Pacific, reflecting
dense data coverage in that region. High resolution is also
observed in western Canada resulting from the abundant
seismicity in Alaska observed by stations of the USArray in
the United States (Fig. 4b). In response to the high resolu-
tion, the grid is refined from 8° to 4° in those areas (Fig. 4c)
and the tomography is resumed. After another adaption iter-
ation, the resolution in the refined areas is reduced (Fig. 4d),
reflecting the inherent trade-off between model resolution
and grid resolution. When the grid resolution is increased,
fewer rays influence each grid node, reducing the ability of
the data to constrain the model parameter values at the grid
node and thereby reducing the model resolution. However,
the damping is also reduced, leading to a widespread increase
in model resolution over the whole model. Damping tends to
reduce the influence of the data on the model grid, thereby
reducing model resolution.

The widespread increase in model resolution caused by
the decrease in damping justifies additional grid refinement
in previously refined areas as well as additional grid refine-
ment beneath much of the United States and the subduction
zones of the western circum-Pacific subduction zones
(Fig. 4e). This second round of grid refinement results in de-
creased model resolution in the refined areas (Fig. 4f), but
again, the reduction in damping results in a competing in-
crease in model resolution in some unrefined areas. A final
round of grid refinement leads to grid refinement in South
America and reduces the triangle size to ~1° in discrete areas
of western North America, the Middle East, and the western
Pacific (Fig. 4g). At the conclusion of the final adaption iter-
ation, the pattern of model resolution (Fig. 4h) is more com-
plex, the maximum value is much reduced, and areas of high
resolution are much more diffuse. This procedure has al-
lowed us to refine the grid in the parts of the model in which
high grid resolution is justified by the available seismicity,
without oversampling the model in regions with low seismic-
ity. The size of the model, measured by the number of grid
nodes, would have been an order of magnitude larger had we
used a uniform 1° grid for the whole model.

After four adaption iterations have been performed,
parts of the model have triangle edge lengths as small as ~1°,
radial node spacing as small as 10 km, and the model res-
olution is everywhere less than the threshold of 0.25. We
now perform a site term iteration (equation 5), which in-
volves the calculation of five LSQR iterations during which
site terms are computed in addition to model slowness
changes. No refinement of the spatial grid resolution or re-
duction in damping occurs between the final adaption iter-
ation and the site term iteration. The site terms computed in
this step are stored in our final model and are applied to
predicted travel times whenever travel-time predictions are
requested from one of the supported stations. The set of
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Figure 4. Maps of grid resolution and model resolution at a depth of 800 km in the lower mantle. The grid in (a) was used to compute a
tomographic model with model resolution shown in (b). The model resolution in (b) was the basis for performing grid refinement that produced
the grid shown in (c), etc. Each time the grid was refined, damping was also decreased, which caused an increase in model resolution.
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Figure 5.  Effect of relocating events at the conclusion of relo-
cation iteration 1. (a) Change in epicenter location for events with
ground-truth (GT) level >5 km. (b) Change in origin time for events
with GT level <5 km.

adaption iterations plus the site term iteration are called a
relocation iteration.

At this point, the model is not yet complete because the
seismic events that comprise the tomographic data set are not
optimally located with respect to the new model. The original
events were likely initially located using a 1D model such as
ak135, and hence their locations are inconsistent with the
new model. To rectify this situation, all events in the tomog-
raphy data set are relocated with the latest model. Events
with ground-truth (GT) levels of GT5 or less are relocated
with their hypocenters fixed, that is, only their origin times
are modified. All other events are relocated with only fixed
depth. The changes to the event locations and origin times
are modest but significant as illustrated in Figure 5.

After relocating all events, the latest model is inconsis-
tent with the new event locations, so the entire relocation iter-
ation is repeated, starting with the original starting model,
grid resolution, and damping parameters. Three relocation
iterations are implemented, as illustrated by the three curves
in Figure 6. The model changes between the first and second
relocation iterations are substantial, but the changes from the
second to third are negligible, indicating that the event loca-
tions and the final model are consistent with each other. The
end-to-end tomography procedure reduced the root mean
square (rms) residual of the tomographic data set from 1.85
to 0.94 s (50%).

Slowness Model

The major features of the SALSA3D slowness model
are illustrated in Figure 7. The maps on the left side of
the figure illustrate the difference in slowness between SAL-
SA3D and ak135 at several depths in the mantle. The shallow

20

-0~ Relocation Iteration 1

18 -0~ Relocation Iteration 2

—C—Relocation Iteration 3

rms Residual (s)

Tomography lteration Number

Figure 6. Root mean square (rms) residual versus tomography
iteration number. The final rms residual of 0.94 represents a reduc-
tion of 50% from the starting model.

part of the upper mantle (100 km depth) is characterized by
strong contrasts in slowness between various tectonic prov-
inces around the world. Major cratons such as the Canadian
shield in North America, the Siberian craton in northern
Asia, the Kaapval, Kalahari, and West African cratons in
Africa, and the Archean cratons in Australia are all charac-
terized by very fast velocities relative to ak135. Very slow
velocities are found in active tectonic provinces such as
western North America, the Caribbean, the north Atlantic,
the Mediterranean region, the Red Sea rift, and the western
and southwestern Pacific subduction zones.

In the lower part of the upper mantle (300 km depth), the
fast cratonic roots have largely disappeared, but many very
slow features in tectonically active regions persist. In the
shallow part of the lower mantle (800 km depth), remnants
of subducted slabs are evident beneath the Caribbean and
South American subduction zones, the Tethyan Seaway, and
subduction zones of the southwestern Pacific. The velocities
beneath the continents are generally slightly fast compared
with ak135, whereas those under oceanic spreading centers
tend to be slow. Deep in the lower mantle (1500 and 2500 km
depths), slowness anomalies are of relatively low amplitude
compared with those at shallower depths, but the general pat-
tern of slightly fast velocities beneath the continents and
somewhat slower velocities beneath the oceans persist. The
exception is the African superplume, characterized by rela-
tively slow velocities deep beneath southern Africa.

The uncertainty of the slowness of the mantle in
SALSA3D is illustrated in the maps on the right side of
Figure 7. In the upper mantle, areas of low uncertainty are
confined to seismic regions of the Earth, which are well
sampled by the data used in tomography. The circum-Pacific
subduction zones exhibit very low slowness uncertainty, as do
the Mediterranean and southern Asia. High uncertainties are
evident in the central Pacific Ocean, northern Africa, and
Antarctica, all regions of the world that are poorly represented
in the tomographic data set used to generate SALSA3D. The
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Figure 7. Map of percent slowness change from ak135 (left column) and slowness standard deviation as a percentage of slowness (right
column) for depths 100, 300, 500, 800, 1500, and 2500 km. (Continued)
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slowness uncertainty of the transition zone is very low due to
the great many crossing ray paths that bottom in this layer. The
slowness uncertainty of the central Pacific Ocean is very high
and persists to great depth reflecting the dearth of seismic rays
that penetrate this part of the model. The deepest parts of the
lower mantle are characterized by widespread regions of low
slowness uncertainty, reflecting the abundance of long tele-
seismic ray paths in the tomographic data set. These teleseis-
mic rays penetrate deep into the lower mantle and provide an
abundance of crossing rays at depth, thereby constraining the
slowness values in the deep mantle almost worldwide.

The slowness uncertainty images displayed on the right
side of Figure 7 are extracted from the diagonal elements of
the model covariance matrix described earlier. The diagonal
elements are only part of the story, however. The off-diagonal
elements are very important for computing travel-time predic-
tion uncertainty. Figure 8 illustrates values of the off-diagonal
elements of the covariance between a grid node at the top of
the mantle beneath International Monitoring System (IMS) sta-
tion MJAR in Japan and all other nodes in the model that lie
near a cross section from MJAR to the island of Hawaii. Along
the bulk of this path, the uncertainty of the model slowness is
relatively high (Fig. 7 at 100, 300, and 500 km), reflecting the
dearth of crossing rays in the tomographic data set in this re-
gion. However, the off-diagonal elements of the covariance
matrix for the path from Japan to Hawaii are substantial and
negative (Fig. 8), indicating significant negative correlation
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Slowness Standard Deviation Percent

Continued.

between the slowness in the mantle below Japan and all of the
model grid nodes near the ray path connecting these two lo-
cations. This negative correlation implies that if some change
in the model caused the slowness of the grid node beneath
Japan to change, the slowness of other grid nodes along the
path from Japan to Hawaii would have to change in the op-
posite direction in order to compensate and preserve the pre-
dicted source—receiver travel time. Although the uncertainty of
model slowness at points along the path may be relatively
high, the negative covariance terms will result in the integrated
uncertainty along the path being significantly lower than
would otherwise be the case.

Travel-Time Predictions and Uncertainty

Our primary objective in developing SALSA3D is to im-
prove the accuracy and precision of travel-time predictions.
Predicted travel times through the model ¢ are given by

(8)

in which W is a matrix containing sensitivity weights ob-
tained by interpolating points along a ray path through the
model, and s represents the P-wave model slowness. The ma-
trix W could contain the data source—receiver sensitivities
defined in the matrix A of equation (1). In that case, the
matrices A and W are the same. However, for purposes of

tt = Ws,
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Figure 8. Values of the off-diagonal elements of the model
covariance matrix for the grid node at the top of the mantle near
International Monitoring System (IMS) station MJAR, marked with
a star. The cross section extends from the core—mantle boundary up
to the Moho. The ray path from Japan to Hawaii is defined by a tube
of negative covariance.

performing arbitrary travel-time predictions through our
posterior model, the matrix W is generally composed of syn-
thetic regularly spaced source locations. In this way, maps of
prediction uncertainties are easily acquired.

To obtain uncertainty estimates for travel-time predic-
tions, we first examine the more general expression that gives
the covariance between two distinct ray paths through an
arbitrary continuous model. This expression is defined by

a%j = L, dxw;i(x) Lj dx Cy,(x, x’)Wj(xrl )

in which x indicates an arbitrary position along the ith ray
path (P;), x" indicates an arbitrary position along the jth ray
path (P;), w;(x) is the data kernel, or weight, for the ith path
at position x, w J-(x') is the data kernel for the jth path at
position x', and C),(x, x') is the covariance of the model
between the two positions x and x along the paths i and j.
If i = j, then this equation gives the variance along a single
ray path; if i 5 j, then the covariance between the ray paths
is given. If we discretize the continuous integral equation to
form a discrete grid, as defined for our current problem, then
we can write equation (9) as
oy, = a;,C,al, (10)

in which a; and a; are 1 x N data kernel vectors (usually
sparse) for the ith and jth paths, respectively (these are ex-
actly the sensitivities used in matrix A of equation 4), and C,,
is an Ng X Nz model covariance matrix.

For this article, we are only interested in the variance (or
uncertainty) of a specific ray path, so we set i = j and call
the path P. We can now write equation (10) as

0% = apC,,ab. (11)

Because we only invert for slowness values in the Earth’s
mantle, our model covariance matrix only includes grid

nodes in the mantle. However, we know that any source-to-
receiver path that we trace through the Earth will pass
through the crust at the receiver and generally at the source
as well. We account for the additional uncertainty introduced
when the ray passes through the crust by defining a priori
uncertainties for the crust in a manner similar to that in which
we defined the mantle a priori uncertainties. Then, we re-
write equation (11) to include the crustal covariance matrix,
which gives

50 = \Jar()C,ab i) + ap(m)Ceah(my). (1)

in which C, is the crustal covariance matrix and we have
taken the square root to obtain an uncertainty instead of a
variance. We specified C, to be a diagonal matrix with con-
stant values equal to about 10% of typical crustal slowness

values. Here, ém is the posterior model covariance so we
shall refer to &, as the posterior uncertainty for ray P through
the Earth. Note the dependence on the posterior model
parameters /n in addition to those model parameters defined
at crustal nodes m, in the determination of the ray-path
weights ap.

The SALSA3D predicted travel times computed using
equation (12) are shown in Figure 9 for three IMS stations:
GERES, VNDA, and MJAR located in Germany, Antarctica,
and Japan, respectively. Each figure illustrates the travel time
computed by SALSA3D minus that computed by ak135 for a
dense grid of hypothesized surface sources surrounding the
station out to 95°, the distance where seismic rays begin to
interact with the core—mantle boundary. The strongest travel-
time anomalies occur within regional distances from the sta-
tions. Rays at these distances travel predominantly through
the upper mantle, the part of the Earth’s mantle thought to be
characterized by relatively strong slowness heterogeneity.
Station GERES in Germany is characterized by fast regional
anomalies to the north in tectonically stable northern Europe
and slow regional anomalies to the south in the active Medi-
terranean region. Station MJAR exhibits very strong contrasts
at regional distances between substantial fast anomalies to
points in the ocean to the east and slow anomalies to the west
in continental Asia. Travel-time anomalies at teleseismic dis-
tances, while more subdued than those observed at closer
distances, are not insubstantial and are sufficiently large to be
important for seismic event-location calculations.

Maps of the travel-time prediction uncertainty for the
same stations are also shown in Figure 9. Station GERES,
located in Germany, is characterized by relatively low uncer-
tainty because it is surrounded by regions with plentiful seis-
micity and seismic receivers. Uncertainties for events located
in seismic areas such as the Caribbean, the Mid-Atlantic
Ridge, Sumatra, and the subduction zones in the western
Pacific are particularly low. In contrast, travel-time predic-
tion uncertainties for station VNDA in Antarctica are rela-
tively high for many regions. This is because the station is
located very far south in the southern hemisphere, a part of
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Figure 9.
Japan.

the Earth that is poorly represented in our tomographic data
set. But, although the uncertainty for events on the continent
of Antarctica would be very high, uncertainty for events in
the subduction zones of Sumatra, New Zealand, and the rest
of the southwestern Pacific is low, reflecting the fact that the
paths from station VNDA to these areas are well sampled in
the tomographic data set.

Uncertainties for paths to station MJAR in Japan vary
significantly depending on whether the event is to the west,
which is very well sampled, or to the east, which is very
poorly sampled by available data. Although most events in
the Pacific are characterized by very high uncertainties at sta-
tion MJAR, an event near Hawaii would be an exception.

Travel-Time Uncertainty (s)
03 06 09 12 15 18 20
[ R |

Travel-time prediction and travel-time prediction uncertainty for station GERES in Germany, VNDA in Antarctica, and MJAR in

Because the path from Japan to Hawaii is fairly well repre-
sented in the tomography data set, that path is characterized
by relatively low travel-time prediction uncertainty, at least
compared with the rest of the Pacific basin.

Components of Travel-Time Prediction Uncertainty

To gain insight into how the full model covariance
matrix leads to the overall pattern of prediction uncertainties
displayed in Figure 9, we decompose the prediction uncer-
tainties into discrete components by artificially manipulating
some of the elements of the posterior model covariance
matrix C,, prior to computing the prediction uncertainties
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Figure 10.

Values of travel-time prediction variance along a transect that passes through IMS station MJAR located in Japan, and the

island of Hawaii located 60° to the east of station MJAR. The solid curve is the total travel-time variance. The dotted curve is the travel-time
variance that would be computed using only the diagonal elements of the covariance matrix. The dashed curve is the travel-time variance that
would be computed using only the off-diagonal elements of the covariance matrix (all diagonal elements set to zero).

using equation (12). Figure 10 illustrates these effects for a
path from station MJAR in Japan, through the island of
Hawaii and beyond into the eastern Pacific Ocean. This is the
same path for which negative covariance terms were illus-
trated in Figure 8. The solid curve illustrates the unmodified
prediction variance (the square of the travel-time prediction
uncertainty). The dotted curve is the travel-time prediction
variance that would have been calculated if only the diagonal
elements of the model covariance matrix had been included
in the calculation. The dashed curve is the travel-time pre-
diction variance that would have been calculated if only
off-diagonal elements of the model covariance matrix had
been used (the diagonal elements set to zero).

In the distance range from about 10° to 45°, the paths for
which the prediction uncertainties are calculated travel
through parts of the model that are very poorly sampled by
the available tomography data, and the computed uncertain-
ties are strongly influenced by the uncertainties of the
a priori covariance matrix. From 10° to 17° and from 20°
to 45°, both components of the total travel-time variance in-
crease monotonically. The travel-time variance due to the
diagonal elements of the covariance matrix (dotted curve)
rises monotonically with increasing length of the path inte-
gral through the substantial a priori slowness variance of the
shallow mantle in the Pacific basin (Fig. 7 at 100, 300, 500,
and 800 km). The component of travel-time variance due to
the off-diagonal elements of the covariance matrix (dashed
curve) also increases monotonically because the addition of
smoothing to the tomographic model acts as a constraint on
the inversion and leads to an increase in the uncertainty of
travel times predicted by the model. The drop in travel-time
variance exhibited by all three curves in the distance range
from 17° to 20° is caused by the ray paths dropping from the
upper to lower mantle at the P-phase triplication distances.

In the distance range from about 50° to 70° the travel-
time variance is significantly depressed by the substantial
number of ray paths from Japan to Hawaii that exist in the
tomographic data set. These data led to substantial negative
values of covariance between a grid node at the top of the
mantle under Japan and all other grid nodes near the ray path
from Japan to Hawaii (Fig. 8). The reduced travel-time vari-
ance is barely evident in the travel-time variance due only to
the diagonal elements of the model covariance matrix (dotted
curve) but are attributable to the strong negative influence of
the off-diagonal elements of the model covariance matrix
(dashed curve).

At distances greater than 50°, there is a general decrease
in the component of travel-time prediction variance due to
the diagonal elements of the model covariance matrix (dotted
curve). This long-term trend results from the fact that these
long ray paths penetrate deep into the mantle beneath the
Pacific Ocean, where the diagonal elements of the model
covariance matrix are reduced by the relative abundance of
crossing rays in the deep mantle in the tomography data set
(Fig. 7 at 1500 and 2500 km).

This experiment illustrates how model covariance leads
to significant reductions in prediction uncertainty for well-
sampled paths through the slowness model and underscores
the importance of using the full model covariance matrix,
complete with all off-diagonal terms, for computing travel-
time prediction uncertainty.

1D Distance-Dependent Uncertainty

The path-dependent travel-time prediction uncertainties
computed from the tomographic model covariance matrix are
in sharp contrast to the 1D, distance-dependent uncertainties
that have traditionally been used to quantify travel-time pre-
diction uncertainty. The standard approach begins with an
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Figure 11. Mean and standard deviation of travel-time resid-
uals as a function of source—receiver separation.

assessment of how well travel times predicted by the model
fit actual travel-time observations. Travel-time residuals for a
large number of travel-time observations from low GT events
are sorted by source—receiver distance, and some measure of
the spread of the residuals in small distance bins is computed.
These spread values as a function of source—receiver distance
are accepted as a measure of the travel-time prediction un-
certainty (Yang et al., 2004; Flanagan et al., 2007; Myers
et al., 2010, 2015). Results for our tomography data set and
the ak135 model are illustrated in Figure 11 and shown in
map view for station MJAR in Japan in Figure 12.

As an example, consider any one of the distance bins
illustrated in Figure 11. The uncertainty computed for the
bin is based on a large number of travel-time residuals for
ray paths of a similar source-receiver separation that come
from source—receiver pairs all over the world. Some of the
ray paths come from regions characterized by relatively
high slowness in the true Earth, whereas others come from
regions characterized by relatively low slowness values. The
predicted travel times were all computed with a single 1D
slowness model however; hence the 1D distance-dependent
travel-time prediction uncertainties capture the effect of the
average heterogeneity of the slowness distribution in the
Earth, at least for regions of the Earth with substantial seis-
micity. Application of the 1D distance-dependent travel-time
prediction uncertainties in aseismic regions is tantamount to
assuming that the slowness heterogeneity of the seismic re-
gions sampled by the available travel-time data accurately
reflects the heterogeneity of aseismic regions as well.

Although this approach may be reasonable for 1D
slowness models such as ak135, its application to 3D tomo-
graphic models is suspect. 3D models attempt to directly in-
corporate the slowness heterogeneity of the true Earth and, as
we have shown, can significantly reduce travel-time resid-
uals for paths through the Earth that are well sampled by
the data used in tomography. If the 1D distance-dependent
approach is applied to travel-time predictions computed with
a 3D model, the results will be heavily biased toward well-
sampled regions where residuals will be the smallest. Re-
gions of the Earth that were poorly sampled by data during
tomography will not experience the same degree of residual re-
duction, but that fact will not be reflected in the travel-time pre-
diction uncertainties computed with the 1D distance-dependent
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Figure 12. Map of 1D distance-dependent travel-time uncer-
tainty for the ak135 model computed using our tomography data
set. Although the uncertainty distribution is shown centered on sta-
tion MJAR in Japan, the pattern would be identical for any station
anywhere on the Earth.

uncertainty approach. Application of the uncertainties appropri-
ate for well-sampled regions to paths through aseismic regions
will significantly underestimate the uncertainty of travel-time
predictions through those regions.

Summary

The task of monitoring the Earth for nuclear explosions
relies heavily on the exploitation of seismic data for the de-
tection, location, and characterization of suspected nuclear
tests. Motivated by the need to locate suspected explosions
as accurately and precisely as possible, we developed a tomo-
graphic model of the compressional slowness in the Earth’s
mantle with primary focus on the accuracy and precision of
travel-time predictions for ray paths through the model.
Travel-time prediction accuracy is optimized by starting with
a very simple, smooth starting model and allowing the model
to evolve very slowly during iterative tomographic inversions.
We hypothesize that this procedure helps to ensure that the
model does not become trapped in local minima of the solu-
tion space, as might be the case if a more complicated model
was used as the starting model. We also started our tomo-
graphic procedure with a very coarse grid in both geographic
and radial directions. Periodically during tomography, we
computed the model resolution matrix and refined the grid in
areas where high values of the diagonal elements of the model
resolution matrix suggested that higher spatial resolution was
justified. Compatibility of the event locations and model slow-
ness distribution was promoted by relocating the events used
in tomography and repeating the entire tomographic pro-
cedure. Path-dependent travel-time prediction uncertainties
were obtained by computing the full 3D model covariance ma-
trix and then integrating slowness variance and covariance
along ray paths from source to receiver.

SALSA3D reveals variations in seismic slowness that re-
flect the underlying tectonic regimes, with negative slowness
anomalies relative to ak135 in stable, fast, cratonic areas and
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positive slowness anomalies exhibited in younger, slower, tec-
tonically active regions. Travel-time predictions computed
with SALSA3D differ by up to several seconds from predic-
tions computed with 1D radial slowness models such as
ak135. Although travel-time anomalies at regional distances
are substantially larger than those at greater distances, anoma-
lies at teleseismic distances are still substantial. Travel-time
prediction uncertainties reflect the amount of seismic data that
was used in tomography with very low prediction uncertain-
ties for paths represented by abundant data in the tomographic
data set and very high uncertainty for paths through aseismic
regions. The pattern of travel-time prediction uncertainty sur-
rounding a station is a direct result of the off-diagonal terms of
the model covariance matrix and underscores the importance
of incorporating the full model covariance matrix in the deter-
mination of travel-time prediction uncertainty. The computed
patterns of travel-time prediction uncertainty differ signifi-
cantly from the 1D distance-dependent travel-time uncertain-
ties computed using traditional methods.

The impact that these improvements in travel-time pre-
diction and prediction uncertainty have on the accuracy and
precision of seismic event locations will be the subject of a
subsequent paper currently in preparation.

Data and Resources

The website of GeoTess is available at www.sandia.gov/
geotess (last accessed August 2016). The International
Seismic Center bulletin was obtained via ftp download: ftp://
colossus.iris.washington.edu/pub/ (last accessed March 2012).
The Reviewed Event Bulletin from the International Data
Centre (IDC) was obtained via direct database access. The
Earthquake Data Report from the U.S. Geological Survey
(USGS) was obtained via the USGS website. The bulletin
for the USArray was obtained from the Earthscope Array Net-
work Facility http://anf.ucsd.edu (last accessed February
2014). Various special data sets were obtained from the Incor-
porated Research Institutions for Seismology—Program for the
Array Seismic Studies of the Continental Lithosphere (IRIS-
PASSCAL) data center website at http://www.passcal.nmt.edu
and the IRIS website at http://iris.edu (last accessed Janu-
ary 2015).
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Appendix

In the tomography methodology discussion above, we
described how a prior covariance matrix could be used to
regularize our tomographic solution. Here, we show how we
construct the prior covariance so that its diagonal shape is
very near to a Bayesian definition, which we provide, while
its inverse square root (the regularization matrix) is sparse,
enabling a tractable least-squares (LSQR) method solution.

We begin by defining the inverse square root a priori
matrix as a roughening or penalty formulation that accounts
for distance-based smoothing terms for each grid point with
each of its local neighbors. Next, we normalize the matrix
diagonal by pre- and postmultiplying by the inverse square
root of the diagonal. Finally, we pre- and postmultiply the
matrix by the inverse square root of the prescribed Bayesian
uncertainty shape diagonal, which becomes a first guess at
reproducing the Bayesian shape in the subsequently calcu-
lated covariance matrix. With these steps, the inverse square
root a priori can be written as

()Cr_nl/z _ S7n1/2D§1/ZSD§1/2S7nl/2, (A1)
in which S is the N; x N smoothing matrix, Dy is the diago-
nal of the smoothing matrix (diag(S)), s,, is the N x N pre-
scribed Bayesian uncertainty shape diagonal, and OC,_V,I/ s
the first guess at the inverse square root a priori matrix. This
matrix is, as required, both symmetric and sparse.

Next, we define S in equation (A1) such that each diago-
nal row entry represents the sum of all of its off-diagonal
near-neighbor weights. We define the weights as

Sij = —psK(|r; - rj|), J# i
n
> K(ri—r,

J=0
JFI

Sii = (A2)
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in which K(|r; — r;|) is a simple monotonic smoothing ker-
nel that is a function of the distance between points i and j.
We define K(|r; — r;| = 0) = 1 and K(|r; — r;| 2 rp) = 0,
in which rp is some reasonably determined distance range
over which the kernel is nonzero for a small local region
of near neighbors about each grid point. Summing a row
of S over all column entries produces S;;(1 — f,), in which
B, is a smoothing parameter that gives full smoothing when
Py =1, and no smoothing (i.e., the smoothing matrix
becomes diagonal) when g, = 0.

Given the complete definition of the first guess for the
inverse square root a priori covariance with equations (Al)
and (A2), we can calculate the first guess of the a priori
covariance matrix by squaring equation (Al), and inverting

0Con = [0C' %G T (A3)
Usually, the first guess will contain a diagonal whose values
are larger, in a mean sense, than the desired Bayesian entries
contained in s,, (equation Al). We now perform a scaling
update of the initial inverse square root a priori matrix by
pre- and postmultiplying the matrix by the ratio of the Baye-
sian uncertainty diagonal with the square root of the a priori
covariance matrix diagonal:

G2 = [ N (Ad)

~1/2 ~1/2
:| QC;11/2|: Sm :| )
v DOC/” V D()Cm

We can continue iterating equations (A3) and (A4) using the
prescriptions
C = [Ci,C ! (AS5)

and

)
G’ = [_s,,, } . (A6)

}_1/21'(:’;1/2[ S
VP, VP,

Using this method, and just a few iterations K, the diagonal
of the a priori covariance matrix will approach the prescribed
Bayesian uncertainty shape vector:

(A7)

We now have an a priori covariance matrix whose diagonal
is nearly equal to the prescribed Bayesian variance shape,
and whose inverse square root matrix is sparse.
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