SAND2015- 10965P

Sandia

Exceptional service in the national interest @ National
Laboratories

SWIFT Site Atmospheric Characterization

Brandon Ennis; Chris Kelley

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP




Presentation Outline
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> Discussion of Other
Projects
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SWIFT Site Atmospheric Facilities @&

= TTU 200m meteorological | re
tower is 300m NNW of the e B N
SWIFT turbines s SNL 58m towers B

= TTU 78m tower records 10 - _ ’( =
minute logs at 78m | ™ \ T

u Tu r bi n e-t u rbi n e Anemometer Tower Vestas Turbine Control Building _I_. North
interaction centerline for '
wind directions from: Prevailing Wind
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Figure 3. Layout of SWiFT Facility.
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TTU 200m Meteorological Tower — @i

200m Tower Sensor Package
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TTU 200m meteorological tower

« 3 years of historical 50-hz data
beginning July 2012

* About 300m NNE of the SWIFT
turbines

200m Met Tower;
50hz historical data

Vaisala LAP-3000 radar profiler

« configured to log wind speed, direction,
and temperature profiles every 20-min.

* Resolution is 60m between 150-2000m
AGL, 200m between 600-6000 m AGL

» Approximately 540m to the SW of the
200m tower.

Mesonet and Sodar Networks
Historical data from weather stations in
surrounding area

« 5-15 minute historical logs

* Currently unfunded and not public
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Mesoscale-Microscale Couplmg Work i

Laboratories
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Initial Benchmark ldentification and MMC modeling:

SNL Role is case identification from TTU historical data

sets at the SWIFT site.

|dentification of stationary near-neutral, stable, and
convective atmospheric boundary layer from 200m met

tower

Radar profiler data are used to approximate geostrophic

forcing

Low Level Jet development typical of SWIFT site
» Important phenomena to wind energy industry
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Atmospheric Facility Usage ).
SNL 58m Met Towers:

T o e
= Accurate inflow measurement ;LTwlirZOOm
= Atmospheric stability |
SNL 58m towers ;r
= Turbulence coherence TTU 78m

tower

TTU 200m Met Tower:

=  Comparison of SWIFT inflow with
“full-scale” height(s)

= Turbulence coherence at an
additional location

= Detailed profiles up to 200m
TTU 78m Met Tower:

= Point comparison of averages
TTU Radar Profiler:

= Boundary layer height / geostrophi o
forcing 7




DATA PROCESSING FINDINGS




TTU 200m Tower Wake:-

Turbulence Intensity

" Inawake, velocity is T e o0
decreased and turbulence T R ==
is increased

Turbulence Intensity

:\.‘:;:‘:::.:.::""..'_ -f',‘.- .. ‘ :.:;f.':‘ O
01 P SRR L T
FE TS

= Turbulence Intensity (Tl)
therefore is a highly
affected variable by the
tower wake shadow

= Only neutral stability
cases are compared, - T
which removes effects on G NG ORI
Tl from other sources o R
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Wind Direction [deg]

90 100 110 120 130 140 150 160 170 180 190 200
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TTU 200m Tower Wake

Turbulence Intensity
o
S

= Stable and Convective T e
ABL cases are equally t
compared r

= Wake effect would cover ?

o
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the largest directional Stable ABL, Tl — 155ft Tower Height
sector for highest Rl R
turbulence cases
(convective)
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= Tower wake sector for

TTU 200m boom stations
defined as [110, 155] deg.
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TTU 200m Tower Wake

= Removing a directional
sector of [110, 155] deg
equates to 8.7 and 9.2% of
the 2-year total data set.

= This directional sector is 25
deg from the 5-diameter
spacing turbine-turbine
interaction, 24 deg from
the 3-diameter turbine-
turbine interaction
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TTU 200m Tower Wake  [WE&

£

= Sensors at 3, 8 and 13 ft stations <o o koo 0 o
have different obstructions 1

= Analysis reveals a tower wake
directional sector of [110, 170]
deg for these 3 measurement Lol
P P

. "-“af’:“ Ty I,
.
0 I I I I 1 I 1 I I I
helghts 90 100 110 120 130 140 150 160 170 180 190 200

= Affects stability measurements Neutral ABL, T1 =8t Sensors

<

(a) Sensor Mounting at 3, 8, (b) Tower Structure Near  (c) Adjacent Structures to the 200 m Tower
and 13 1L the Ground.
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= Summary:

= 200m tower has an observed tower wake effect from [110,
155] deg at turbine heights

= This corresponds to between 9-10% of the time series
= 8ft sensor has a tower wake shadow from [110, 170] deg

= There is not a SWIFT hub height sensor package on the TTU
tower

= Next steps:

= TTU 200m analysis and report being reviewed at SNL and
NREL — published by 12/24/15

= Sue Haupt and Branko Kosovic have the tower wake sections
and will provide feedback

= Package conclusions and recommendations for the TTU
200m facility’s support of the SWiFT site to provide to DOE




HISTORICAL ANALYSIS RESULTS
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Historical Analysis Purpose ).

= |nform Experimental Campaign Planning

= How long does a campaign need to be run, over what timeframe to
statistically produce a representative amount of data covering the
atmospheric conditions of interest?

= What are the specific pairings/values of atmospheric conditions that
are statistically achievable at the SWIFT site?

= Determine Model Simulation Inputs

= What are common values of turbulence intensity, velocity profile
shear exponent, degrees of veer?

= What atmospheric values should be used as design inputs for the site?

= To provide a benchmark for comparison to other sites for
scaled testing at SWIFT




Average Conditions at SWiFT ) .

= Average hub height wind
speed is 6.8 m/s

= Weibull distribution

Average Hub Height Wind Speed = 6.819 m/s
A =7.499 k = 2.773 #bins = 1000
0rgean = 6.675 m/s median = 6.57 m/s mode = 6.382 m/s
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= Two year average of wind
speed velocity profile

= Average Tl for SWIFT rotor
is 12.9%

200 T
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150 } |.—0— propeller
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wind speed [m/s]
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|EC Classification of SWIFT Turbines @i

200

e SONIC
150 | | .=—0—_propeller

= (Classification defined in terms of

E o0}

wind speed and turbulence intensity ~

Wind Turbine
Class

4 6 8 10 12
wind speed [m/s]

I\)

hub height

average 0.25 m/s bins
Vayg (M/s): : - [EC fit:_,=0.11
IEC A:l _ =0.16
8t f
A |ref@15 mis 016 08 ECB:1_ =0.14
B Iref@15m/s: 014 07T IEC C: Iref=0'12

C et @ 15 miss 0-12

= Using 2-years of historical TTU 200m
tower data at 32m hub height
(SWIFT Turbines) | |
0 10 20 30

= SWIFT site determined to be llI-C wind speed [m/s]




Average Condltlons at SWIFT

<T|> 0. 129

Two-year distributions of
SWIFT site atmospheric
conditions

0 0.1 0.2 0.3

T

0.4

Tl average is 12.9%

= Common occurrences of 5-20%.

<T> =60.3 °F

= |mportant for test campaigns

Density average is 1.08 kg/m?3

= NOT constant, total of about o5
20% spread

Velocity profile shear

exponent average is 0.208

= Typically assumed as a constant 0.02
0.15 in design 0
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Air Density Fluctuation at SWiFT @&

= Air density averaged
per month

1 3
Pyina = EPV A

= Summer months have
an average air density
of about 10% less than
winter months

= Air density is directly
proportional to the
amount of power
available in the wind

I 1 1 1 b il 1 1 1 1 1
Jan Feb Mar  Apr May Jdun Jul Aug Sep Qct Nov  Dec

19




wind speed [m/s]

Average Conditions at SWiFT

= Turbulent daytime
conditions result in low
shear profiles

Green and adjacent blue
curves show SWIFT shear

SWIFT height good for
achieving large/low shear
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the order of 100%

SWIFT height averages vary
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which is good for
experimental campaigns
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Atmospheric Stability at SWiFT 1) .

= Represented by the Bulk | gAb,Az
Richardson number Rig = 2
_ 0,(AU)
formulation
= Ratio of turbulence 60

production due to buoyancy
forces to mechanical/shear
production

H
=]

= At the SWIFT site, neutral
conditions occur 5-10% of 20

Frequency (%)
w
o

the time N |
- IRiB.neutaJ[ <o0.01
= Most CFD modelers simulate ] R i<002
only neutral ABL conditions. Unstable Noar-Neuira v
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07/04/2012 07:30 UTC

Stable ABL: 7 7 7 7

- Positive potential | ° i °
virtual temperature
gradient

« Downward buoyant : ool - -
momentum flux = ol . .

« Turbulence is ol ! ol ol
suppressed w

« Strong velocity .
profiles / shear s B e T e e me i o e me w o we me

TKE [m?/s?] 01K] Direction [deg]
07/04/2012 19:00 UTC

Convective ABL: F B i S

 Ground surface y y B A ;'
heating *

* Positive buoyant ;
momentum flux 2 o . . . " ".

» Turbulence is C . | | . . 'i
generated and ol ] | ol ol ".
convected upward ' o !

* Minimal velocity =
profiles / shear G —— o T TN R R R R

U [mis] TKE [m?/s?] 0 [K] Direction [deg]




Atmospheric Stability Trends ) .

= Neutral cases have a higher = Wind direction has a minor
average wind speed than trend with stability
stable and convective cases

-3
0.16 : : . g .
I neutral N [ neutral
1 I stable [T B stable
0.14 F = C—Junstable| T 7r i C——unstable| 1

012}

01F

Ao 0.08 }

0.06 |

0.04 }

0.02 }

10 0 100 200 300
wind speed [m/s] wind direction [deg] 23




Atmospheric Stability Trends ) .

= Neutral cases have a higher = Tlis strongly dependent on
average wind speed than atmospheric stability
stable and convective cases = Finding very low Tl unstable

case would be challenging

0.18 ; i T 0.14 T i
I neutral I B neutral
i I stable EE stable
0.14 = —Junstable| T 0.12 F 1 —unstable| -
012}
01}
01 F
0.08 f
a 0.08 o
0.06 F
0.06 |
0.04 004t
0.02 f Qo2

10
wind speed [m/s]
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Atmospheric Stability Trends ) e

= Percentage of neutral cases ® Convective daytimes

is consistent on the year; transition to stable nights
Unstable cases increase = ABL transition between
surrounding summer around 8-9am and 6-8pm

= Affects experiment planning
1 [l

ook ) neutral i i
: 0 stable . B neutral
[ unstable EE stable

4 L [ unstable

i 2 3 4 5 6 7 8 9 10 11 12 0 5 10 15 20
month hour 25
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Atmospheric Stability Trends ) e

= Due to turbulent mixing, = Highest veer conditions
unstable ABL’s have the occur during the overnight
lowest shear stable boundary layer
= Shear exponent peak = 0.05 development
0.14 ; . : ; 0.45 ;
| I neutral = [ neutral
I [ stable 0.4k H1M e stable |
0.12} —Junstable| 1 ——unstable
- 035
01 F
03}
0.08 = 1 7 025}
o o
0.06} 02

0.15

0.04 }

0.1

0.02 §

0.05

0 0.0% 0.1 0.15% 0.2 0.2% 0.3
o veer [deg/D] 26



Velocity Profile Shear Trends .

= Due to turbulent mixing, = Correlation between
unstable ABL’s have the turbulence intensity and the
lowest shear velocity profile is observed

= Shear exponent peak =0.05 = Low Tl typically has high

shear
0.14 : : 1 T '
I neutral (1)90r1m19| %iigsé
ozt I — e

01F

-0.5 ALY S ; - . .
2 e 41 W15 & G B8 0 0.1 0.2 0.3 0.4 0.5 0.6
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Velocity Profile Shear Trends wulf

" |nthe average day, the
shear exponent varies
from about 0.35 to 0.05

" For a statistically

significa nt amount of hlgh 0 01 02 08 04 05 06 07 06 09 10 112 15 16 1516 17 16 10 20 21 22 2
our

shear cases testing should

be performed at night or

early morning

0.22
021

0.2 F

" The highest shear cases
occur in late Fall where
there is less turbulence

017 |

016 1 1 1 1 1 1 1 1 1 1
Jan Feb Mar  Apr May  Jun Jul Aug  Sep  Oct Nov  Dec

28
-



Velocity Profile Veer Trends ) .

" Highest values of veer
R ——— . occur most commonly at
10 min bins

5 025 mis bins] | lower wind speeds (up to
about 10 m/s)

= Due to the correlation
between stable cases and
wind speed

veer [deg/D]
o

= Veer averages of 2 degrees
are seen, with 10 min

31 - average data points

exceeding 4 deg of veer

0 5 10 15 20
wind speed [m/s]
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Velocity Profile Veer Trends ) .

= High values of veer are = Correlation between
mostly seen with high turbulence intensity and the
values of shear velocity profile is observed

= But, veer with low shear = Low Tl typically has high
bappens — less frequently Sshear

3

2k

1t

veer [deg/D]
o

veer [deg/D]
o

10 min bins -4+
0.1 « bins




Potential Future Work ) i,

= SAND report to be released by 12/24/15 — SWiFT Site
Atmospheric Characterization

= Dataset can be used to compare atmospheric trends for utility
size turbine and SWIFT scale
= Trends must be scaled by relevant rotor parameters
= Atmospheric scale comparison

" Future updates to the analysis and document revisions when
additional data become available from TTU — potentially
annual updates
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Neutral Case — 08/17/12 )

Laboratories

08/17/2012 00:50 UTC
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Neutral Case — 07/04/12 — future casg:

oratories

07/04/2012 02:00 UTC

200 - 200 - 200 - 200 - ¥
01:00 [
01:10 Il
180 180 180 01-20 180 i
01:30 ]
01:40 ']
160 160 160 X 01:50 160
02:00
0210
L L L 02:20 L
140 140 140 0930 140
02:40
02:50
120 + 120 + 120 + | L 120 +
£ i
< 100t 100 | 100 | 100 | L
‘o L
T 1
80 f 80 f 80 f 80| \
X
i
60 - 60 - 60 - 60 - \
i
&
40 40 40 40+ I
)
20+ 20+ 20+ 20+
0 . ) 0 ) 0 . ) 0 ! . )
0 5 20 0 3 312 36 7 170 175 180 185 190
TKE [m?/s?] Direction [deg]
07/04/2012 02:00 UTC
0.1 . . . , . : . : ;
0.08 |
006 |
004
0.02| /(____,,(___ﬁ
_I:ﬂ
o o ‘_/_‘-x—*—”’
002
0.04 |
0.06 |
0.08 |




Case ldentification — Stable and Convectimm:a.

Laboratories

Potential Temperature Evolution (1-day)

07/04/2012 12:00 UTC
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Case ldentification — Stable and Convectimm:a.

Laboratories

07/04/2012 12:00 UTC
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Case ldentification — Stable and Convectimm:a.

Laboratories

07/04/2012 12:00 UTC
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Case ldentification — Stable and Convectimm:a.

Laboratories

07/04/2012 12:00 UTC
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