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Radiation-induced aging of PDMS Elastomer TR-55: a summary of
constitutive, mesoscale, and population-based models

A. Maiti, T. H. Weisgraber, L. N. Dinh

Abstract:

Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging
from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation-,
thermal-, and electrical barriers External factors like mechanical stress, temperature fluctuations, or radiation are
known to create chemical changes in such materials that can directly affect the molecular weight distribution
(MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a Materials
Science point of view it is highly desirable to understand, effect, and manipulate such property changes in a
controlled manner. In this report we summarize our modeling efforts on a polysiloxane elastomer TR-55, which is
an important component in several of our systems, and representative of a wide class of filled rubber materials. The
primary aging driver in this work has been y-radiation, and a variety of modeling approaches have been employed,
including constitutive, mesoscale, and population-based models. The work utilizes diverse experimental data,
including mechanical stress-strain and compression set measurements, as well as MWD measurements using multi-

quantum NMR.



Notation:

A =stretch ratio = 1 + €, where € = engineering strain
A > 1 - Tensile strain, A < 1 = Compressive strain
A, = constant strain at which the material is exposed to radiation

Experimental stress-strain data under radiation at zero strain (4, = 1)

Thin samples (0.1 mm x 10 mm x 40 mm) were exposed to y-radiation from a Co-60 source (1.4MeV,
0.5Mrad/hour dose rate) as a convenient, controllable degradation pathway. The samples were irradiated in a
nitrogen atmosphere until the desired dosage was reached, and then subjected to mechanical analysis (Fig. 1) using a
TA Instruments ARES LS-2 rheometer in torsion rectangle geometry. Measurements were made in the dynamic
oscillatory shear mode at room temperature using a frequency of 1 Hz (6.28 Rad/s). Strain was systematically

incremented from the starting value (0.1%) to the end value (10%) using logarithmic spacing.

0 o5 & MR
- " 'I)=u ) _ 25 MRad
Py £ , virgin material) 'I.,'
! Z ped g
o 0.8 |5 L 1
< = L~ ] 2~ 10 MRad
w 0.6} " e 3 o
A A a O,.O
2 @ peoa S MRd
o & o
W 04+ : ’ ° -
. o DD 0
(D) g D"D el >
= .<:>~°',p-'°"o/°"°' 0 MRad
; 02 L o_g_"’p,.g;_p/ﬁ“ (virgin) |
- =t
,&;;.'3?'8
0.0 s

100 102 1.04 106 1.08 1.10
A

Figure 1. Stress-strain response of TR-55 subjected to different radiation dosages. Data is limited to stretch ratio (A1) of 1.1 or
less. Experimental data (symbols) are displayed along with fits (lines) using the Neo-Hookean model, eq. (1) in text. Inset:
Stress-strain response of the virgin material (D = 0) up to larger stretches (4 < 1.5) along with the Neo-Hookean fit (dashed line)
with G =1.35 MPa.

The above stress-strain data (up to moderate strains) can be accurately fit by the Neohookean model:

o(d) = G(A2 —1/1) (1)

as shown in Fig. 1. In eq. (1) G is the shear modulus that is proportional to v,, the volume density of chain segments

between cross-links (and other physical restraints) with the proportionality constant depending on the details of the



network (i.e., bond-coordination of the junctions, the fraction and nature of fillers, etc.). The best fits of the
experimental data (symbols) in Fig. 1 by eq. (1) yields the experimental shear modulus (G), plotted in Fig. 2
(symbols) as a function of radiation dosage D, along with errors due to sample-to-sample variation. The fit to the
stress-strain response of the virgin material (Fig. 1 inset) yields a shear modulus of Gy = 1.35 MPa. Fig. 2 shows that
the shear modulus G increases, almost linearly, as a function of radiation (within our maximum dosage of 25 Mrad),

implying a net increase in chain-segment density proportional to D.
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Figure 2. A plot of the shear modulus (G) from Neo-Hookean fits to the data in Fig. 1 as a function of radiation dosage (D).
Errors bars in G are due to sample-to-sample variation. The solid line is a linear fit to the data.

Permanent Set measurements:

Experimental stress-strain data under radiation at non-zero tensile strains (4; > 1):

To gain possible insight into the relative importance of bond-scission versus cross-linking events a second set of
experiments were performed in which several samples were irradiated while being under pre-defined constant tensile
strain (4; = 1.20, 1.47, 1.67, 1.84). Upon reaching the desired dosage, the samples were removed from the
irradiation chamber, released from tensile strain, and allowed to relax at ambient conditions for a week. The relaxed
samples were then measured for the new equilibrium length, called the recovered length A, (symbols in figure 3),
which is expressed as a ratio of the original (i.e. pre-exposure) equilibrium length [Note: Permanent set (Ps), a
commonly used term in this context, is related to A, through the equation Py = (4, — 1)/( A; -1)]. As shown in Fig. 3,

As increases as a function of both A; and the radiation dosage D.
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Figure 3. Permanent set data for TR-55 (expressed as recovered length (As)) as a function of radiation dosage for different values
of tensile stretch ratios (A:) at which the material is subjected to radiation. Solid lines are theoretical results using A;-independent
ferr(solid curve in figure 4(top) below) in eq. (5).

For a quantitative interpretation of Fig. 3, we adopt a two-stage independent network model originally proposed
by Tobolsky [1], in which the rubber consists of: (1) the original network at an equilibrium length of 1 (i.e. zero
strain), a fraction of which gets modified by radiation (either through cross-linking or through bond-scission), and
(2) a new network created by radiation-induced cross-linking at an equilibrium length of A;. For concreteness of
analysis let us assume an initial chain-segment-density of w, a fraction f;..« of which gets modified by radiation. Let
us also assume that the new network has a chain-segment-densityv;, which as a fraction of the original chain density
can be expressed as vi = fyw. In the presence of bond-scission (and A; different from 1) there is an additional
feedback effect (due to physical network relaxation) in which a part @ of the new network (called the transfer
function) relaxes back into the original network. In this case, the effective number of chain-segment-density in the
two networks become [2] vo(1-fTmod) and wf'y respectively, where fiuod = finoa -@fu and fy = (1-D)fy. For a phantom
network the transfer function can be approximated by the expression [3] @ = &c;fmoa/(1+f), where & is the fraction
of the original chain segments that are modified by scissioning. In the presence of the two networks eq. (1) gets

modified to:

1 2 A
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where Gy is the shear modulus of the virgin material. The shear modulus G in Fig. 2 (corresponding to a single

network situation, i.e, A; = 1) can be expressed as:
G= GO(I _f,mod+f,x/) = Gﬂ(l _ﬁn0d+fx/)~ (3)

The linear behavior of Fig. 2 can be expressed by the relation:

Afxl :fxl _ﬁnod :ﬂv/ _flnod = COD, (4)

where Afy is the net increase in cross-link density, and the constant Cy ~ 0.054 (Mrad)!. Eq. (4) is in good
quantitative agreement with recent solvent swelling data on the same material [4]. Eq. (2) solved for o(4) = 0 yields

the following expression for recovered length Ay:
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where for = fu/(1-fmod). Eq. (5) can be inverted to solve for fo5 for every experimental value of A, in Fig. 3. This
yields the values displayed as symbols in Fig. 4 (top), which shows that the dependence of f.;yon A; is weak and non-
systematic. It is thus natural to construct a model in which f is a function of D only (solid curve in Fig. 4 (top)),
from which one can solve for the effective fractions of new cross-links f’v and of modified original chains f'04, as

displayed in Fig. 4 (bottom).

It is interesting to consider the small D limit (5 Mrad or lower) where the transfer function @ is small and the
effective fractions f and f’..q are almost equal to f; and f..s respectively. In this region we observe linear behavior:
Jxi~ CuD and froa ~ CroaD, where Cy = 0.114 and Cynoqs = 0.060 Mrad! respectively. Let us try to interpret this in
terms of molecular-level cross-linking and chain scission events. Under cross-linking the number of new chain
segments is exactly twice the number of original chain segments that get modified, i.e., either two original chain
segments cross-link into four new segments (fourfold-connected cross-links), or one original segment get cross-
linked to a filler surface somewhere in the middle leading to two new segments. On the other hand, chain scission
leads to mobile — often volatile small-chain or molecular fragments, or to dangling bonds that can either (i) remain
dangling or form a loop onto itself, or reconnect: (ii) to a different dangling bond; (iii) to a filler surface; or (iv) to
another chain segment somewhere in the middle (threefold-connected cross-links). Processes (iii) and (iv) lead to
new chain segments twice that of the originally modified segments, processes (ii) yields the same number of
segments as the original (i.e. no nef change in the total number of cross-links), while processes (i) lead to a decrease
in the net number of cross-links. The fact that the ratio Cx/Cpoa = 0.114/0.060 is close to 2 indicates that scission

events of type (i) and (ii) are rare at low radiation dosages.

We can show that the behavior of f7.,4 as shown in Fig. 4 (bottom) can be derived from the assumption that any
monomer in the system has the same probability of modification (cross-linking or scission). For simplicity we
consider the case of 4; = 1 (i.e. single network) where f04 = fmoa. We need to recognize that not all chains are of the

same length, but rather the chain length between cross-links, henceforth expressed in terms of the number of



monomers p, follows a statistical distribution, i.e. the MWD. Let 7 (p, D) be the number of chain segments of length

p monomers between cross-links for a sample exposed to a cumulative radiation dosage D. Thus the total number of

monomers N in the system, (which is independent of D), and the average chain length p,.(D) are respectively given
by:

mod

N=Y pi(p,D) and p, (D)=N/3 n(p,D)
P

P

(6)
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Figure 4. (top) Values of foy = fw/(1-
f'moa) from the As data using eq. (5),
showing weak dependence on A;; solid
line is the best (A;-independent) fit as a
function of radiation dosage (D);
(bottom) Effective fractions fxi , f'mod ,
and Afu = f’x - f'moa plotted separately.
See text for the definitions of various
symbols.



Assuming a constant rate of modification r,,¢ per monomer per unit radiation dosage the probability that an original
chain of length p has been modified after exposure to a (cumulative) radiation dosage D is 1 — exp(-#moa pD). This
yields the following expression for fuoq:

Snod = 2[1 = exXp(=ripoqg PD) (p,0)/ X1 (p,0) . (7
P P

For small D, expanding the exponential in eq. (7) yields fiod = 7moapa(0)D, where p.,(0) is the average chain length
between cross-links for the virgin material. Thus, 7medpa(0) = Cimoa ~ 0.060 Mrad!. Using this result in eq. (6) along
with the experimentally determined MWD for the virgin material (see below) yields a curve of fy.q in excellent

agreement with Fig. 4 (bottom).

Molecular Weight Distribution (MWD) between cross-links
"H Multi-Quantum NMR measurements and mesoscale network models

In order to experimentally determine the MWD between junctions/restraints, we utilized the technique of 'H
multi-quantum NMR (MQ-NMR) [5], which allows for the quantification of dipolar couplings between protons not
averaged to zero due to rapid, but anisotropic motion of the polymer chains. The anisotropic dynamics are due to
physical and chemical restrains (due to cross-links and entanglements, respectively). Recent work [6, 7] has
established that MQ-NMR based quantification of the residual dipolar couplings in silicone elastomers is very
robust, with the following relationship between the residual dipolar coupling (€2;) and the number of statistical

segments between crosslinks (p):

2

Q
l =< PZ (COS a) > :;SL , (8)
p

<Qq >

where < > denotes averaging over all chain orientations, Qp is the dipolar coupling in the absence of motion (pre-
averaged by the fast motion of the methyl group), P, is the second-order Legendre polynomial, « is the angle
between the dipolar vector and the chain axis (i.e., the angle between the backbone chain axis and the Si-C vector),
and 7 is the length of the end-to-end vector, |R|, expressed as a ratio to that of the unperturbed melt, |Ro|, i.e., r =
IR|/|Ro|. Taking the number of monomers in a statistical segment to be 5.7 [8], the distribution 7 (p, D) can be
determined from MQ-NMR measurements using eq. (7). Fig. 5 displays the MQ-NMR spectra for the virgin
material as well as for samples exposed to various radiation dosages. The intensity (y-axis) is proportional to the
number of monomers in each chain-segment, i.e., p# (p, D). Thus the area under each curve is proportional to N, the
total number of monomers in the system. It is convenient to define a normalized MWD n(p, D) = 7 (p, D)/N, such
that a normalized NMR intensity is equal to pn(p, D), and the total area under each curve is 1. All curves in Fig. 5

(i.e. for each D) are normalized in this way.



The distribution in Fig. 5 represents the main MWD within the pure polymer part. In addition we also see a much
weaker peak at smaller chain lengths (p < 20) that is likely associated with the silica fillers and/or resins inherent in
the TR-55 formulation. Weak dipolar coupling at frequencies above 80 Hz can lead to significant uncertainties in the
values of n(p, D) at large values of p (> 300 or so), thus leading to uncertainty in the peak Zeights (especially for D ~
10 Mrad or below). However, the peak positions are robust, as we verified through multiple measurements. Fig. 5
displays a monotonic shift of the MWD to smaller chain lengths and gradual narrowing of the peak as a function of
increasing radiation. More specifically, with increasing D the average chain length p.(D) decreases such that the
cross-link density Afy = pa(0)/pa(D) — 1 increases linearly in a manner quantitatively consistent with eq. (4) (see

Fig. 5 inset) [9].
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Figure 5. MWD (pn(p,D)) from MQ-NMR measurements for various radiation dosages. Inset: Corresponding chain density
increment: Afy = pav(0)/palD) — 1 as a function of D; solid curve: y = CoD, see eq. (4).

The above analysis does not identify the type of chemistry prevalent during radiation exposure: is it primarily
the formation of new crosslinks, or is it chain scission followed by crosslink formation? How would the results
depend on the network functionality, i.e., three-fold or four-fold junctions? Fig. 6 schematically shows possible
crosslinking and chain scission processes in a filled rubber that can be brought about by the energetic y radiation.
According to this schematic, except in the case of dangling bond formation, one should have fu/fuos ~ 2. Thus, a
value of fu/fuea ~ 1.9 (as obtained above) indicates only a few percent of dangling bonds, but do not provide an
indication of which of the various processes (in Fig. 6) dominate. To address this question, the MWD results of Fig.
5 needed to be mimicked through simulations. Two different approaches were taken: (1) a coarse-grained mesoscale

simulation approach [10] and (2) a statistical approach involving the population balance of chain lengths of crosslink
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segments [11].
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Figure 6. A schematic of how original chain modification and new crosslink formation can occur as a result of radiation-induced
processes involving crosslinking (top two figures) and chain scission (bottom three figures). In all cases fx/fmos = 2 except in the
case where dangling chains form (bottom figure).

4
’

Mesoscale network model:

To simulate the above radiation-induced evolution of MWD, and more specifically to decipher the dominant
underlying molecular-level changes in the network, we employed a coarse-grained, mesoscopic polymer network
model that has been previously applied to a similar PDMS material [10]. The model consists of a set of cross-link
nodes (i.e. junctions) connected via single finite extensible nonlinear elastic (FENE) bonds (that can be potentially
cross-linked and/or scissioned), which represent the chain-segments between cross-links. In addition, there is a
repulsive Lennard-Jones interaction between all cross-link positions to simulate volume exclusion effects. Since we

are only concerned with the polymer network, the filler particles are not explicitly incorporated into the model.

2
Vens(r) = —>kRE1In [1 -() ] r <Ry ©)
P 12 - 6
sl — = < 1/6
VL](T) = {46 [(T) (7") ] + 6 TS 2 o (10)
0, r>2Y%

The first step was to create a network that resembles the virgin distribution of Fig. 5. To this end, we placed
more than 4000 random “nodes” (representing junctions) in a 3-D cubic box with periodic boundary conditions.

Pairs of junctions within a chosen cut-off were then randomly connected by FENE bonds. The Lennard-Jones and

9



FENE interaction parameters were adjusted and the degree of polymerization (p) for a given length of a FENE bond

calibrated until the MWD computed from our network matched the experimental MWD of the virgin material.
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Figure 7. Comparison of experimental MWD of Fig. 5 (blue line) with computed MWD for fourfold-linking only (red solid line)
and threefold-linking only (green dashed line).

To simulate the radiation-induced evolution of the above network, we first considered the situation with only
cross-linking and no scissioning (i.e. only fourfold-connections). For this, we created the virgin network with only
fourfold-connected junctions, and performed additional random cross-link operations between FENE bonds (i.e.
segments) in accordance with Afy; values given by eq. (4). We added new cross-links in radiation dosage steps of 1

Mrad, and at each step structurally optimized (i.e. relaxed) the new network using the LAMMPS code [12].

Fig. 7 displays the simulated evolution of MWD of the above network (red curve) under fourfold-coordination
for four different radiation dosages along with the experimental data (blue line). We also considered the MWD
evolution when all new cross-links were threefold-connected (i.e. scission-induced), as shown by green dashed lines.
The differences in MWD between fourfold and three-fold connected cases are negligible, and both mechanisms lead
to excellent agreement in the peak positions as compared to NMR data. The differences between peak heights,
especially for D < 10 Mrad are not surprising given the uncertainty in the NMR data in the long-tail part (see
discussion above Fig. 5). However at 25 Mrad, the disagreement between the experimental and simulated data is

significant and point to effects not considered in the simulations. To explain such differences, we performed

10



simulations in which we allowed for the presence of dangling bonds (and/or loops) which did not form junctions.
This leads to simulated peaks to be narrower and higher, closer to the NMR data. Similar effects could also be

expected from the creation of volatile small-chain fragments.

Population balance model:

Finally, Dinh et al.!'* carried out a statistical analysis of the distribution of crosslink segment lengths and its
evolution with network changes brought about by irradiation. The basic idea starts from the fact that when two
chains of lengths p and ¢ crosslink somewhere in the middle, it forms four chains of lengths p — m, m, ¢ — n, and n
(where m < p and n < g). The evolution of the MWD, i.e., the frequency distribution of chains of different lengths
is governed by the probabilities of different types of chemical processes caused by radiation, i.e., crosslinking, chain
scissioning, loop formation, etc. It also depends upon the details of the type of crosslinking process, e.g., H-linking

or Y-linking or a mixture of both.

Such a method of tracking the distribution of chain lengths, known as population balance (PB) was first applied
by Saito [13] to a set of initially free (i.e. non-crosslinked) polymer chains, while Dinh at al. [11] derived the PB
equations appropriate for a system of crosslinked chains. The MQ-NMR MWD data on the virgin material was used
to create a starting population of crosslink lengths, which was evolved according to various crosslinking and
scissioning schemes. The hope was that by matching the simulated MWD evolution to the MQ-NMR data as a
function of radiation one would be able to identify the dominant crosslinking scheme. Unfortunately, the PB-
simulated MWD corresponding to several different crosslinking schemes were nearly identical, and agreement with
the MQ-NMR was only qualitative in nature. Nonetheless, the work was able to put bounds on various rates of
these processes and further confirmed that a competition of these phenomena determines the overall evolution of the
effect of irradiation. More details can be found in ref. [11].
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Figure 9. A schematic of possible structures formed via H-linking and Y -linking.

Combined modeling of radiation hardening and Mullins softening

Mechanical measurements (Permanent Set):

All experiments were performed on the commercial silicone elastomer TR-55 from Dow Corning. Thin
rectangular samples were stretched to specific strain levels and exposed to controlled dosages of y-radiation from a
Co-60 source (1.4MeV, ~ 0.1 Mrad/hour dose rate) in a non-reactive nitrogen atmosphere. Seven different strain
levels were studied, corresponding to stretch ratios 4; = 1.20, 1.47, 1.67, 1.84, 2.00, 2.33, 2.67. Following exposure
to controlled duration (and therefore dosages) of radiation, each sample was removed from the irradiation chamber,
released from the A;-strain, and allowed to relax at ambient conditions for 24 hours. The relaxed samples were then
subjected to measurement of the new equilibrium length, called the recovered length A,. After several weeks of
further equilibration, stress-strain analysis was carried out for 5 load/unload cycles at strains of up to 50%
elongation. The stress-strain analysis was performed on rectangular specimens (width ~ 3 mm and thickness 0.6-0.9
mm) using a Instron 5565 dual-column electromechanical test system with an initial grip separation of ~ 20 mm and

a stretching rate of 20 mm/min.
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Figure 10. Recovered length (4) as a
function of radiation dosage for
different values of tensile stretch ratios
(A1) at which the material is subjected
to radiation. The symbols denote
experimental measurements while the
lines (solid, dashed, and dotted) are
theoretical results using A;-independent
ferr (see text). The A1 values are
indicated by each curve.

Fig. 10 plots the measured recovered length (As) as a function of radiation dosage D for the different values of

Ai. Error bars indicate sample-to-sample variation in cases where multi-sample measurements were performed. A

subset of these results was reported previously [9], and were quantitatively interpreted using Tobolsky’s 2-stage

independent network model [1]. Fig. 11 plots a typical stress-strain response of such samples (only the loading

curves are shown and the unloading curves hidden for clarity). The main feature is that there is strong dependence

on the cycle number. In particular, in cycle 1 the response is much steeper, corresponding to a significantly higher

elastic modulus, while the response becomes progressively softer in subsequent cycles, but with a much smaller

drop-off than between cycle 1 and cycle 2. This type of softening has long been known to occur in filled rubber

materials and is generally known as the Mullins effect [15]. At the end of cycle 1 a small permanent stretch (~ 2%)

is also incurred, which is smaller than typical permanent sets reported in Fig. 10. It is important to note here that the

recovered length in Fig. 10 was obtained prior to subjecting the samples to the stress-strain cycles as in Fig. 11.
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Figure 11. Typical stress-strain
response of a radiation-exposed TR-55
sample through the first five cycles.
The data shown corresponds to a
sample that was exposed to 17 Mrad of
radiation (under A1 = 1) and then
stretched to a maximum of 50% of its
original length during each cycle.
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Next the Young’s modulus (£) was extracted from the stress-strain slope at small deformation (corresponding to
strain levels of 5% or less) for various cycles and various values of A, and D. Fig. 12 displays the results for £ in
cycles 1 and 5. We observe the following trends: (1) for all values of A4 the modulus increases as a function of D
within each cycle. For 4; = 1 and cycle 1 this increase is nearly linear, as observed previously [9]; (2) for all values
of 41 and D the modulus significantly decreases from cycle 1 to cycle 5, similar to the softening behavior seen in
Fig. 11. The decrease in modulus is the largest for 4; = 1 and gets progressively smaller for increasing values of A;
(3) as a function of A; the modulus displays complex behavior that can be increasing, decreasing, or non-monotonic
depending upon the cycle and the radiation dosage D. In particular, in cycle 1 the modulus £ shows an overall
decreasing trend as a function of increasing A, with the rate of decrease |0F/0Ai| getting smaller with increasing 4
and increasing D. In cycle 5 on the other hand E shows more complex behavior as a function of A, decreasing at D
= 5 Mrad, increasing at D = 17 Mrad, and non-monotonic at intermediate values (10 Mrad). The above behavior of
E can be traced to a combination of two effects: (i) material softening due to the Mullins effect; and (ii) radiation
hardening of the elastomer due to the creation of a net number of new cross-links. In the following we analyze the
above results within the framework of Tobolsky’s 2-stage network theory using a simple constitutive materials

model for the mechanical response of incompressible rubber.
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Figure 12. Young’s modulus obtained from the small-deformation slope of experimental stress-strain data for various values of
A1, three different radiation levels, and two cycles (cycle 1 and cycle 5). Depending on the cycle and the radiation level the elastic
modulus displays increasing, decreasing, and non-monotonic behavior as a function of A1.

Constitutive Model:

To analyze the experimental data on recovered length A (Fig. 10) and Young’s modulus £ (Fig. 12) we adopted
the Neohookean stress response model (eq. (1)). Before deriving a general formula for the Young’s modulus E we
note that for the special case 4; = 1 the Young’s modulus is simply three times the shear modulus, i.e., £ = 3G. Thus

the near-linear increase of £ with D for 4;=1 in cycle 1 (see Fig. 12 (left)) can be expressed as G = Go(1+CoD),
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where Go ~ 1.5 MPa is the shear modulus of the pristine material, D the radiation dosage in Mrad, and C is a
constant ~ 0.05 Mrad™!. This change in modulus results from a net increase in the number of cross-links in the

system induced by radiation.
First we inverted eq. (5) to obtain the following expression for feor (previously defined as f/(1-f'mod)):

_ M@A-1
orr = G-y an

When the experimental values of A; and A; (from Fig. 10) are used in eq. (11) we find that fo;is a function of D only,
and nearly independent of ;. The values of f;; (averaged over A1) as a function of D is plotted in Fig. 13, with the
behavior well-described by the exponential fit (solid line):

ferr = exp(a,D — a,D?) — 1 (12)

where constants ai ~ 0.165 Mrad™! and a ~ 0.003 Mrad™ respectively.

6.0 i i I

50+ 4

0 5 10 15
Dosage (Mrad)

Figure 13. The quantity for (see text) as a function of radiation dosage D: the points correspond to (Ai-averaged) values obtained
by inserting experimental recovered lengths (As) into eq. (11), while the solid line corresponds to an exponential fit given by eq.

(12).

Next we analyze the modulus E, defined as the small-deformation stress-strain slope about the altered equilibrium
(4s) is given by:

E-lim_, O'(Z‘\,(l—irg))—o-(ﬂx):(a_oj 2 (13)
£ oA A
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where ¢ is the uniaxial deformation strain. Egs. (1), (2), (3) and (6) yield (after some algebraic manipulation) the

following expression for £:

E= GO% (2243 ) + fors (zj—z +3] (14)

For A; = 1 there is no permanent set, i.e., 4, = 1, which when substituted in eq. (14) yields the simple relation E =
3Go(1+CoD)= 3G, as mentioned before. Assuming a constant Gp ~ 1.5 MPa in eq. (14) one obtains an increasing E
as a function of increasing A, as shown in Fig. 14, a behavior in clear disagreement with the experimental pattern of

Fig. 12.
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Figure 14. Young’s modulus (E) as predicted from eq. (7) with a constant G, (= 1.5 MPa) independent of stress-strain cycling.

The behavior in Fig. 14 arises under the assumption that Gy is constant and independent of the cycle number, A1,
and D. This is equivalent to the assumption that the rubber network does not have any hysteresis effects, i.e., no
Mullins effect. This assumption is clearly not correct for the experimental TR-55 samples as evidenced from the
softening in Fig. 11 with strain cycling. In fact Figs. 11 and 12 indicate two different stages at which the material
softening takes place: (1) during the several-week-long annealing period following the As measurements. This
softening happens only for As > 1, with the amount of softening increasing with increasing As (and therefore
increasing A1); (2) during the first stress-strain cycle following the annealing period. The amount of this softening
decreases with increasing A;. The first type of softening leads to the behavior of £ as seen in Fig. 12 (left), while the
second type of softening causes the change from the behavior in Fig. 12 (left) to that in Fig. 12 (right). We elaborate

on this point in the discussion below.
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Although the Mullins effect has been known for several decades, the underlying microscopic driving force is
still unclear [16]. Suggestions range from the cleavage of chemical bonds between rubber and filler, slipping and
disentanglement of chains, rupture of filler clusters, and so on. The true mechanism notwithstanding, it is clear that
any of these processes will lead to a decrease in the overall cross-link density. In addition, the propensity for each of
these processes is expected to: (1) increase with the stress level the material is subjected to; and (2) decrease with
increasing radiation dosage. The latter creates additional cross-links that reduce the average stress levels per cross-
link for a given strain level. As a simple model illustrating these two effects on the cycle 1 response we have

explored the behavior of £ when the pristine shear modulus Gy in eq. (14) is rescaled by a multiplicative factor, i.c.,
Go 2 Go[l-a(4s-1)], (15)

where « is a decreasing function of the radiation dosage D. Fig. 15 plots the resulting values of £ for the parameter
values of & =10.95, 0.48, and 0.19 for D =5, 10, and 17 Mrad respectively. This behavior is quantitatively consistent
with Fig. 12(left).
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Figure 15. Young’s modulus (E) in cycle 1 as predicted from eq. (14) by rescaling the pristine shear modulus Go (= 1.5 MPa)
with a multiplicative factor [1-a(As-1)]. This factor represents a simple model that illustrates the effect of As and radiation dosage
D on the cycle 1 response. See text.

Finally, the behavior of £ in cycle 5 (Fig. 12(right)) can be interpreted as follows. With repeated cycling further
loss in cross-links continues to occur until all the loose links (weak chemical bonds to fillers or physical
entanglements) are removed from the system. For larger values of A1 (and resulting larger A) a larger fraction of
these links are removed during the several-week-long annealing period (i.e. before the first stress-strain cycle),

which is consistent with a higher degree of softening and a decreasing E with increasing A1 in cycle 1. As a
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consequence, any additional softening in subsequent cycles is higher for smaller values of Ai. This effect, in
conjunction with a decreasing |0E/0Ai| with increasing D in cycle 1 (see Fig. 12(left) or Fig. 15) leads to less
negative values of 0E/0A; in cycle 5 (as compared to cycle 1), which can even become positive for large D (as seen

in Fig. 12(right) for D = 17 Mrad).

Eq. (15) was the first model [14] we built that incorporates Mullins softening. Recently, we have constructed a
more complex model to describe the behavior of SE1700 rubber (used as ink to create additively manufactured
foam) under similar experiments as discussed above for TR-55. The model consists of modifying eq. (14) as follows

(written in terms of stress o):

=Gty (2= 3) + o (2 =55)] 0o

where A" and A" are the uniaxial stretch ratios in the original and newly formed networks, respectively, and f;, is an

additional function that incorporates Mullins softening. In the current model, the uniaxial stretch ratios are given by:

r_ A Coan A
T 1+, (11 Ay (17)

and the f, factor is of the form:
fu=1+CA;—1) (18)

The current parameters of the above model have been developed for the SE1700 rubber. However, we believe that

with simple re-parameterization this model can be adapted to TR-55 as well.
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APPENDIX I: A phenomenological constitutive model to understand Mullins effect

Background: Modulus softening and permanent set in filled polymeric materials due to cyclic loading and
unloading, commonly known as the Mullins effect, can have a significant impact on their use as support cushions. A
quantitative analysis of such behavior is essential to ensure the effectiveness of such materials in long-term
deployment. In FY12-13 we combined existing ideas of filler-induced modulus enhancement, strain amplification,
and irreversible deformation within a simple non-Gaussian constitutive model to quantitatively interpret recent
measurements on a relevant PDMS-based elastomeric cushion (TR-55) relevant to stockpile. We find that the
experimental stress-strain data is consistent with the picture that during stretching (loading) two effects take place
simultaneously: (1) the physical constraints (entanglements) initially present in the polymer network get dis-
entangled, thus leading to a gradual decrease in the effective cross-link density, and (2) the effective filler volume
fraction gradually decreases with increasing strain due to the irreversible pulling out of an initially occluded volume

of the soft polymer domain.

The Mullins effect [15, 16] typically has the following characteristic signatures: (1) significant softening results
upon the first unloading cycle; (2) the amount of softening increases with increase in the maximum strain in the first
cycle; (3) subsequent loading closely follows the first unloading curve and the unloading shows much less softening
as long as the previous maximum strain is not exceeded; (4) if a subsequent loading exceeds the previous maximum,
it acts as if to follow a continuation of the previous maximum loading curve; (5) there can be an induced anisotropy
even in rubber that is isotropic in its virgin state; and (6) there is often a small but noticeable permanent set at the
end of the first unloading curve. The permanent set typically increases upon unloading from an increased maximum
strain, although in some cases it can recover after a long resting time. Although the Mullins effect has been observed

in both filled and unfilled rubber, it is particularly pronounced in systems with significant filler content.

Analysis by many groups over the past several decades has led to the suggestion of several different physical
mechanisms behind the Mullins effect. Many authors have taken the viewpoint that stiff filler particles lead to an
enhanced elastic modulus through rubber-filler attachments that provide additional restrictions on the cross-linked
rubber network. Softening results from the breakdown, slippage, or loosening of some of these attachments, a
phenomenon commonly referred to as stress softening. Modeling such phenomenon has typically involved the
representation of filled rubber with multiple networks, and strain-induced damage or alteration of one of the
networks, while more detailed refinements, e.g., that involving the cluster topology of fillers is progressively being
introduced. An alternative way to analyze Mullins effect has been to treat filled rubber as a system comprised of soft
and hard domains that evolve under stretch — softening is caused by the quasi-irreversible increase in the volume
fraction of the soft domain. Models based on the second line of thought postulate a localized non-affine deformation
of the molecular networks due to short chains reaching their limits of extensibility, and effective strain amplification

in the soft domain as compared to the actually applied strain because of almost zero strain in the hard domain.

The first viewpoint of describing Mullins effect typically necessitates complex materials-based models that
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continue to get refined in the current literature. On the other hand, the second viewpoint (i.e. strain amplification) is
more phenomenological, and has been shown to be easily implementable in finite-elements simulation codes.
However, there is some ambiguity in how strain should be amplified. For instance, Mullins and Tobin [17]
suggested amplifying the uniaxial strain, Govindjee and Simo [18] suggested amplifying the total deformation

gradient, while Boyce and co-workers [19, 20] have suggested amplifying the first invariant of stretch /.

Measurements: The mechanical measurements were performed on rectangular samples (~3 mm wide by ~1 mm
thick) of TR-55 that were stretched to a maximum engineering strain of gmax ~ 2.15 at a rate of 20 mm/min under
ambient conditions. TR-55 consists of silicone gum stock (primarily PDMS) filled with 30 wt% of fumed silica,
which corresponds to a filler volume fraction of ~ 16%. The initial grip separation was 20 mm. After 5 s at &nax the
external stretching force was removed and the samples relaxed to a state of equilibrium (i.e., zero stress). After 5 s in
the zero stress condition, the samples were stretched again to the previously attained maximum stretch. The cycle
was repeated four times. During the fifth loading cycle, the sample was stretched beyond the previous maximum
stretch. Fig. Al plots the stress-strain response. It exhibits many of the characteristic Mullins signatures mentioned
above. Two aspects that are most noteworthy are the significant softening and a large permanent set incurred upon
the very first unloading, with a recovered engineering strain As — 1 ~ 18%. If such strain levels are not accounted for
prior to the deployment of the elastomeric component in mechanical support devices, it can have undesired effects in

the long-term performance.
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Figure Al. Stress-strain curve for a typical TR-55 sample that underwent five loading and four unloading cycles with the first
four loading cycles limited to an engineering strain of 2.15 and the fifth loading cycle exceeding this strain. In addition to the
typical Mullins softening, one observes a large permanent set with a recovered engineering strain & ~ 18%.
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Phenomenological Model:
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Figure A2. A simplified representation of Fig. A1 for modeling purpose.

Given that the difference between the first unloading curve and subsequent loading and unloading curves are
small until the previous maximum strain is exceeded, a common simplification is to ignore such difference, as
illustrated in Fig. A2. Thus, a quantitative analysis of the Mullins effect becomes an exercise in describing the first
loading and the first unloading curves for varying maximum strain levels. In order to develop an appropriate stress-
strain relation, i.e., a materials model, we start from the simple Neohookean model often employed in the
description of the mechanical response of unfilled, cross-linked rubber. Under a uniaxial strain, the expression for

stress in this model is given by:

1

o(A) =G, (2 -3) (A1)

where o is the true stress, A4 is the stretch ratio (= 1 + €, € being the engineering strain), and Gythe shear modulus.
For an unfilled network system Gy can be expressed as a function of the cross-link density, with some dependence
on the network topology, junction coordination, etc. The above model is based on the assumption that the cross-links
behave essentially as Gaussian chains, which can be justified under not-too-large strains. Under large strains finite
extensibility needs to be taken into account via non-Gaussian statistics, under which eq. (Al) gets modified to the

Wang-Guth model [21]:

o@) = 22 2L (2/VR) - =L (1/VAN)} (A2)

where N is a parameter describing the finite chain length of the small-chain cross-links (presumably related to

21



polymer-filler attachments), and £~! is the inverse of the Langevin function given by L(x) = coth(x)—1/x . In

the small strain limit, where A/ JN<<1 (assuming N >> 1), the inverse Langevin function can be approximated as
L71(2/VN) = 31/+/N, and eq. (A2) reduces to eq. (Al). The Wang-Guth model, eq. (A2), is suitable for
describing the mechanical response of networked, elastomeric systems without fillers. For filled systems, Mullins
and later workers found it necessary to incorporate the notion of strain amplification. To represent strain
amplification we follow the original work of Mullins and Tobin and replace the stretch ratio A in eq. (A2) by an

amplified stretch ratio A given by:

A=1+X(A-1) , (A3)

where X is an amplification factor that depends on the effective volume fraction ves of the hard domain, i.e., fillers.

A commonly used form for X as a function of v is given by:

In eq. (A4) b is a parameter with a commonly used value of 18, which is obtained by comparing with the widely
adopted filler-enhancement model due to Guth and Gold that is applicable for well-dispersed nearly spherical filler
particles with not-too-high volume fraction (= 15 % or below). Replacing the stretch ratio A in eq. (A2) by A, and
accounting for the fact that the elastic response comes only from the soft part of the material, we obtain the

following materials model for filled rubber:
GoVN - 1 .-
0(A) = (1 — vep) 2 { AL (4/VN) — =L TANAN)},  (AS)

Eq. (A5) can be used to describe the Mullins effect quantitatively by assuming that during the first loading curve the
soft part of the matrix is being pulled out of the hard region thus progressively decreasing the relative volume
fraction vesr of the hard domain. The volume fraction of the soft part (1 — v,/f) should increase monotonically with
increase in the maximum strain level, and expected to reach a saturation value depending upon the relative amount

of filler particles that was originally mixed into the rubber formulation.

Finally, to account for the observed permanent set (see Fig. A1) the formula for stretch ratio, eq. (3) was modified

as follows:

A=1+X(j—s—1), (A6)

where /s is the recovered length, which in our model is assumed to increase linearly with A during the first loading
cycle until a maximum value of Asmax is reached at the maximum strain. During any subsequent unloading and
reloading As remains constant at this maximum value until the previously attained maximum strain is exceeded. The
numerical value of Asmax is obtained from the experimental recovered length at the end of the first unloading curve.

Equations (A4) - (A6) constitute the materials model employed in the simulations presented below.
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Results:

In order to compute the stress-strain behavior o(1) using the model developed in the previous section, the
parameters Gy, b, N, Uefr and As need to be determined. The motivation of this project was to obtain these parameters
(some of which could vary with the applied strain ¢if necessary) such that not only is the computed stress in
quantitative agreement with that observed experimentally for TR-55 (Fig. A1), but also the parameters conform with
previous knowledge about similar filled systems. For instance, given ~ 16% volume fraction of fillers in TR-55, the
parameter b is expected to be ~ 18, while the filler-enhancement factor at low-stress should be roughly in the range 2

- 4. From the phantom network model Gy can be assumed proportional to the cross-link density (Viin) through the
equation: GO =V i 1=2/ f.)kpT , where fe is the average network coordination, kz the Boltzmann constant, and

T the absolute temperature. However, there is always a degree of uncertainty as to the nature of the cross-link, e.g., a
chemical cross-link vs. a physical entanglement. Swelling experiments on unfilled systems of similar polymeric
material indicate that the chemical cross-link density is much too small (by a factor of ~ 4-5) to account for the
observed mechanical modulus at low strain. This leads us to believe that prior to being subjected to any strain, the
polymer chains in the TR-55 material are strongly entangled, while upon swelling or mechanical stretching a

significant fraction of these entanglements become dis-entangled, thus reducing the effective value of Go.

Fig. A3 (dashed-dotted curve) displays the results of our model calculation of true stress (o) as compared to the
experimental data from Fig. Al (up to a maximum engineering strain of €= 2.15). The various parameters, chosen
within the constraints mentioned in the previous paragraph, were: b = 18; N =30; A; = | at &= 0 increasing linearly
to As = 1.18 at the end of loading (& = 2.15); Gy starting from an original value of Go, orig = 0.35 MPa at zero strain
(point A: &= 0) decreasing linearly to 25% of this initial value at the end of loading (point B: &= 2.15). The gradual
decrease in Gy during the loading corresponds to a 4-fold decrease in the effective cross-link density due to de-
tangling of physical entanglements, as discussed in the previous paragraph. The value of v, the effective volume of
the hard domain, was treated as an adjustable parameter so that the computed stress o(A1) follows the experimental

loading curve.

Fig. A4 displays the resulting behavior of vesr as a function of strain. Although the actual volume fraction of the
fillers is only ~ 16% in TR-55, ver starts out higher, around 42%. The higher than actual value of vesr in the
beginning of loading can be interpreted as due to an occluded volume of the polymer that effectively behaves like
part of the rigid domain. With increasing strain, this occluded volume gets released, thus irreversibly increasing the
fraction of the soft domain and correspondingly decreasing the volume fraction of the hard domain. At large strains,
one expects the occluded volume to nearly go to zero, in which case ver should be around the volume fraction of the
fillers originally included in the rubber formulation, consistent with the behavior we see in Fig. A4. Another point of
consistency check for this model is to consider the filler-enhancement factor for the mechanical modulus at small
strain. By comparing the small-strain-limit of equation (Al) (or (A2)) with that of the strain-amplified materials

model (eq. (5)) one obtains the following formula for the enhancement factor (denoted by «):
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a=(1—ve)X = (1= ver) (14 3505 + bvis), (A7)

which, with the choice of & = 18, reduces to the well-known filler-enhancement factor of Guth and Gold. Using the
small-strain value verr ~ 0.42 (see Fig. A4), we obtain « ~ 3.3, which is within the range expected from experimental

values on a number of filled rubber systems.
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Figure A3. Stress-strain response in TR-55 during the first loading-unloading cycle (maximum engineering strain &max = 2.15):
Experimental vs. Simulated results. The experimental results are from Fig. Al, while the simulated results are obtained using egs.
(A4), (A5), and (A6) (see text) with no re-entanglements allowed during unloading (see Fig. AS5). The simulated curve
corresponds to fixed parameters b = 18, N = 30; on the loading curve Go decreases linearly from 0.35 MPa at point A to 0.09
MPa at point B and then assumed to remain constant during unloading (path BC') and further loading until the previous
maximum strain is exceeded.

We note that in Fig. A3 the computed unloading curve consistently falls below the experimental unloading
curve. The origin of this could be traced back to the assumption in our model that the initially occluded volume of
the soft domain that gets pulled out and the physical entanglements that get detangled during the application of
tensile strain are both irreversible, i.e., there is no recovery in either of these quantities during the unloading process.
Allowing partial recovery in either or both of these quantities will result in a simulated stress that is much closer to
the experimental value. Given that possible retraction of the occluded volume presumably occurs on a much longer
timescale than the experimental times, we have considered below the case in which the soft network domain
undergoes some physical entanglement during unloading. Fig. AS displays the behavior of the modulus Gy (as a
fraction of the starting value) during loading and unloading in situations both with and without re-entanglement. The

latter case leads to the computed stress-strain curve overlap with the experimental data.

24



45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0

5.0

0.0

V(%)

0.0 0.5 1.0 1.5 2.0
Eng. Strain

Figure A4. The effective volume of the hard domain vefr as a function of strain during the first loading curve. During subsequent
loading and unloading cycles vesr in this model is assumed to remain at its lowest value (achieved during the previous maximum
loading) until the previously attained maximum strain level is exceeded.
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Figure AS. The behavior of modulus Go (which can be assumed proportional to the density of cross-links in the soft domain,
both physical and chemical) as a function of the applied strain during the first loading and unloading cycle. For unloading two
different paths are shown: no re-entanglement allowed (dashed curve BC') that leads to curve BC' in Fig. A3; and re-
entanglement allowed (solid curve BC) that leads to a better agreement with experiment. A large fraction of the physical
entanglements lost during loading appear to get recovered by the end of unloading.

25



Summary (Appendix I):

In this Appendix we reported on the development of a phenomenological model that quantitatively reproduces the
stress-strain behavior of a specific filled rubber system (TR-55). The model [22] is based on using the Mullins-
Tobin concept of amplified strain within the Wang-Guth stress function and incorporates a few additional features
that is expected to be generally applicable to most filled rubber systems, including: (1) a permanent set (expressed as
recovered length A;) that increases linearly as a function of strain (during loading); (2) an effective cross-link density
(or modulus Go) that during loading decreases linearly as a function of strain due to de-tangling of physical
entanglements, with partially recovery during unloading; and (3) an effective filler volume that decreases with
increasing strain (due to the gradual pulling of the soft polymer domain out of an initial occluded phase) until a
saturation value of ~ 16% is reached (corresponding to the filler volume fraction in the TR-55 material). The filler-
enhancement factor at small strain is obtained as 3.3, which is within the range of what has been reported in the

literature [19] for a number of different filled rubber systems at this filler volume fraction.
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APPENDIX II: Parameter values for various models

Constitutive Stress-Strain Model for radiation aging (1D extension with free lateral surfaces)
Notation:

A =stretch ratio = 1 + €, where € = engineering strain

A > 1 - Tensile strain, A < 1 = Compressive strain

A, = constant strain at which the material is exposed to radiation
o(A) = True stress [Engineering stress = (1) /1]

D = radiation dosage in Mrad

Without Mullins Effect

Stress-strain relation (up to moderate strain, € ~50% or below):

o= IR 2) 41, (52 e fy = e 1

1+f), A
1+£pas |3
Recovered Length: Ag = {ﬁ}
D/
As—1
Permanent Set: P, s = >
/11_1

A2 A
Young’s modulus: £ = G, % [(2/15 + %S) + /o (2 ,1_% + ,1_2)]

Parameters:

Gy = 1.5 MPa

Co = 0.054 Mrad™
a; = 0.165 Mrad’

a, = 0.003 Mrad™



Including Mullins Effect

The following model was developed using measurements on SE1700 rubber. We expect this model to be
also applicable to TR-55 and other legacy elastomers. As one can see, there are two extra parameters in
this model, C; and C,. Below we provide only preliminary estimates of these parameters for TR-55. To

obtain more accurate estimates, more elaborate measurements need to be performed (as was done for

SE1700).

Stress-strain relation (up to moderate strain, € ~50% or below):

- aSE (-3 e n (-3

!

—pwD-aD? _q . y—__ A g _ A —
WherefD =e? 2 1 5 A - 1+C1(ll—1) s 11 ) fM_1+C2(A'1 1)
R dLength: A, ={1+C,(1 —1)}{M}U3
ecovered Length: Ay = 1\ 14/ 22

As—1
Permanent Set: Ps = Ai—l

da

Young’s modulus: E = Ag a7l1=2
s

Parameters:

Gy = 1.5 MPa

Co = 0.054 Mrad™
a; = 0.165 Mrad’
a, = 0.003 Mrad™
C; = 0 (preliminary)

C, = 0.5 (preliminary)
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Figure A6. Model prediction for (engineering) stress response for various gamma radiation doses and aging strains
(i.e., 1;) (narrow black lines). Solid line: 0% strain; large dashes: 14% strain; small dashes: 32% strain. The
experimental curves at 0% aging strain are shown for comparison (thick gray lines).

Modeling the radiation aging of Molecular Weight Distribution (MWD) between
cross-links

(This analysis was performed at 1, = 1)

Notation:

Vo = Volume density of chains between cross-links prior to any radiation dosage
fx1vo = Density of (new) radiation-induced chains between cross-links

fimoaVo = Density of (old) chains between cross-links that got modified by radiation, either due to new

cross-link formation or due to chain scissioning

Then, it can be proven that (for 4, =1): fp = = f
mod

Model:

—_ alD_azD — (1+COD)fD . D COD .
fD e fxl 1+fp B fmod 1+fp

where Cy = 0.054 Mrad”', a; = 0.165 Mrad”, a, = 0.003 Mrad?.
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Relationship between f,,,,4 and MWD:

Let n(p, D) be the number of chain segment of length p monomers between cross-links when exposed to

radiation dosage D. Then, for not-too-large D:

finoa = Xp{1 — e TmoaPPIn(p,0) /3, n(p,0),

where 1,4 = rate of modification per monomer per unit radiation dosage.

At D K 1 we get: frnoa = TmoaDPav(0), Where pg,, (0) = X, pn(p, 0)/ X, n(p, 0), from which we get:

Upon expanding the previous expression of fi,,4 at small D we get: Ty0aPar(0) = @; — 2C, = 0.057

Mrad.

The distribution n(p, D) has been obtained from MQ-MMR measurements, as follows.

0.025 . . —

0.020 |25 Mrad =, | !

_ o |
041 o r//‘:-/‘
’5\ 0.015 + 0.0 :_“/ . _ L
0 5 10 15 20 25
& | 10 Mrad P (Mrad)
g 00107 »  5Mrad -
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h
I
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Figure A7. MWD (pn(p,D)) from MQ-NMR measurements for various radiation dosages. Inset: Corresponding chain density
increment: Afy = pav(0)/palD) — 1 as a function of D; solid curve: y = CoD.
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