

Finding Non-Human Nodes in Social Networks

Jon Berry (Sandia National Laboratories)

Aaron Kearns (U. New Mexico)

Cynthia A. Phillips (Sandia National Laboratories)

Jared Saia (U. New Mexico)

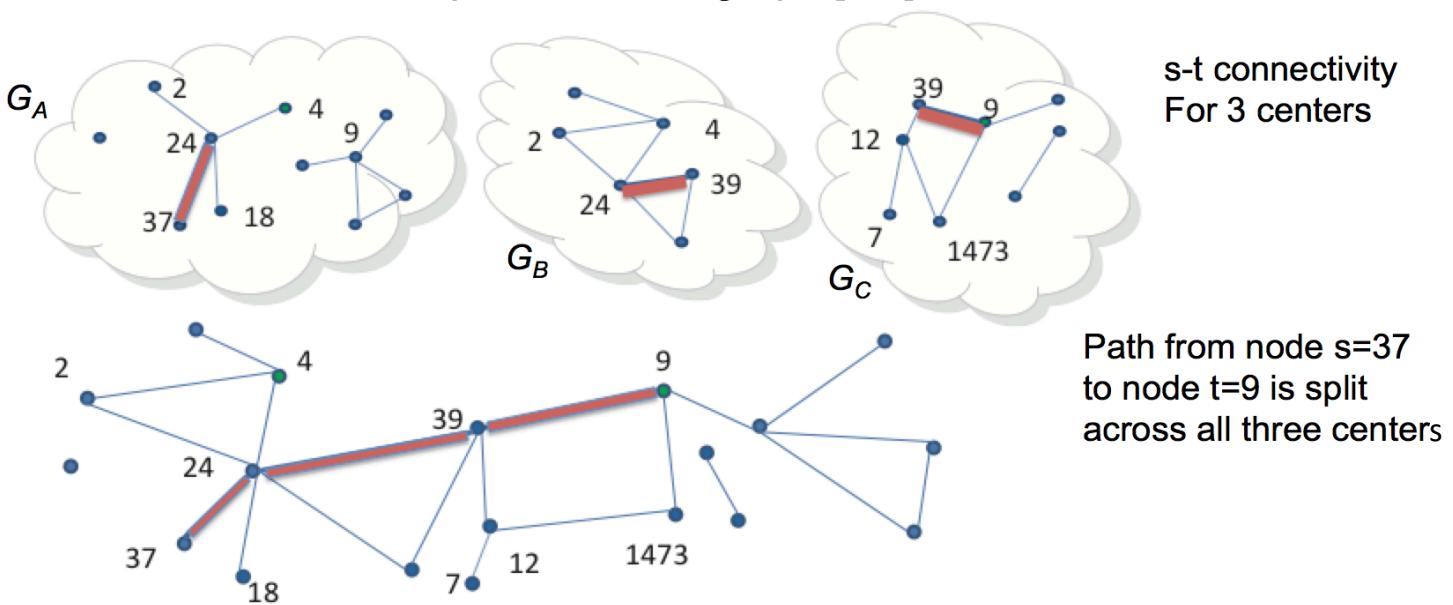
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

A New Distributed Computing Model

Alice and Bob (or more) independently create social graphs G_A and G_B .

- Alice and Bob each know nothing of the other's graph.
- Shared namespace. Overlap at nodes.

Goal: Cooperate to compute algorithms over G_A union G_B with limited sharing: $O(\log^k n)$ total communication for size n graphs, constant k

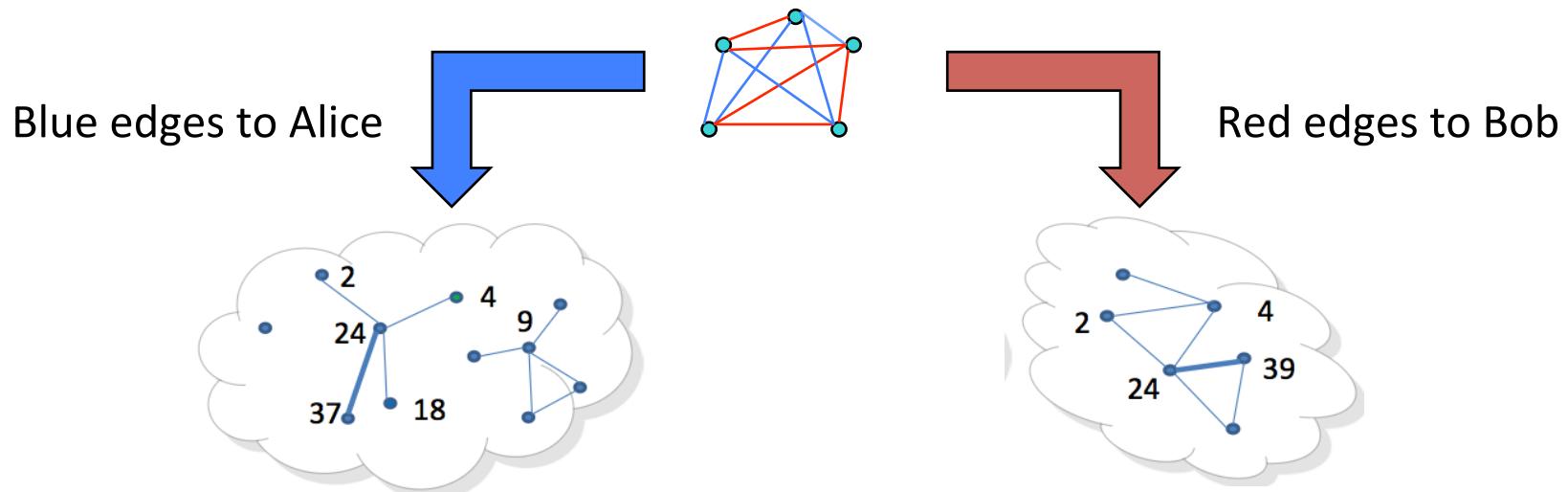


Previous Talk

- Algorithms for s-t connectivity in both models
 - Low communication, $O(\log^2 n)$ bits. Requires social network structure (giant component)
 - Low trust.
 - Alice gets **no information beyond answer in honest-but-curious model.**
 - Doesn't even reveal node names.
- Paper appeared in IPDPS 2015: “Cooperative computing for autonomous data centers”

The Planted Clique Problem

- When can social network structure help in solving a problem?
- Find a clique that has been artificially added to a graph
 - $O(\log n)$ nodes chosen randomly and builds a clique
 - Adversary assigns clique edges to Alice or Bob
- Can we find a clique that's a little larger than “native” clique size?
- For Erdos-Renyi, native is $\log n$, can find $\sqrt{n/e}$ (Deshpande and Montanari, Alon, Krivelevich, Sudakov)



Exploiting Social Network Structure

- Two key assumptions (n -node graph)
 1. Maximum degree is $O(n^{1-\epsilon})$
 2. Clustering coefficient for degree- d nodes is $O\left(\frac{1}{d^2}\right)$

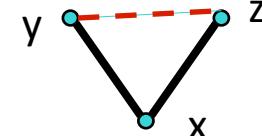


Please (for now) hold off on protests about what one sees in practice

Clustering Coefficient Justification

Assumption: Clustering coefficient for degree- d nodes is $O\left(\frac{1}{d^2}\right)$

- Strong triadic closure (Easley, Kleinberg): two strong edges in a wedge implies (at least weak) closure.
 - Reasons: opportunity, trust, social stress
- **Converse of strong triadic closure:** not (both edges strong) implies coincidental closures
 - experimental evidence: Kossinets, Watts 2006



Clustering Coefficient Justification

Bounded number of strong human interactions even with social media (Dunbar 2012)

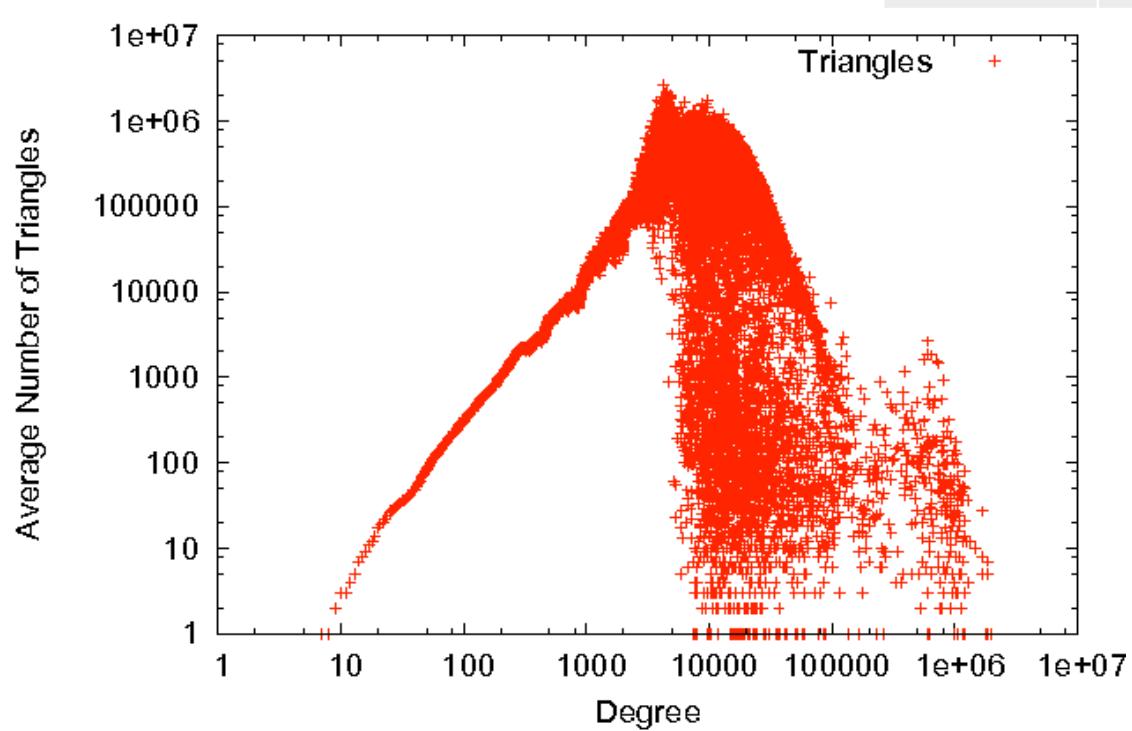
- so bounded number of strong wedges.
- As degree increases, more wedges involve weak pairs
- Reasons for triadic closure all reduced as strength decreases
- Assumption implied on average whp by Kolda et al (SISC), where ξ fit from global CC: $c_{\text{avg}}(d) = c_{\text{max}} \exp(-(d - 1) \cdot \xi)$

These two assumptions lead to a polynomial-time, polylog-communication algorithm for finding an $O(\log n)$ -size planted clique.

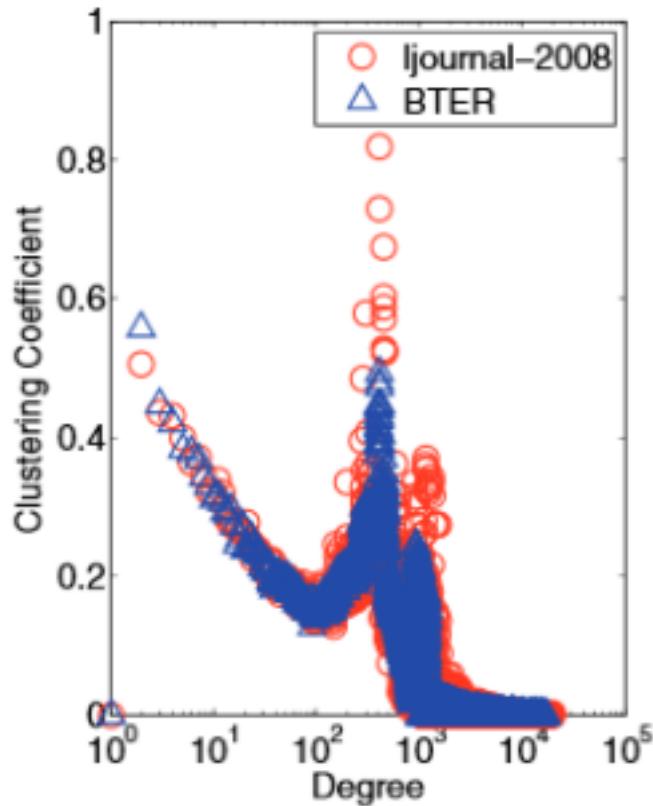
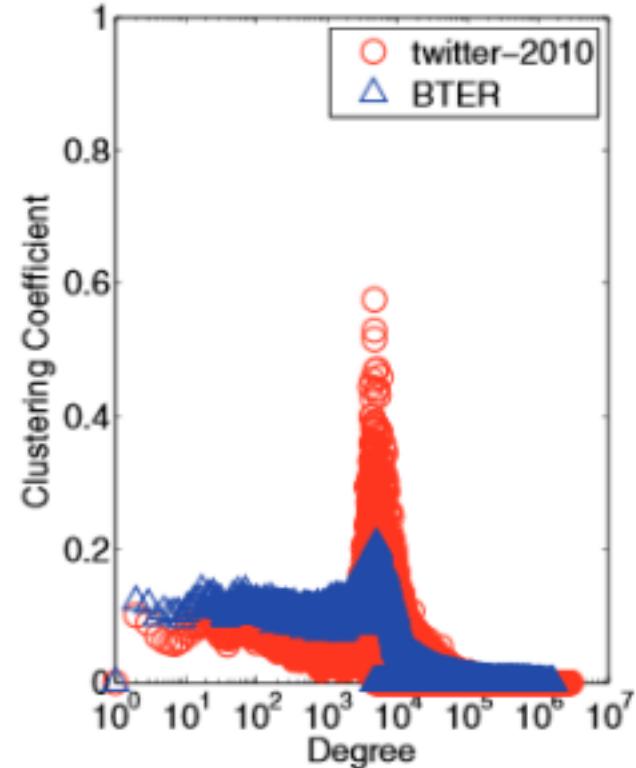
Real Social Networks

- Problem: Social networks don't obey our clustering coefficient assumption

Name	# nodes	#edges
Youtube	1M	3M
Orkut	3M	117M
LiveJournal	4M	35M
Twitter	42M	1.5B



Clustering Coefficient “Rhino Horn”



Human vs Automated

- Networks like Twitter contain a **vast amount of non-human behavior**
 - You can buy 500 followers for \$5 US
- For our intended applications, the network owners (law-enforcement agencies) will have human-only networks
 - Networks are not public where entities can sign up
 - No cleaning problem
- We have no real data from law enforcement

Human vs Automated

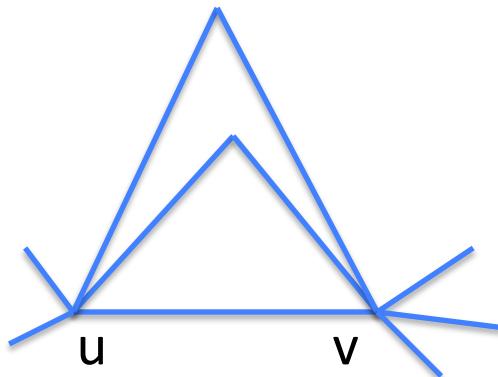
Goal: Clean (enough) non-human behavior to test our algorithms

- An idea: Real human relationships require attention
 - Attention can be divided
 - Total attention, time of day, etc, is limited

Edge strength

- A notion somewhat like the one we used for wCNM

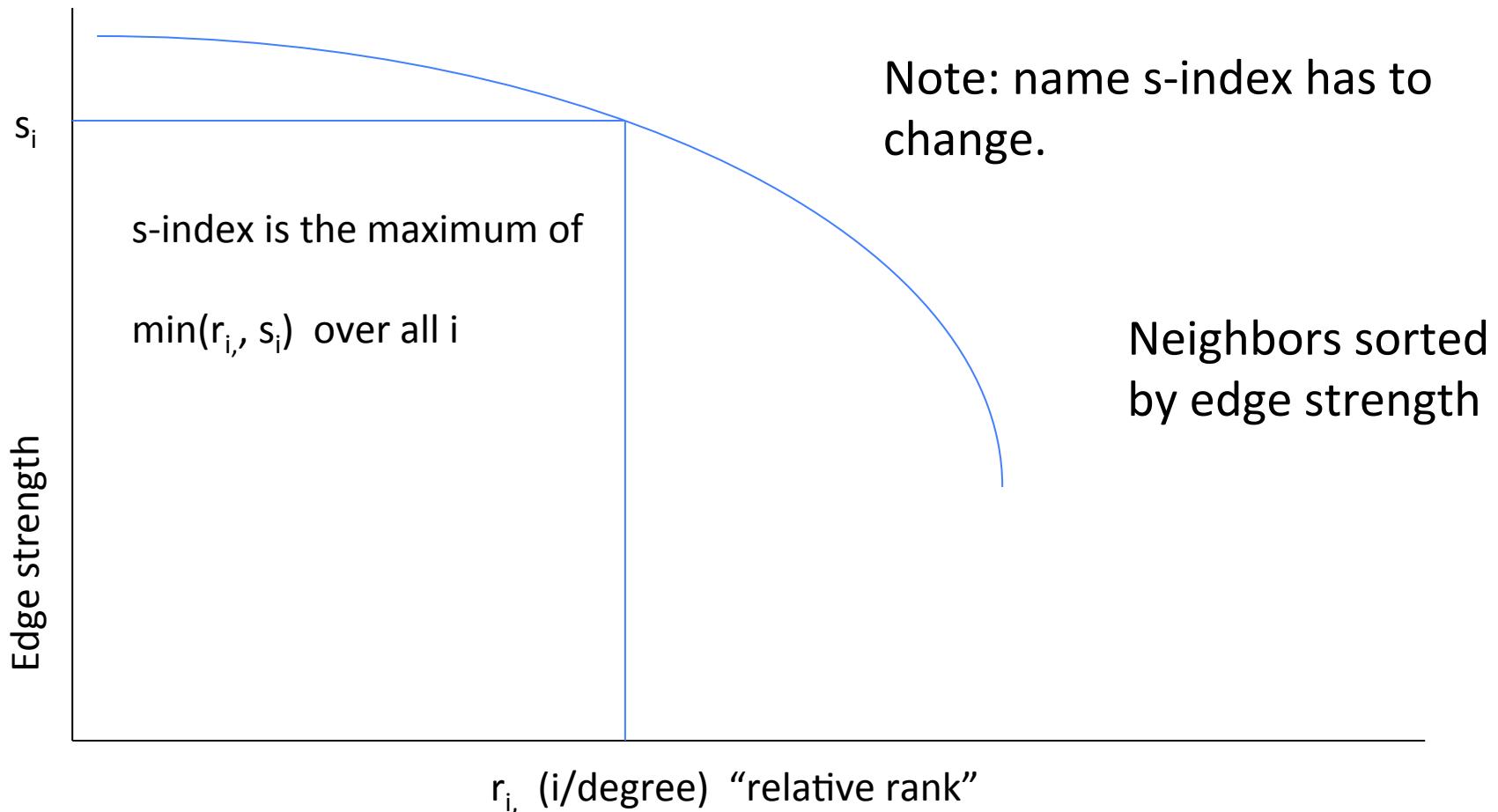
$$s(u, v) = \frac{2 * \# \text{ triangles on } (u, v)}{d_u + d_v - 2}$$



$$s(u, v) = \frac{2 * 2}{5 + 6 - 2} = \frac{4}{9}$$

- Idea: Total strength has a constant bound
 - Edge strength a continuum, not just strong/weak

s-index



s-index

s

Suppose s-index = s;

Dunbar-like constant = D,
S = Prefix sum of strengths $\leq s$

Then:

$$D \geq S \geq s^2 * \text{degree}$$

$$s \leq \sqrt{\frac{D}{d}}$$

s

$s = s\text{-index}$

$D = \text{Dunbar-like constant}$

$d = \text{degree}$

s-index vs degree plots

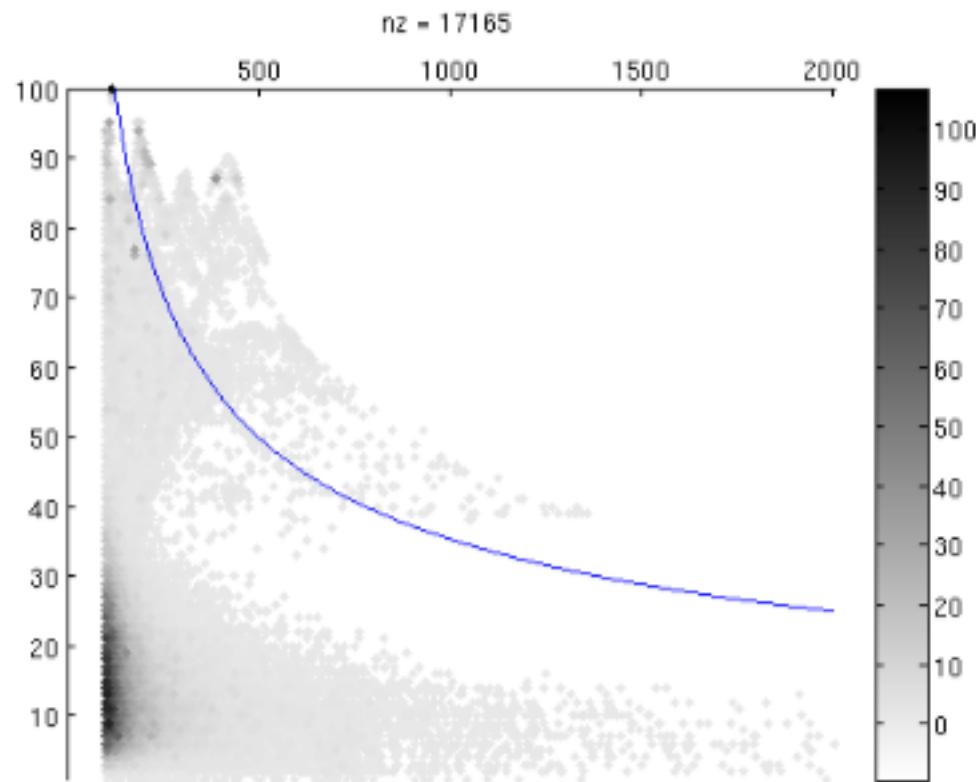


Figure 1: LiveJournal (original: no removal of non-reciprocal edges)

s-index vs degree plots

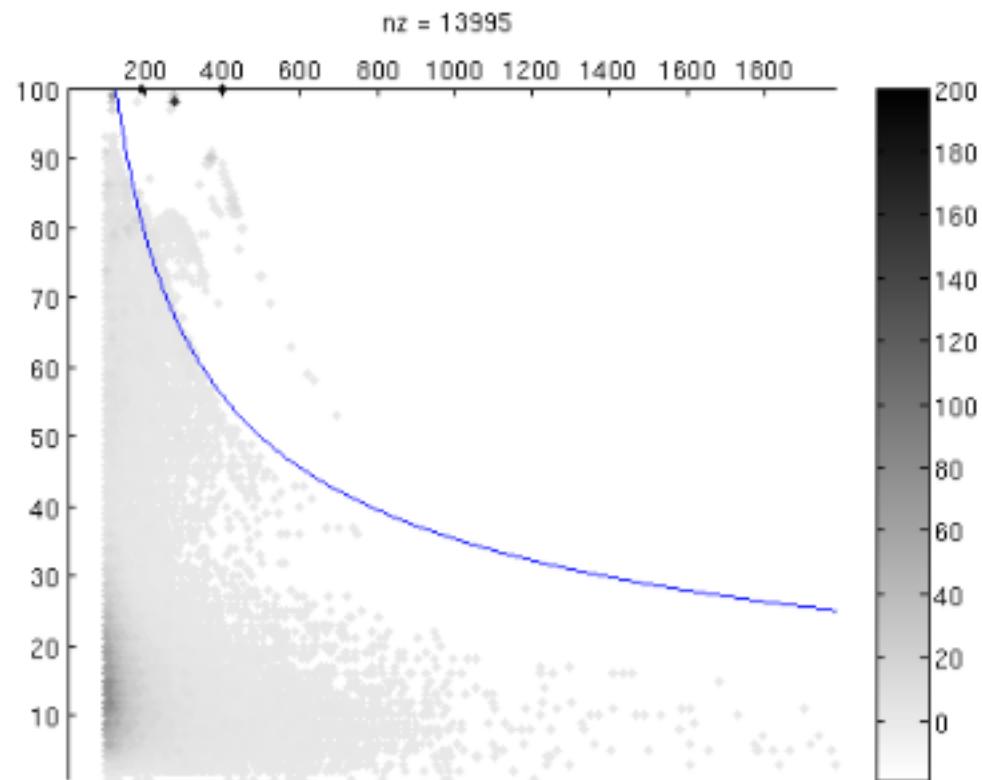


Figure 2: LiveJournal, non-reciprocating edges removed

s-index vs degree plots

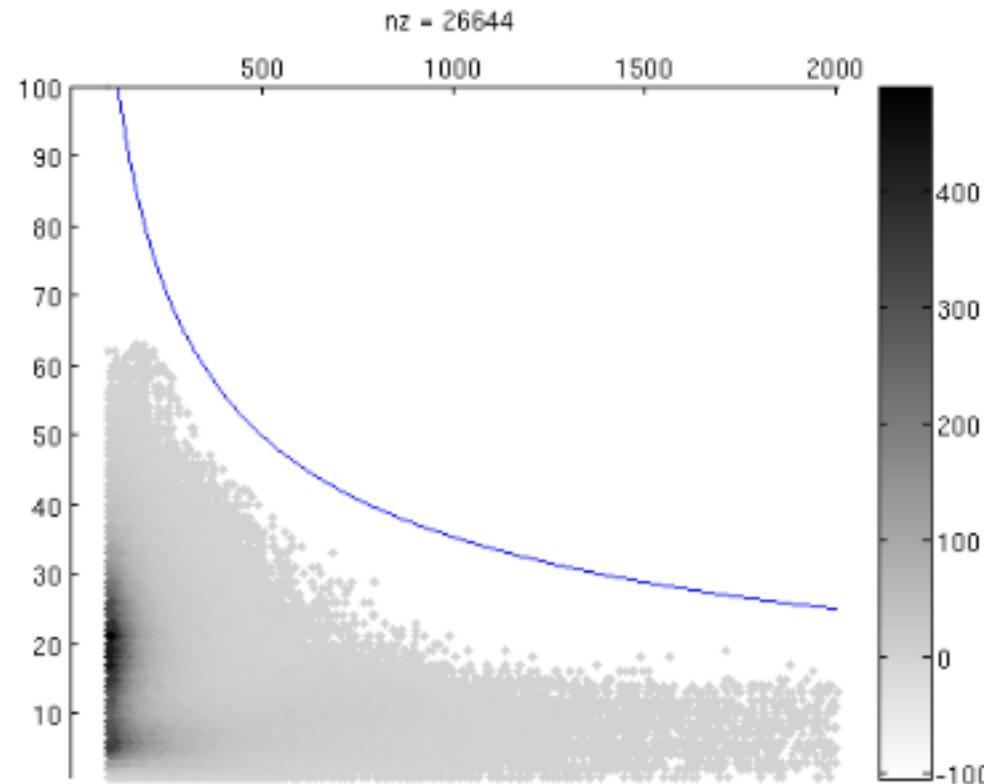


Figure 3: Orkut (original: no removal of non-reciprocating edges)

s-index vs degree plots

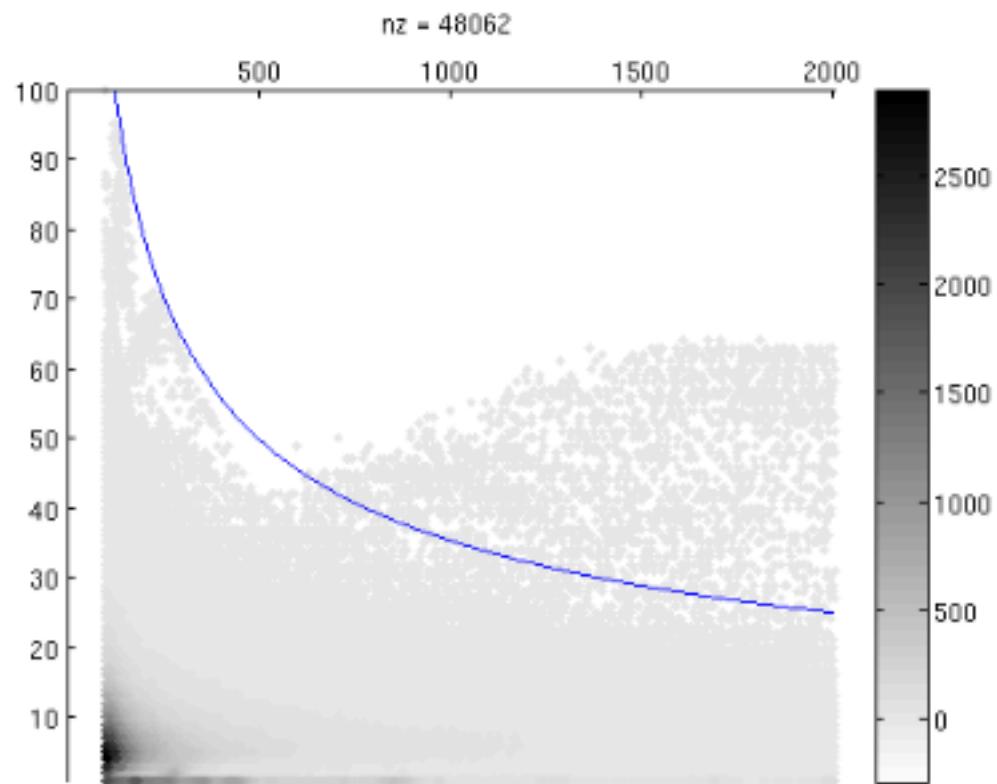


Figure 4: Twitter-2010 (original: no removal of non-reciprocal edges)

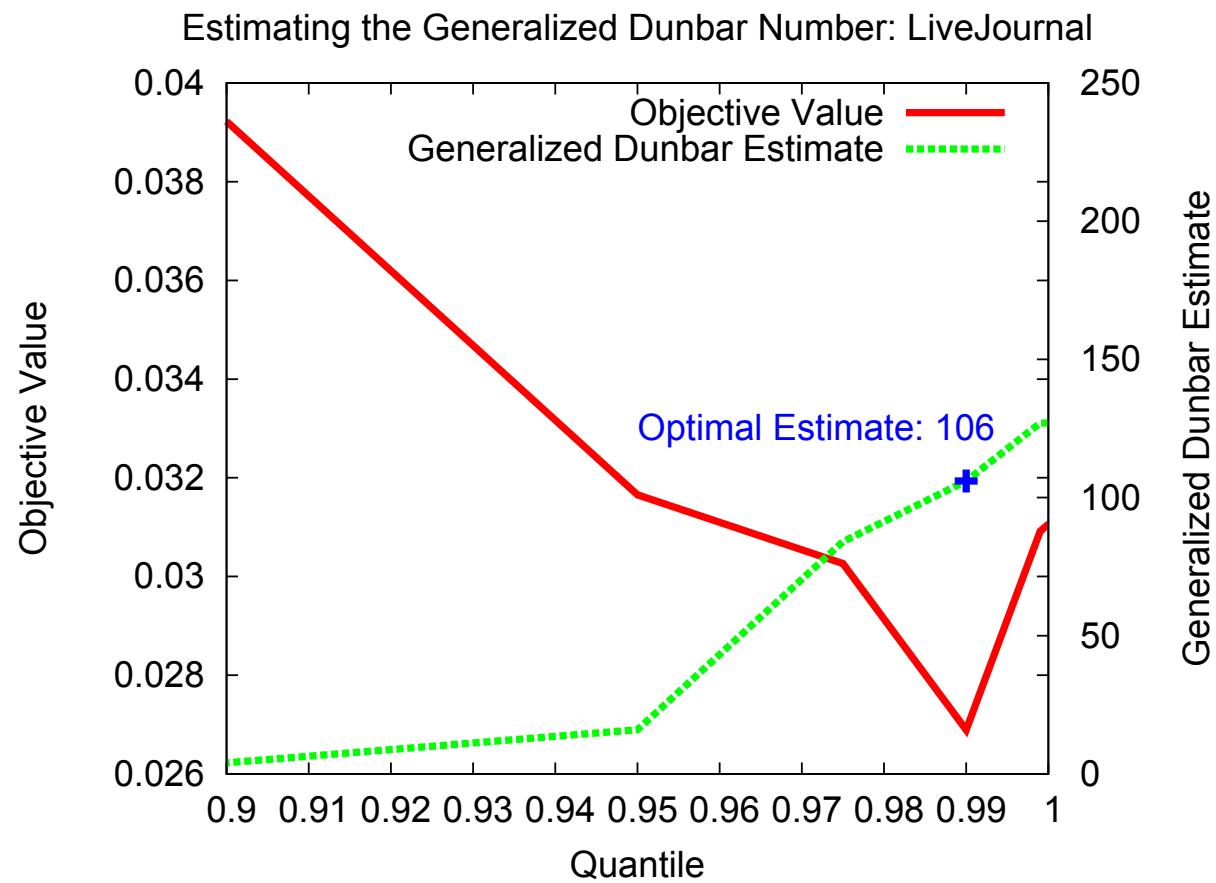
Finding D

- The previous plots used an “eyeballed” value of D
- We would like to calculate D in some statistically reasonable way
- Suggestion from Alyson Wilson:

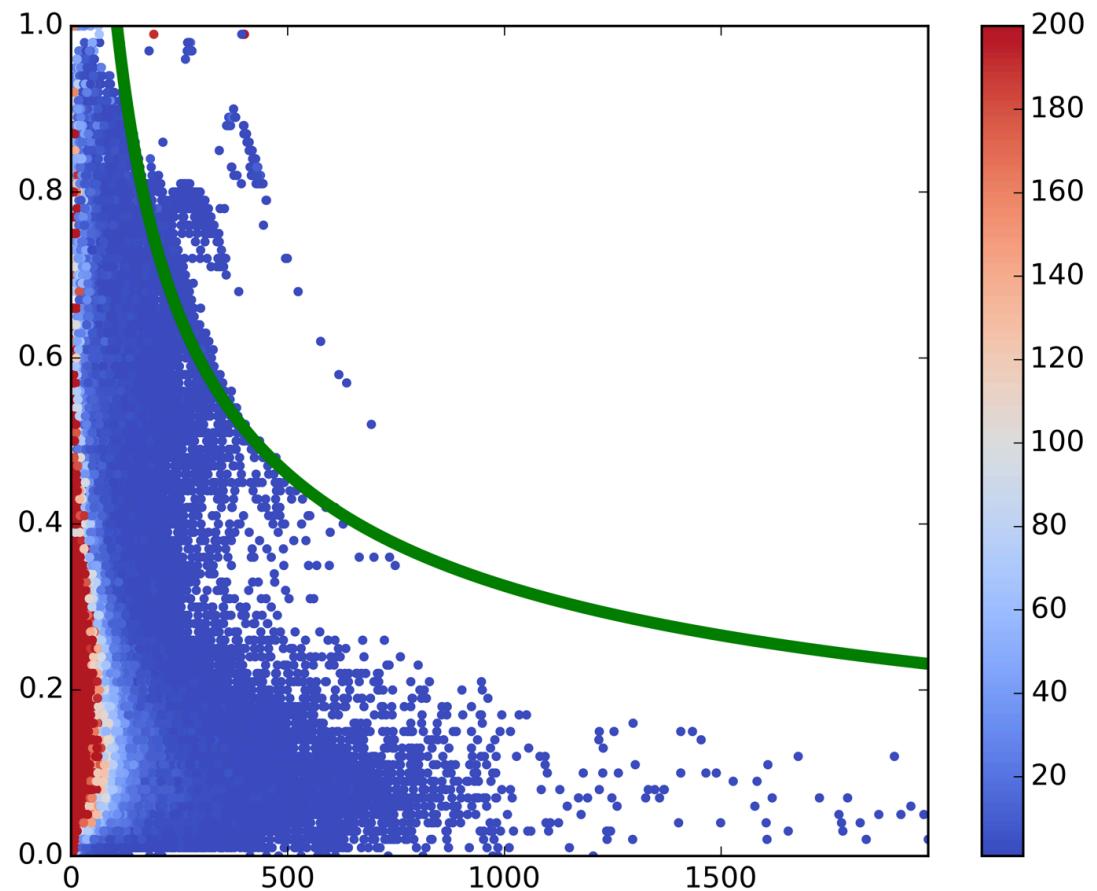
$$\sum_d \left[\left(\sqrt{\frac{D}{d}} - y(q) \right)^2 * \text{prop}(d) \right]$$

- Pick a quantile q (99% or 95%, etc)
- $y(q)$ is the value at that quantile
- $\text{prop}(d)$ is the proportion of nodes with degree d
- Skewed degree distribution requires exponential binning

Live Journal

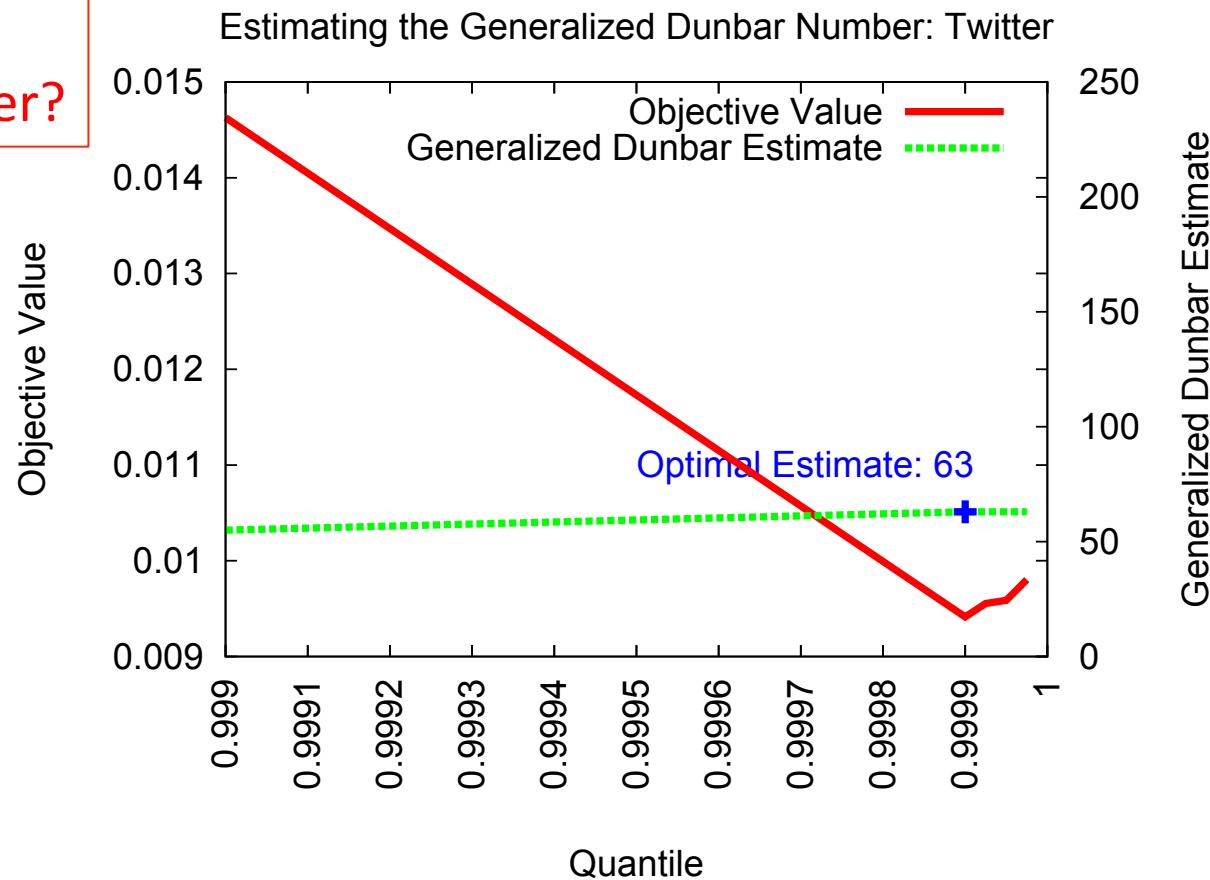


Live Journal

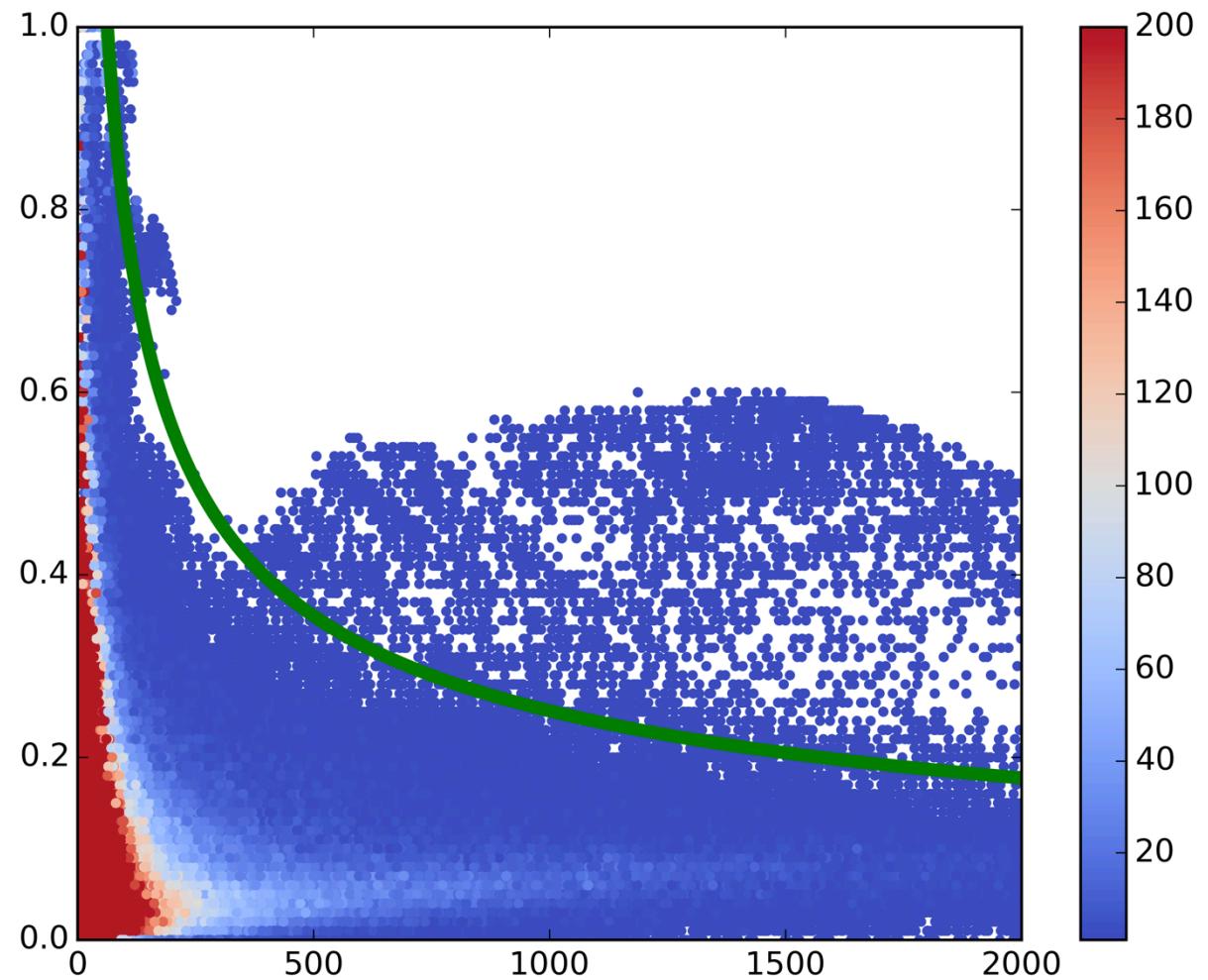


Twitter

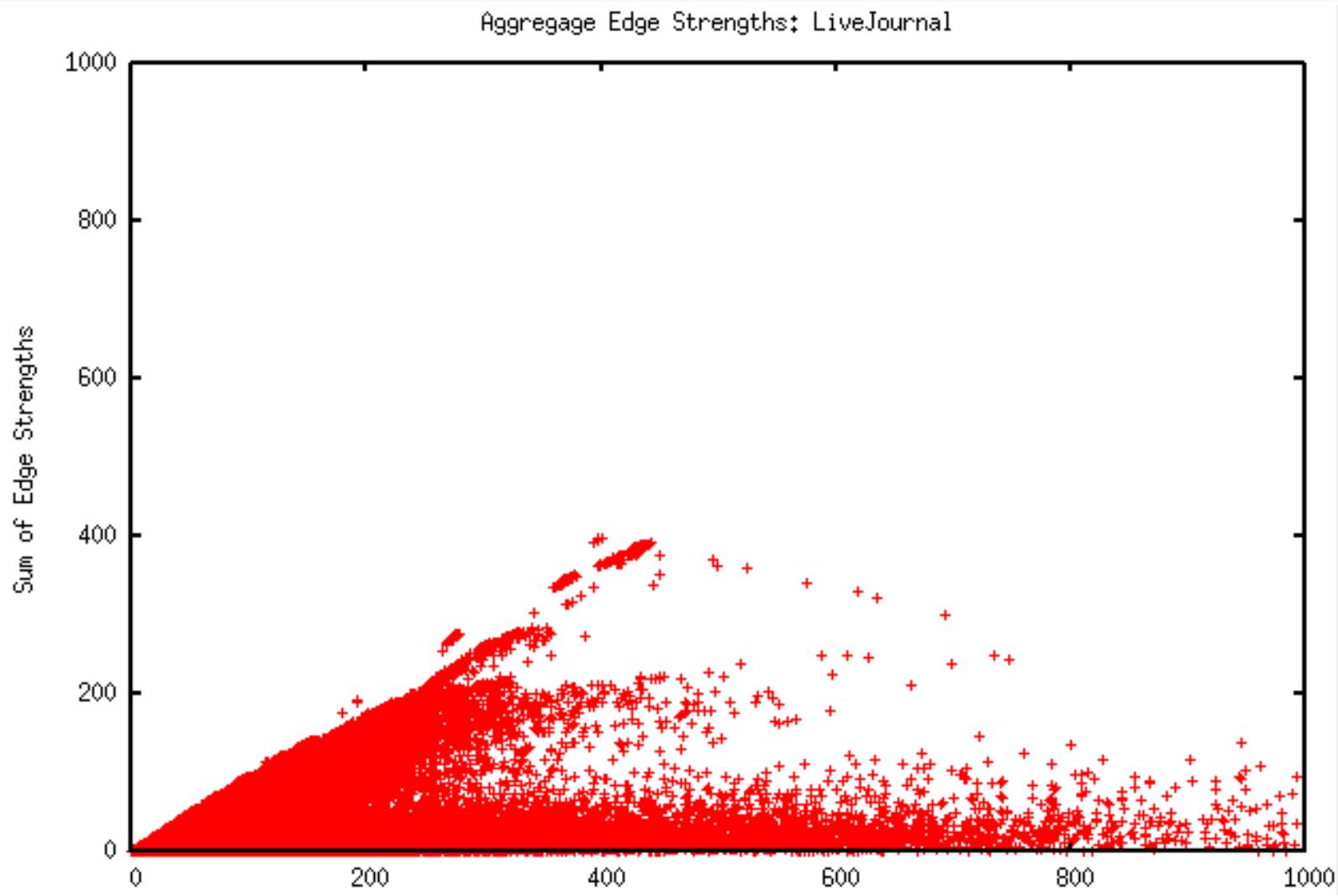
Why
Is D= 60
For Twitter?



Twitter

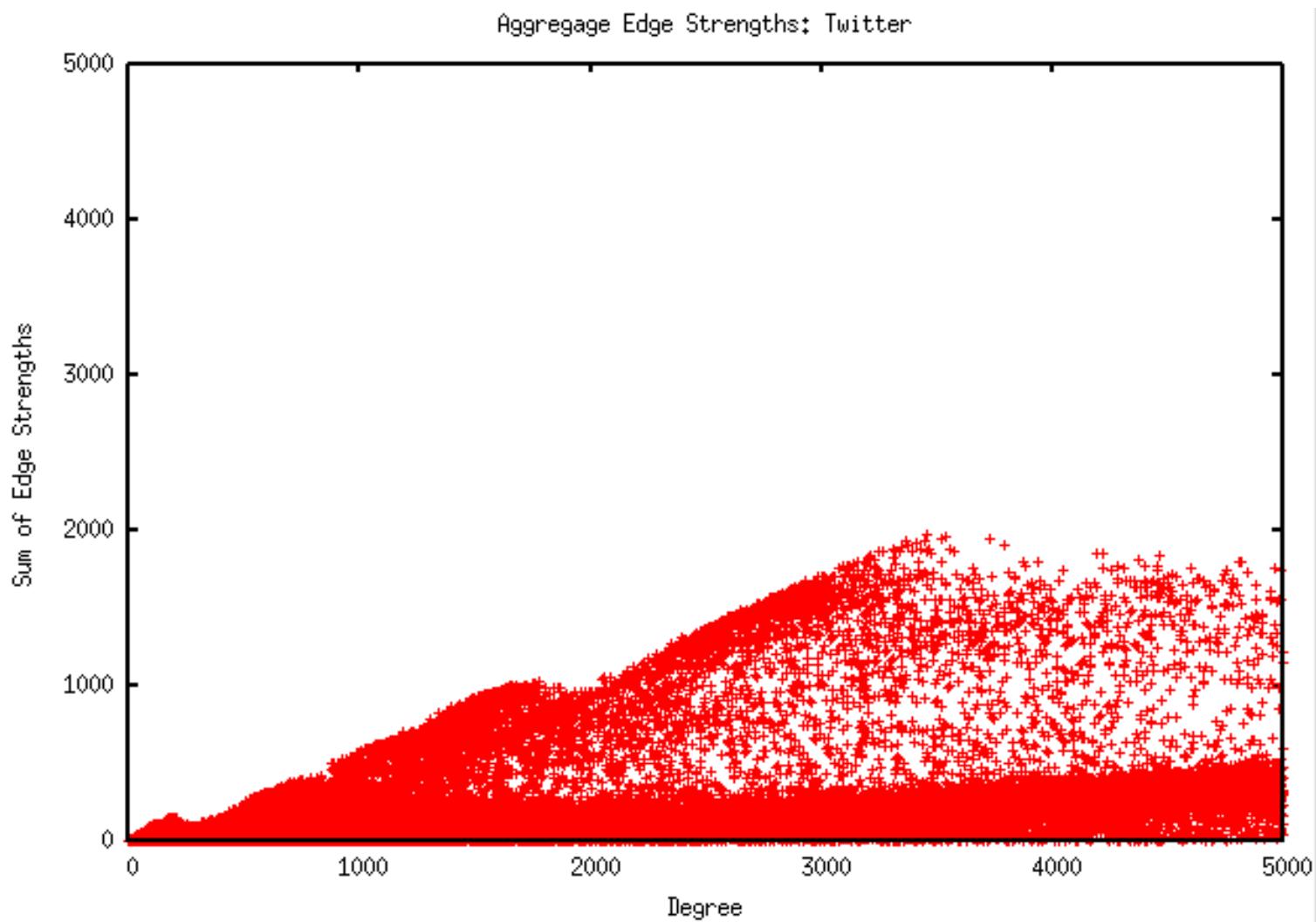


Straight Strength - LiveJournal





Straight Strength - Twitter



Summary

- An example where social network structure enables more efficient algorithms in theory and practice.
- Positive results in a model that captures constraints on cooperating autonomous data centers.
- A possible tool for cleaning non-human behavior from some social networks.

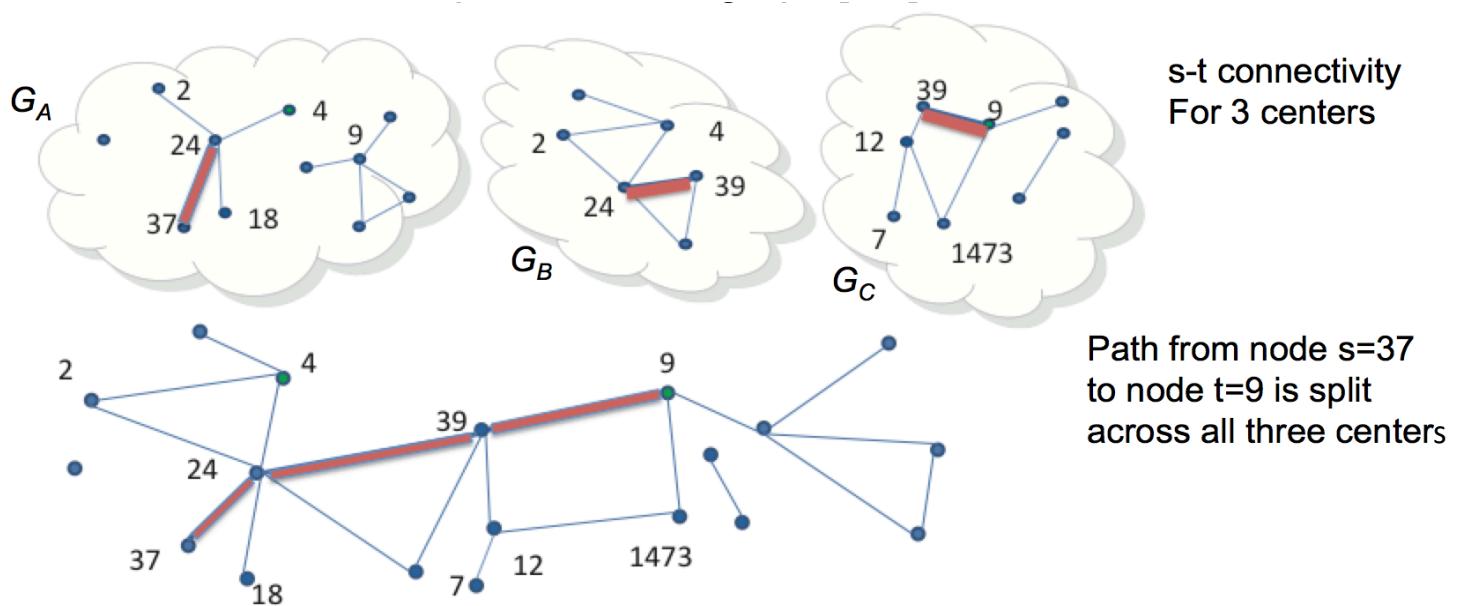
Backup Slides

Another Limited Sharing Model

Alice and Bob (or more) independently create social graphs G_A and G_B .

- Alice and Bob each know nothing of the other's graph.
- Shared namespace. Overlap at nodes.

Goal: Cooperate to compute algorithms over G_A union G_B (union G_C ...).
Alice gets no information beyond answer in honest-but-curious model.



Maximum Triangle Density Subgraph (MTDS)

- Algorithmic tool
- Find subgraph that maximizes $\frac{\# \text{ triangles in subgraph}}{\# \text{ vertices in subgraph}}$

Triangle density = 7/5

- Solve in polynomial time via linear programming
 - Adjustment to Charikar's LP for maximum edge-density subgraph
- Greedy 3-approximation (from Charikar's 2-approx for edge density)
- **Theorem:** Alice's (WLOG) MTDS contains only nodes involved in the planted clique S
- **Theorem:** Whp any nodes not in S have $O(1)$ edges into S .

Algorithm

1. Alice finds max triangle-density subgraph H and nodes (W_A) adjacent to at least half of H . Sends to H and W_A to Bob.
2. Bob finds nodes (W_B) adjacent to at least half of H and sends all induced edges (between $V(H)$, W_A and/or W_B)
3. Alice finds clique (polynomial-time since $O(\log n)$)

