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A New Distributed Computing Model 

Alice and Bob (or more) independently create social graphs GA and GB.  
•  Alice and Bob each know nothing of the other’s graph. 
•  Shared namespace. Overlap at nodes. 
Goal: Cooperate to compute algorithms over GA union GB   with limited 
sharing: O(logkn) total communication for size n graphs, constant k 
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Previous Talk 

•  Algorithms for s-t connectivity in both models 
–  Low communication, O(log2 n) bits.  Requires social network 

structure (giant component) 
–  Low trust.   

•  Alice gets no information beyond answer in honest-but-
curious model. 

•  Doesn’t even reveal node names. 
•  Paper appeared in IPDPS 2015: “Cooperative computing for 

autonomous data centers” 
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The Planted Clique Problem 

•  When can social network structure help in solving a problem? 
•  Find a clique that has been artificially added to a graph 

–  O(log n) nodes chosen randomly and builds a clique 
–  Adversary assigns clique edges to Alice or Bob 

•  Can we find a clique that’s a little larger than “native” clique size? 
•  For Erdos-Renyi, native is log n, can find           (Deshpande and Montanari,   

Alon, Krivelevich, Sudakov ) 
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Exploiting Social Network Structure 

•  Two key assumptions (n-node graph) 
1.  Maximum degree is  
2.  Clustering coefficient for degree-d nodes is 

 
Please (for now) hold off on protests about what one sees in 
practice 
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O(n1�✏)

v 

Clustering coefficient (CC) of v = 
Fraction of related neighbors. 

# triangles on v 
# wedges on v 

cavg(d) = Average CC over nodes of degree d. 
Global CC = average over all nodes v 
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Clustering Coefficient Justification 

Assumption: Clustering coefficient for degree-d nodes is 
 
–  Strong triadic closure (Easley, Kleinberg): two strong edges in a 

wedge implies (at least weak) closure. 
•  Reasons: opportunity, trust, social stress 

–  Converse of strong triadic closure: not (both edges strong) implies 
coincidental closures  
•  experimental evidence: Kossinets, Watts 2006 
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Clustering Coefficient Justification 

Bounded number of strong human interactions even with social 
media (Dunbar 2012) 
–  so bounded number of strong wedges. 
–  As degree increases, more wedges involve weak pairs 
–  Reasons for triadic closure all reduced as strength decreases 

–  Assumption implied on average  whp by Kolda et al (SISC), where 
ξ fit from global CC: 

These two assumptions lead to a polynomial-time, polylog-
communication algorithm for finding an O(log n)-size planted clique.   
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Real Social Networks 
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•  Problem: Social networks don’t obey our clustering coefficient 
assumption Name	
   #	
  nodes	
   #edges	
  

Youtube	
   	
  1M	
   	
  	
  3M	
  
Orkut	
   	
  3M	
   117M	
  
LiveJournal	
   	
  4M	
   	
  	
  35M	
  
TwiHer	
   42M	
   	
  1.5B	
  



Clustering Coefficient “Rhino Horn” 
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Human vs Automated 

•  Networks like Twitter contain a vast amount of non-human 
behavior 
–  You can buy 500 followers for $5 US 

•  For our intended applications, the network owners (law-
enforcement agencies) will have human-only networks 
–  Networks are not public where entities can sign up 
–  No cleaning problem 

•  We have no real data from law enforcement 
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Human vs Automated 

Goal: Clean (enough) non-human behavior to test our algorithms 
•  An idea: Real human relationships require attention 

–  Attention can be divided 
–  Total attention, time of day, etc, is limited 
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Edge strength 

•  A notion somewhat like the one we used for wCNM 
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s(u, v) =
2 ⇤# triangles on(u, v)

du + dv � 2
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2 ⇤ 2
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4
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•  Idea: Total strength has a constant bound 
–  Edge strength a continuum, not just strong/weak 
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s-index vs degree plots 
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s-index vs degree plots 
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s-index vs degree plots 
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s-index vs degree plots 
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Finding D 

•  The previous plots used an “eyeballed” value of D 
•  We would like to calculate D in some statistically reasonable way 
•  Suggestion from Alyson Wilson: 
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•  Pick a quantile q (99% or 95%, etc) 
•  y(q) is the value at that quantile 
•  prop(d) is the proportion of nodes with degree d 
•  Skewed degree distribution requires exponential binning 
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Live Journal 
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Live Journal 
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Twitter 
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Straight Strength - LiveJournal 
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Straight Strength - Twitter 
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Summary 

•  An example where social network structure enables more efficient 
algorithms in theory and practice. 

•  Positive results in a model that captures constraints on 
cooperating autonomous data centers. 

•  A possible tool for cleaning non-human behavior from some social 
networks. 
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Another Limited Sharing Model 

Alice and Bob (or more) independently create social graphs GA and GB.  
•  Alice and Bob each know nothing of the other’s graph. 
•  Shared namespace. Overlap at nodes. 
Goal: Cooperate to compute algorithms over GA union GB  (union Gc…). 
Alice gets no information beyond answer in honest-but-curious model. 
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Maximum Triangle Density Subgraph 
(MTDS) 

•  Algorithmic tool 
•  Find subgraph that maximizes 
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# triangles in subgraph 

# vertices in subgraph 

v 

Triangle	
  density	
  =	
  7/5	
  

•  Solve	
  in	
  polynomial	
  Qme	
  via	
  linear	
  programming	
  
–  Adjustment	
  to	
  Charikar’s	
  LP	
  for	
  maximum	
  edge-­‐density	
  subgraph	
  

• Greedy	
  3-­‐approximaQon	
  (from	
  Charikar’s	
  2-­‐approx	
  for	
  edge	
  density)	
  	
  

• Theorem:	
  Alice’s	
  (WLOG)	
  MTDS	
  contains	
  only	
  nodes	
  involved	
  in	
  the	
  
planted	
  clique	
  S	
  

• Theorem:	
  Whp	
  any	
  nodes	
  not	
  in	
  S	
  have	
  O(1)	
  edges	
  into	
  S.	
  



Algorithm 

1.  Alice finds max triangle-density subgraph H and nodes (WA) 
adjacent to at least half of H.  Sends to H and WA to Bob. 

2.  Bob finds nodes (WB) adjacent to at least half of H and sends 
all induced edges (between V(H), WA and/or WB) 

3.  Alice finds clique (polynomial-time since O(log n)) 
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