SAND2015-11167C

Finding Non-Human Nodes in Social Networks

Jon Berry (Sandia National Laboratories)
Aaron Kearns (U. New Mexico)
Cynthia A. Phillips (Sandia National Laboratories)
Jared Saia (U. New Mexico)

BORATORY DIRECTED RESEARCH B DEVELOPMENT
. CCR
o
7 VAL t\& 05
///’ V A :Q‘ Center for Computing Research

National Nuclear Security Adr

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Sandia
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. m National
Laboratories




- '
#‘ A New Distributed Computing Model

Alice and Bob (or more) independently create social graphs G, and Gg.
» Alice and Bob each know nothing of the other’s graph.

» Shared namespace. Overlap at nodes.

Goal: Cooperate to compute algorithms over G, union Gz with limited
sharing: O(logkn) total communication for size n graphs, constant k

s-t connectivity
For 3 centers

Path from node s=37
to node t=9 is split
across all three centers
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Previous Talk

>

« Algorithms for s-t connectivity in both models

— Low communication, O(log? n) bits. Requires social network
structure (giant component)

— Low trust.

 Alice gets no information beyond answer in honest-but-
curious model.

 Doesn’t even reveal node names.

» Paper appeared in IPDPS 2015: “Cooperative computing for
autonomous data centers”
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& The Planted Clique Problem

When can social network structure help in solving a problem?
Find a clique that has been artificially added to a graph
— O(log n) nodes chosen randomly and builds a clique
— Adversary assigns clique edges to Alice or Bob
Can we find a clique that’s a little larger than “native” clique size?

Alon, Krivelevich, Sudakov )

Blue edges to Alice l @ l Red edges to Bob
2 ~

e 4

I o ™\

For Erdos-Renyi, native is log n, can find \/n—/e (Deshpande and Montanari,
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# Exploiting Social Network Structure

« Two key assumptions (n-node graph)
1. Maximum degree is O(n'™°) )
2. Clustering coefficient for degree-d nodes is O (—)

d2

Clustering coefficient (CC) of v =
Fraction of related neighbors.

# triangles on v 5

# wedgesonv 6

\)
Cavg(d) = Average CC over nodes of degree d.
Global CC = average over all nodes v

Please (for now) hold off on protests about what one sees in
practice
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#‘ Clustering Coefficient Justification
1

Assumption: Clustering coefficient for degree-d nodes is () (_2)
d

— Strong triadic closure (Easley, Kleinberg): two strong edges in a

wedge implies (at least weak) closure. ya—-p2
« Reasons: opportunity, trust, social stress \/
X

— Converse of strong triadic closure: not (both edges strong) implies
coincidental closures
« experimental evidence: Kossinets, Watts 2006
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- /.’ Clustering Coefficient Justification

Bounded number of strong human interactions even with social
media (Dunbar 2012)

— so0 bounded number of strong wedges.

— As degree increases, more wedges involve weak pairs

— Reasons for triadic closure all reduced as strength decreases

— Assumption implied on average whp by Kolda et al (SISC), where

¢ fit from global CC:  c.ye(d) = cimax exp(—(d — 1) - &)

These two assumptions lead to a polynomial-time, polylog-

communication algorithm for finding an O(log n)-size planted clique.
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Real Social Networks

« Problem: Social networks don’t obey our clustering coefficient

assumption Name |# nodes l#fedges
Youtube 1M 3M
Orkut 3M 117M
Livelournal 4M 35M
Twitter Twitter 42M 1.5B
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" Clustering Coefficient “Rhino Horn”
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# Human vs Automated

« Networks like Twitter contain a vast amount of non-human
behavior

— You can buy 500 followers for $5 US

« For our intended applications, the network owners (law-
enforcement agencies) will have human-only networks

— Networks are not public where entities can sign up
— No cleaning problem
« We have no real data from law enforcement
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% Human vs Automated

Goal: Clean (enough) non-human behavior to test our algorithms
« An idea: Real human relationships require attention

— Attention can be divided

— Total attention, time of day, etc, is limited
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& Edge strength

A notion somewhat like the one we used for wCNM

2 % # triangles on(u, v)
dy + dy — 2

s(u,v) =

B 2% 2 B
- 54+6-2

O | &~

s(u,v)

u \

« l|dea: Total strength has a constant bound
— Edge strength a continuum, not just strong/weak
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s-index

Edge strength

s-index is the maximum of

min(r;, s;) overalli

Note: name s-index has to
change.

Neighbors sorted
by edge strength

r; (i/degree) “relative rank”
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s-index

Suppose s-index = s;

Dunbar-like constant = D,
S = Prefix sum of strengths<=s

Then:
D > 8 > s? % degree
i) s = s-index
s < ~ D = Dunbar-like constant

d = degree
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s-index vs degree plots
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Figure 1: LiveJournal (original: no removal of non-reciprocating edges)
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s-index vs degree plots
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Figure 2: LiveJournal, non-reciprocating edges removed
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s-index vs degree plots
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Figure 3: Orkut (original: no removal of non-reciprocating edges)
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s-index vs degree plots
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Figure 4: Twitter-2010 (original: no removal of non-reciprocating edges)
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Finding D

« The previous plots used an “eyeballed” value of D
We would like to calculate D in some statistically reasonable way
« Suggestion from Alyson Wilson:

> (\/? - ?J(Q)) *prop(d)}

d
Pick a quantile g (99% or 95%, etc)
y(q) is the value at that quantile
prop(d) is the proportion of nodes with degree d
Skewed degree distribution requires exponential binning
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Live Journal

Objective Value

Estimating the Generalized Dunbar Number: LivedJournal
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Live Journal
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Twitter

Why
Is D= 60 Estimating the Generalized Dunbar Number: Twitter
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Twitter
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Straight Strength - LiveJournal

Sum of Edge Strengths
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Straight Strength - Twitter

Sum of Edge Strengths
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Summary

P

« An example where social network structure enables more efficient
algorithms in theory and practice.

« Positive results in a model that captures constraints on
cooperating autonomous data centers.

« A possible tool for cleaning non-human behavior from some social
networks.
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Backup Slides
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& Another Limited Sharing Model

Alice and Bob (or more) independently create social graphs G, and Gg.
» Alice and Bob each know nothing of the other’s graph.

» Shared namespace. Overlap at nodes.

Goal: Cooperate to compute algorithms over G, union Gg (union G....)
Alice gets no information beyond answer in honest-but-curious model.

s-t connectivity
For 3 centers

Path from node s=37
to node t=9 is split
across all three centers
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aximum Triangle Density Subgraph
(MTDS)
 Algorithmic tool # triangles in subgraph

» Find subgraph that maximizes 4 . ices in subgraph

Triangle density = 7/5

\Y

e Solve in polynomial time via linear programming
— Adjustment to Charikar’s LP for maximum edge-density subgraph
e Greedy 3-approximation (from Charikar’s 2-approx for edge density)

e Theorem: Alice’s (WLOG) MTDS contains only nodes involved in the
planted clique S
e Theorem: Whp any nodes not in S have O(1) edges into S.
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Algorithm

. Alice finds max triangle-density subgraph H and nodes (W,)

adjacent to at least half of H. Sends to H and W, to Bob.

. Bob finds nodes (W) adjacent to at least half of H and sends
all induced edges (between V(H), W, and/or Wg)

. Alice finds clique (polynomial-time since O(log n))

Alice’s
MTDS

4
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