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Introduction

Uncertainty in Reacting Flow Modeling

@ Chemical models involve much empiricism
@ Model uncertainties: choice of species and reactions

@ Parametric uncertainties:

- Chemical rate constants

Thermodynamic parameters

turbulence/subgrid models

mass/energy transport and fluid constitutive laws
- geometry and initial/boundary conditions

@ Present focus on parametric uncertainty
- kinetic rate coefficients
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Introduction

Uncertainty and Chemical Model Reduction

@ Typical ingredients in chemical model reduction

o A detailed starting chemical kinetic mechanism 1/
e Operating conditions of interest
e Quantities of interest (Qols) desired with specified accuracy

EE||(I)—(I)0||<OK

@ Consequences of uncertainty in the detailed model?

e Errors in Qols: acceptable over range of uncertainty
e Qols are uncertain - error measure definition
o Probabilistic measures of model fidelity

E=1|P — Dy = P <a) <ce
& = D[p(®), p(®o)] = £<a
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Introduction

Model Robustness, Error and Uncertainty

@ Robustness: A reduced model developed based on a given
database should not learn "too much” from the data
o Reduced models based on different training/test data subsets
should not vary "much”

@ Optimally, requirements on reduced model error should be
made in light of uncertainty in detailed model predictions
o There is little point in insisting on error bounds much smaller
than uncertainty in the reference data

@ Measures of reduced model fidelity can include accurate
prediction of
o the nominal reference solution
e uncertainty in specific observables
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Deterministic

Deterministic Chemical ODE System Analysis

@ Computational Singular Perturbation (CSP) analysis

@ Jacobian eigenvalues provide first-order estimates of the
time-scales of system dynamics: 7; ~ 1/);

@ Jacobian eigenvectors provide first-order estimates of the
vectors that span the fast/slow tangent spaces

@ With chosen thresholds, have M “fast” modes

o M algebraic constraints define a slow manifold
o Fast processes constrain the system to the manifold
e System evolves with slow processes along the manifold

@ CSP Importance indices provide estimates of “importance” of
a given reaction to a given species in each of the fast/slow
subspaces
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Deterministic

A CSP-based Mechanism Simplification Algorithm

1: procedure CSPSIMP(D = {y1,---yn}, T, S0, S*, R*)

2. foreachy, € Ddo > Loop over database
3 k<« 0

4: do

5 k+—k+1

6

R {Rj|3i: (S €Sk AL >T)V (S €SP N> 1)}

7: Sk {S”Hj:(RjERk/\I/ij?éO)}

8: while S, # Si_1

9: Ry +— Ry
10:  end for

1 R+ U,Rn > Active Reactions
122 S+ {S;|3F:(Rj e RAv; #0)} > Active Species

13: end procedure
Valorani et al.CF 2006
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Deterministic

nHeptane Kinetic Model Simplification with CSP
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@ % Relative error in ignition time vs. simplified model sizes

@ Control using error tolerances on CSP importance indices
Valorani et al.PCI 2007
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Uncertain

Probabilistic Analysis of Uncertain ODE Systems

Handle uncertainties using probability theory

Every random instance of the uncertain inputs provides a
“sample” ODE system

- Uncertainties in fast subspace lead to uncertainty in
manifold geometry

- Uncertainties in slow subspace lead to uncertain
slow time dynamics

Probabilistic measures of importance
Probabilistic comparison of models

One can analyze/reduce each system realization
- Statistics of y(¢; \) trajectories
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Uncertain

Reduction Strategy under Uncertainty

@ Deterministic strategy:
e Given
@ Detailed starting chemical model M *, with parameters A
@ Solution database D of state vectors generated with (M ™, \)
@ Quantities of interest 1
@ Specified error thresholds 7 on I

o discover a simplified model M (M*, A\, D, I,7) := M())
@ Probabilistic strategy:

e Given uncertainty in A\, we model this parameter vector as a
random vector with a given joint density p()).

o Asaresult, the resulting model structure M () is a random
object, with a probability for any given M, denoted by P(M).

e Each M € M is defined by a network of species/reactions

e The set M is not easy to work with
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Uncertain
Convenient coordinates on model space

@ Given the starting detailed model M *, any simplifed model M
is uniquely defined by the set of retained reactions

o Retained species are those involved in retained reactions
@ Set of elementary reactionsin M*: Ry~ = {R1, -, Rk}
@ Define the bit vector a = (o, - - ,ar) € {0,1}%
@ Amodel M is specified by a(M) where, forr = 1,... K,

ar(M) =

1 ifR, € Ry
0 otherwise

clearly: a(M*) = (1,---,1)

@ Thus, given M*, we have the mapping: A — ()
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Uncertain

Uncertain Simplified Model Specification

@ Foruncertain \:  p(\) —» P(a) = Py,
@ Clearly, P, > 0,and ) Po =1

1
@ lllustrative example: M*: A —B
2

o K =2, suchthata = (a1, a2)

Set of possible values of a: {(1,1), (1,0), (0,1),(0,0)}

o Set of possible models M: { My 1y, M(1,0y, M(0,1), M (0,0}

Uncertain simplified model specification:

{P(l,l)a P(l,O)a P(0,1)7 P(O,O)}

where P; ;) = P(a = (i,]))
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Uncertain Reduction Strategy - 1

@ Generate N random samples of A from p())

@ Foreach\},i=1,...,N
e Analyze resulting M*(\?) for ignition - range of (T, P, ®) ICs
o Get simplified model M*(S*, R?)
o Evaluate o' = a(M?):

Qg =

1 for Ry € Ry
{ b M k=1,... K

0 otherwise

N
: . 1
@ Estimate Model probabilities: P, = N Z Sov.cxi

@ Marginal reaction probabilities:

N
1
P., :NZ%]M, k=1,....,K
=1
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Uncertain Reduction Strategy - 2

@ Marginal reaction inclusion probability

N
Pk::P{akzl}:N O[k., k:].,,K
i=1

@ Include reaction k iff:
P.>0

@ Resulting model M »(\) is the CSP-simplified model given
o the starting detailed model M*(\)
o the database of solution state vectors
o the CSP Importance Index tolerance ~
o for A ~ p(\)

with marginal reaction inclusion probability >
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Uncertain

Estimation of Moments in High Dimensional Space

@ Estimation of expectations (e.g. P,) relies on integration

N

1
Py = / SeaPNAA~ = 64 aini)
A N i=1 e A~p(X)

High dimensional space: A € A C RL, where L > K
Monte Carlo sampling useful for evaluating hi-D integrals
o particularly when the integrand is non-smooth
MC convergence rate independent of dimensionality
o However, the level of error for a given number of samples
increases with the intrinsic dimensionality of the integrand
Concentration of measure - E[||A||] Tand V[||A|]] L as L 1

e L1 == every )\ likely to have one/more extreme elements
o Use truncated distributions p()\)
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Uncertain
Computational Considerations

o Efficient Tchem based thermochemistry

In-memory manipulation of Arrhenius parameters

o Fast evaluation of source term and analytical Jacobian
e http://www.sandia.gov/tchem

e Contact: C. Safta: csafta@sandia.gov

@ Fast cvode based stiff time integration
e http://computation.linl.gov/casc/sundials

e Efficient CSPTk analysis and reduction

@ Minimal 1/0
e On-demand/as-needed evaluation of Importance Indices
e Contact: M. Valorani: mauro.valorani@uniromal.it

@ In-memory statistics of random trajectories and associated
analysis
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Demo
Demo on n-butane ignition

@ Detailed chemical mechanism for n-butane/air combustion,
with specified uncertainty factors in the pre-exponentials
E. Hebrard, A.S. Tomlin, R. Bounaceur, F. Battin-Leclerc,
Proc. Comb. Inst. 35(1):607-616, 2015.

@ N = 1111 reactions

@ Temperature-dependent uncertainty factors

@ Mechanism specificies ( f;., g-) for each reaction r
e Uncertainty factor: In A = ln Apom £ In F

o (7-mm))

@ For now, we employ a temperature-independent F:

F.(T) = freXP<

F, .= F.(T)|r=1500 k

Najm RedUQ



Convergence with number of MC samples

0.1

Max Error

0.01
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Number of Samples

@ Self-convergence of max error in P, with increasing number
of MC samples
@ Expected slope of 1/v/N in ensemble mean error

Najm RedUQ



Demo

Convergence with number of sampled trajectory steps
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@ Somewhat weak dependence on the number of sampled
points in each trajectory
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Demo

Sampled ignition trajectories - detailed mechanism

@ Significant uncertainty in

ignition time 2800
2600
@ Large range of state-variable & 2400 I
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Normalized entropy progress variable

@ Define the entropy progress variable:

5(t) = /Ot ds|

@ Given any quantity of interest ¢(t, -)
@ And, time trajectory (¢, (tg,-)), k=1,..., K
@ Re-parametrize the trajectory using a normalized entropy:

5(t)
é(ti‘inal)
@ Thus, ¢(s,-) := @(ts, -) Where ts = t(s) := {t | 5(t) = 5}

@ Compare solutions in the (s, ¢) phase space
o Trajectories (si, ¢(s,-)). k=1,..., K

5(t) =
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Demo

Uncertain trajectories in the entropy phase space
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@ Mean and Mean+2o¢ trajectories for select state variables

@ Entropic phase-space trajectories are explicit functions
y = f(x) - by construction

@ Coefficient of variation can be large when the mean is low
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Demo

Uncertain trajectories in the entropy phase space
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@ Mean and Mean+2o trajectories for select state variables

@ Entropic phase-space trajectories are explicit functions
y = f(x) - by construction

@ Coefficient of variation can be large when the mean is low

Najm RedUQ



Demo

Uncertain trajectories in the entropy phase space
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@ Mean and Mean+2o trajectories for select state variables

@ Entropic phase-space trajectories are explicit functions
y = f(x) - by construction

@ Coefficient of variation can be large when the mean is low

Najm RedUQ



Demo

# active reactions/species varies inversely with (7, )
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@ Number of retained/active reactions/species goes down w/:

- increasing threshold 6 on P
- increasing Importance Index threshold 7
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Demo

Uncertain Ignition time prediction

© Detailed model: £, ()

@ Simplified model:
t|gn(A7 7_’ 9 — 03)

ST
T

@ Global trend towards
- lower tig,
- larger tigy-error
with increasing 7
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Demo
A posteriori error estimation

For any quantity of interest ¢(s, -), define the trajectory error norm

over timestepsty : k = 1,..., K, with s, = 5(tx),

K 1/p
(Z wi|p(sk, ) — dalsk, ')|p>
gp,w _ ||d) - ¢d”p,w _ k=1
¢ “¢d“p,w K 1/p
(Z W | (sk, -)|p>
k=1
where

¢4 refers to the detailed model
wy, = w(sy) is a weight functione.g. = 1/0,4(sy)
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Demo
A posteriori error estimation

Example quantities of interest for trajectory error estimation
@ A per-trajectory error that is random

o(s,\) = X;(s,\) = Sfézﬂ()\; 7,0)

-Trajectories need to be in the same probability space
@ An error in the mean of uncertain trajectories

¢(s) := pi(s) = Ex[Xi(s, )] = &17(7,0)
@ An error in the standard deviation of uncertain trajectories

¢(s) == oi(s) = \[Xi(s, D2 = €R¥(r.0)

Najm RedUQ



Demo

Trajectory error PDF

@ PDF of trajectory error for 7 = 0.22
@ Error averaged over set of species
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@ Errorincreases with 0
o less reactions included with higher inclusion threshold
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Demo

Trajectory error statistics - target species
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@ General trend towards higher error with increasing 7, 6

@ Trend is more evident at low 7
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Closure
Closure

@ We presented a probabilistic framework for analysis and
reduction of chemical models under uncertainty

@ The construction employs the target problem and the
deterministic analysis/reduction strategy as a black box

@ We employ a convenient indexing of models
@ We use a posteriori error norms for entropic phase space
trajectories

@ We demonstrated the construction with an uncertain
n-butane mechanism
e Examined a posteriori errors
e Convergence behavior given relevant tolerances
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