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Uncertainty in Reacting Flow Modeling

Chemical models involve much empiricism

Model uncertainties: choice of species and reactions

Parametric uncertainties:
– Chemical rate constants
– Thermodynamic parameters
– turbulence/subgrid models
– mass/energy transport and fluid constitutive laws
– geometry and initial/boundary conditions

Present focus on parametric uncertainty
– kinetic rate coefficients
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Uncertainty and Chemical Model Reduction

Typical ingredients in chemical model reduction
A detailed starting chemical kinetic mechanism M0

Operating conditions of interest
Quantities of interest (QoIs) desired with specified accuracy

E ≡ ‖Φ− Φ0‖ < α

Consequences of uncertainty in the detailed model?
Errors in QoIs: acceptable over range of uncertainty
QoIs are uncertain – error measure definition
Probabilistic measures of model fidelity

E ≡ ‖Φ− Φ0‖ ⇒ P (E < α) < ε

E ≡ D[p(Φ), p(Φ0)] ⇒ E < α
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Model Robustness, Error and Uncertainty

Robustness: A reduced model developed based on a given
database should not learn ”too much” from the data

Reduced models based on different training/test data subsets
should not vary ”much”

Optimally, requirements on reduced model error should be
made in light of uncertainty in detailed model predictions

There is little point in insisting on error bounds much smaller
than uncertainty in the reference data

Measures of reduced model fidelity can include accurate
prediction of

the nominal reference solution
uncertainty in specific observables
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Deterministic Chemical ODE System Analysis

Computational Singular Perturbation (CSP) analysis

Jacobian eigenvalues provide first-order estimates of the
time-scales of system dynamics: τi ∼ 1/λi

Jacobian eigenvectors provide first-order estimates of the
vectors that span the fast/slow tangent spaces

With chosen thresholds, have M “fast” modes
M algebraic constraints define a slow manifold
Fast processes constrain the system to the manifold
System evolves with slow processes along the manifold

CSP Importance indices provide estimates of “importance” of
a given reaction to a given species in each of the fast/slow
subspaces
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A CSP-based Mechanism Simplification Algorithm

1: procedure CSPSIMP(D = {y1, · · ·yN}, τ,S0,S∗,R∗)
2: for each yn ∈ D do . Loop over database
3: k ← 0

4: do
5: k ← k + 1

6:

Rk ← {Rj | ∃i : (Si ∈ Sk−1 ∧ Iij,s > τ) ∨ (Si ∈ S rad
k−1 ∧ Iij,f > τ)}

7: Sk ← {Si | ∃j : (Rj ∈ Rk ∧ νij 6= 0)}
8: while Sk 6= Sk−1

9: Rn ←Rk

10: end for
11: R←

⋃
nRn . Active Reactions

12: S ← {Si | ∃j : (Rj ∈ R ∧ νij 6= 0)} . Active Species
13: end procedure

Valorani et al.CF 2006
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nHeptane Kinetic Model Simplification with CSP
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Probabilistic Analysis of Uncertain ODE Systems

Handle uncertainties using probability theory
Every random instance of the uncertain inputs provides a
“sample” ODE system

– Uncertainties in fast subspace lead to uncertainty in
manifold geometry

– Uncertainties in slow subspace lead to uncertain
slow time dynamics

Probabilistic measures of importance
Probabilistic comparison of models

One can analyze/reduce each system realization
– Statistics of y(t;λ) trajectories
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Reduction Strategy under Uncertainty

Deterministic strategy:
Given

Detailed starting chemical model M∗, with parameters λ
Solution database D of state vectors generated with (M∗, λ)
Quantities of interest I
Specified error thresholds τ on I

discover a simplified model M(M∗, λ,D, I, τ) := M(λ)

Probabilistic strategy:

Given uncertainty in λ, we model this parameter vector as a
random vector with a given joint density p(λ).

As a result, the resulting model structure M(λ) is a random
object, with a probability for any given M , denoted by P (M).

Each M ∈M is defined by a network of species/reactions

The setM is not easy to work with
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Convenient coordinates on model space

Given the starting detailed model M∗, any simplifed model M
is uniquely defined by the set of retained reactions

Retained species are those involved in retained reactions

Set of elementary reactions in M∗: RM∗ = {R1, · · · , RK}
Define the bit vector α = (α1, · · · , αK) ∈ {0, 1}K

A model M is specified by α(M) where, for r = 1, . . . ,K ,

αr(M) =

{
1 if Rr ∈ RM

0 otherwise

clearly: α(M∗) = (1, · · · , 1)

Thus, given M∗, we have the mapping: λ→ α(λ)
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Uncertain Simplified Model Specification

For uncertain λ: p(λ)→ P (α) ≡ Pα

Clearly, Pα ≥ 0, and
∑

α Pα = 1

Illustrative example: M∗: A
1

2
B

K = 2, such that α = (α1, α2)

Set of possible values of α: {(1, 1), (1, 0), (0, 1), (0, 0)}

Set of possible models M : {M(1,1),M(1,0),M(0,1),M(0,0)}

Uncertain simplified model specification:

{P(1,1), P(1,0), P(0,1), P(0,0)}

where P(i,j) ≡ P (α = (i, j))
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Uncertain Reduction Strategy – 1

Generate N random samples of λ from p(λ)
For each λi, i = 1, . . . , N

Analyze resulting M∗(λi) for ignition – range of (T, P,Φ) ICs
Get simplified model M i(Si,Ri)
Evaluate αi = α(M i):

αi
k =

{
1 for Rk ∈ RMi

0 otherwise
k = 1, . . . ,K

Estimate Model probabilities: Pα =
1

N

N∑
i=1

δα,αi

Marginal reaction probabilities:

Pαk
=

1

N

N∑
i=1

δαk,α
i
k
, k = 1, . . . ,K
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Uncertain Reduction Strategy – 2

Marginal reaction inclusion probability

Pk := P{αk=1} =
1

N

N∑
i=1

αi
k, k = 1, . . . ,K

Include reaction k iff:
Pk > θ

Resulting model Mτ,θ(λ) is the CSP-simplified model given
the starting detailed model M∗(λ)
the database of solution state vectors
the CSP Importance Index tolerance τ
for λ ∼ p(λ)

with marginal reaction inclusion probability > θ
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Estimation of Moments in High Dimensional Space

Estimation of expectations (e.g. Pα) relies on integration

Pα =

∫
Λ
δα,α(λ)p(λ)dλ ≈

1

N

N∑
i=1

δα,α(λi)

∣∣∣∣
λ∼p(λ)

High dimensional space: λ ∈ Λ ⊂ RL, where L ≥ K

Monte Carlo sampling useful for evaluating hi-D integrals
particularly when the integrand is non-smooth

MC convergence rate independent of dimensionality
However, the level of error for a given number of samples
increases with the intrinsic dimensionality of the integrand

Concentration of measure – E[‖λ‖] ↑ and V [‖λ‖] ↓ as L ↑
L ↑ =⇒ every λi likely to have one/more extreme elements
Use truncated distributions p(λ)
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Computational Considerations

Efficient Tchem based thermochemistry
In-memory manipulation of Arrhenius parameters
Fast evaluation of source term and analytical Jacobian
http://www.sandia.gov/tchem
Contact: C. Safta: csafta@sandia.gov

Fast cvode based stiff time integration
http://computation.llnl.gov/casc/sundials

Efficient CSPTk analysis and reduction
Minimal I/O
On-demand/as-needed evaluation of Importance Indices
Contact: M. Valorani: mauro.valorani@uniroma1.it

In-memory statistics of random trajectories and associated
analysis
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Demo on n-butane ignition

Detailed chemical mechanism for n-butane/air combustion,
with specified uncertainty factors in the pre-exponentials

E. Hebrard, A.S. Tomlin, R. Bounaceur, F. Battin-Leclerc,
Proc. Comb. Inst. 35(1):607-616, 2015.

N = 1111 reactions

Temperature-dependent uncertainty factors
Mechanism specificies (fr, gr) for each reaction r
Uncertainty factor: lnA = lnAnom ± lnF

Fr(T ) = fr exp
(∣∣∣∣ gr ( 1

T
− 1

300

)∣∣∣∣)
For now, we employ a temperature-independent Fr :

Fr := Fr(T )|T=1500 K
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Convergence with number of MC samples
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Convergence with number of sampled trajectory steps
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Sampled ignition trajectories – detailed mechanism

Significant uncertainty in
ignition time

Large range of state-variable
uncertainty vs time

– fast ignition transient

Examine trajectory errors and
uncertainty in an alternate
progress-variable phase space

Entropic phase space
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

0 0.02 0.04 0.06 0.08

T
em

p
er
at
u
re

(K
)

time (seconds)

SNL Najm RedUQ 20 / 29



Introduction Deterministic Uncertain Demo Closure

Normalized entropy progress variable

Define the entropy progress variable:

ŝ(t) =

∫ t

0
|ds|

Given any quantity of interest φ(t, ·)
And, time trajectory (tk, φ(tk, ·)), k = 1, . . . ,K

Re-parametrize the trajectory using a normalized entropy:

s̃(t) =
ŝ(t)

ŝ(tfinal)

Thus, φ(s, ·) := φ(ts, ·) where ts = t(s) := {t | s̃(t) = s}
Compare solutions in the (s, φ) phase space

Trajectories (sk, φ(sk, ·)), k = 1, . . . ,K
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Uncertain trajectories in the entropy phase space
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Uncertain trajectories in the entropy phase space
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Uncertain trajectories in the entropy phase space
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# active reactions/species varies inversely with (τ, θ)
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Uncertain Ignition time prediction

Detailed model: tdign(λ)

Simplified model:
tign(λ, τ, θ = 0.3)

Global trend towards
– lower tign
– larger tign-error

with increasing τ

Non-monotonous local
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A posteriori error estimation

For any quantity of interest φ(s, ·), define the trajectory error norm
over time steps tk : k = 1, . . . ,K , with sk = s̃(tk),

Ep,wφ =
‖φ− φd‖p,w
‖φd‖p,w

=

(
K∑
k=1

wk|φ(sk, ·)− φd(sk, ·)|p
)1/p

(
K∑
k=1

wk|φd(sk, ·)|p
)1/p

where
φd refers to the detailed model
wk = w(sk) is a weight function e.g. = 1/σd(sk)
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A posteriori error estimation

Example quantities of interest for trajectory error estimation
A per-trajectory error that is random

φ(s, λ) := Xi(s, λ) ⇒ Ep,wXi
(λ; τ, θ)

–Trajectories need to be in the same probability space
An error in the mean of uncertain trajectories

φ(s) := µi(s) = Eλ[Xi(s, λ)] ⇒ Ep,wµi
(τ, θ)

An error in the standard deviation of uncertain trajectories

φ(s) := σi(s) = (Vλ[Xi(s, λ)])
1/2 ⇒ Ep,wσi

(τ, θ)
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Trajectory error PDF

PDF of trajectory error for τ = 0.22

Error averaged over set of species
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Trajectory error statistics – target species
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Closure

We presented a probabilistic framework for analysis and
reduction of chemical models under uncertainty

The construction employs the target problem and the
deterministic analysis/reduction strategy as a black box

We employ a convenient indexing of models

We use a posteriori error norms for entropic phase space
trajectories

We demonstrated the construction with an uncertain
n-butane mechanism

Examined a posteriori errors
Convergence behavior given relevant tolerances
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