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 Grid scale energy storage 
 Value streams 
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 Technology overview 
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Grid Scale Energy Storage 
 Primary methods for energy storage 

 Electrochemical 
 Lithium batteries 
 Lead acid batteries 
 Flow batteries 

 Mechanical 
 Compressed air 
 Pumped hydro 
 Flywheels 

 Thermal 
 Molten salt 
 Ice 

 Electrical 
 Ultra Capacitors 

3 



Why Do We Need Energy Storage? 
 Major reasons for installing energy storage: 

 Renewable integration 
 Transmission and Distribution upgrade deferral 
 Power quality, e.g., UPS application, microgrids, etc. 
 Improved efficiency of nonrenewable sources (e.g., coal, nuclear) 
 Off-grid applications (not the topic of this presentation) 
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Recent Storage Policy Breakthroughs 
 American Recovery and Reinvestment Act (ARRA) of 2009 

Energy Storage Demonstration Projects 
 16 projects 
 Varying levels of technology maturity 
 50% federal cost share ($600M for all 21 SGDPs) 

 FERC order 755 and FERC order 784: “pay-for-performance” 
 More fairly compensates “fast responding” systems (e.g., storage) 
 Market redesign for frequency regulation compensation 

 Separate signals for “fast” devices 
 Mileage payment in addition to capacity payment 

 California energy storage mandate (California Public Utilities 
Commission) 10/17/2013 
 1.3 GW by 2020 (Note the units!) 
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California Energy Storage Mandate 
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Energy Storage Value Streams 
 Energy arbitrage – 

buy low, sell high 
 Energy price swings 

must be larger than 
efficiency losses 

 Rarely captures the 
largest value 
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Energy Storage Value Streams 
 Frequency regulation 

 Used to maintain 60 Hz grid frequency 
 Second by second dispatch 
 Typically the most valuable service 
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PJM results, 20MW, 5MWh 
200-flywheel system 

Beacon Power Flywheel 



Energy Storage Value Streams 
 Transmission and Distribution deferral 

 Can be a very large $$$$ 
 Very location specific 
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Congestion (e.g., 
limit power flow) 



Energy Storage Value Streams 
 Reduction in demand charges (behind the meter) 
 Large potential savings for industrial customers 
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Energy Storage Value Streams 
 Distribution level energy storage 

 Volt/VAR support 
 Islanding during outages 
 Frequency regulation 
 Renewable time shift 
 Peak shaving 
 Arbitrage 

11 DTE ARRA energy storage demonstration project 



Energy Storage Value Streams 
 Renewable firming 

 Puerto Rico is penalizing rapid ramp rates 
 Duck curve (CA is starting to be concerned) 
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CA “duck” curve 

Solar variability 

For vertically integrated 
utilities – increased 
regulating and spinning 
reserves. In market 
areas, adding ramping 
products. 



Why is Storage Valuation Difficult? 
 Location/Jurisdiction 

 Market area, e.g., California ISO 
 Vertically integrated utility, e.g., PNM 
 Transmission and distribution deferral is very location specific 

 Many applications require a combination of technical and 
financial analysis 
 Dynamic simulations (requires an accurate system model) 
 Production cost modeling (requires an accurate system model) 

 Difficult to break out current cost of services, especially for 
vertically integrated utilities 

 Identifying alternatives can be difficult 
 Many storage technologies are not “off-the-shelf”, proven 

technology (e.g., O&M costs, warranty????) 
 Storage is expensive 13 



Energy Storage on the Grid Today 
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Source: U.S. Department of Energy, “Grid Energy Storage”, December 
2013. 



Energy Storage on the Grid Today 
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Source: U.S. Department of Energy, “Grid Energy Storage”, December 
2013. 



Technology Maturities 

16 

Source: U.S. Department of Energy, “Grid Energy Storage”, December 
2013. 



DOE Energy Storage Database 
 Two ways to find the web site: 

 http://www.energystorageexchange.org/ 
 Google “DOE energy storage database” 
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http://www.energystorageexchange.org/


Technology Overview - CAES 
 Compressed air energy storage 

(CAES) 
 Established technology in operation 

since the 1970’s 
 110 MW (26+ hours) plant in 

McIntosh, Alabama – operational 
since 1991 

 Better ramp rates than gas turbines 
 Applications 

 Energy management 
 Backup and seasonal reserves 
 Renewable integration 

 Challenges 
 Geographic limitations 
 Lower efficiency 
 Slower than flywheels or batteries 
 Environmental impact 
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Solution-mined salt dome in McIntosh, AL 
PG&E CAES 
feasibility study 
(porous rock) 

SustainX 
isothermal CAES 



Technology Overview –  
Pumped Hydro 
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 Pumped hydro energy storage 
 Developed and mature technology 
 Very high ramp rates 
 Most cost effective form of storage 

 Applications 
 Energy management 
 Backup and seasonal reserves 
 Regulation service (variable speed 

pumps) 
 Challenges 

 Geographic limitations 
 Plant site 
 Lower efficiency 
 High overall cost 
 Environmental impact 

Bath County Pumped Storage (Dominion 
Resources), 3 GW, operational December 
1985 

Mt. Elbert Pumped Hydro, 0.2MW, 
peaking plant, operational 1981. 



Technology Overview - Flywheels 
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 Flywheel energy storage 
 Modular technology 
 Long cycle life 
 High peak power 
 Rapid response 
 High round trip efficiency (~85%) 

 Applications 
 Load leveling 
 Frequency regulation 
 Peak shaving 
 Transient stability 

 Challenges 
 Rotor tensile strength limitations (𝐸 ≈ 𝜔2) 
 Limited energy storage time (frictional losses) 

Beacon Power Hazle Township, PA plant. 20 
MW, 5MWh. Operational September 2013. 
Stephentown, NY plant was built first. 



Technology Overview – Lead Acid 
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 Advanced Lead Acid Energy Storage 
 Developed by Ecoult/East Penn 

Manufacturing 
 Carbon plates significantly improve 

performance 
 Mature technology 
 Low cost 
 High recycled content 
 Good battery life 

 Applications 
 Load leveling 
 Frequency regulation 
 Grid stabilization 

 Challenges 
 Low energy density 
 Limited depth of discharge 
 Large footprint 

East Lyons, PA Albuquerque, NM 



Technology Overview - NaS 
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 Sodium Sulphur Energy Storage 
 High energy density 
 Long discharge cycles 
 Fast response 
 Long life 
 190 sites in Japan 
 Developed by Ford in 1960’s 
 Sold to Japan (NGK is largest manufacturer) 

 Applications 
 Power quality 
 Congestion relief 
 Renewable integration 

 Challenges 
 High operating temperature  
      (250-300C) 
 Liquid containment issues 

Los Alamos, NM. 1 MW, 6MWh. 

Source: NGK 



Technology Overview – Li-ion 
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 Li-ion Energy Storage 
 High energy density 
 Good cycle life 
 High charge/discharge efficiency  

 Applications 
 Power quality 
 Frequency regulation 

 Challenges 
 High production cost 
 Extreme sensitivity to: 

 Over temperature 
 Overcharge 
 Internal pressure buildup 

 Intolerance to deep discharge 

SCE Tehachapi plant, 8MW, 32MWh. 



Technology Overview –  
Flow Batteries 
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 Flow Battery Energy Storage 
 Long cycle life 
 Power/Energy decomposition 
 Lower efficiency  

 Applications 
 Ramping 
 Peak Shaving 
 Time Shifting 
 Power quality 
 Frequency regulation 

 Challenges 
 Developing technology 
 Complicated design 
 Lower energy density 

Enervault plant, Turlock, CA. 250kW, 1 MWh. 

Vionx Vanadium Redox Flow battery, 65kW, 390kWh 



Technology Overview - Capacitors 
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 Capacitor Energy Storage 
 Very long life 
 Highly reversible and fast 

discharge, low losses 
 Applications 

 Power quality 
 Frequency regulation 
 Regenerative braking 

(vehicles) 
 Challenges 

 Cost Ultra capacitor module, designed for 
vehicle applications (e.g., buses, trains) 



Technology Overview - SMES 
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 Super Conductive Magnetic Energy Storage 
 Highest round trip efficiency (~95%) 

 Applications 
 Power quality 
 Frequency regulation 

 Challenges 
 Low energy density 
 Component and manufacturing cost 

2010 SMES Project (ARPA-E) 



Technology Overview – Thermal  
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 Thermal Energy Storage 
 Ice-based technology 
 Molten salt 

 Applications 
 Energy time shift 
 Renewable firming 

 Challenges 
 Lower efficiency (~70%) 

for electricity-electricity 
 Solar thermal plants 

more expensive than PV 

Ice Energy’s proven Ice Bear® system, 
www.ice-energy.com 



Energy Storage Analytics 
 Estimating the value of energy storage  

 Production cost modeling (vertically integrated utility) 
 LP Optimization (market area) 
 Stochastic unit commitment/planning studies (vertically integrated 

utility) 

 Control strategies for energy storage 
 Wide area damping control 
 Maximizing revenue 

 Public policy: identifying and mitigating barriers 
 Standards development 
 Project evaluation 

 Technical performance 
 Financial performance 

 Model development (e.g. for dynamic simulation) 
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Maximizing Revenue - Market Area 
 Linear Program Optimization 

 MATLAB 
 Python/Cooper 

 Typically look at the following revenue streams 
 Arbitrage 
 Arbitrage + Regulation 
 Allocate charge to avoid double counting 

 Typically look at maximizing revenue 
 Can incorporate cost data (if available) 

 Penalty for charge/discharge 
 Variable O&M costs 
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Maximizing Revenue - Market Area 
 Assume price insensitive to supply (if not -> production cost 

modeling) 
 Typically use 1 hour data 
 Energy storage model – arbitrage 

 
 
 Constraints on: 

 Total capacity 
 Maximum hourly charge/discharge quantity 
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Maximizing Revenue - Market Area 
 Assume price insensitive to supply (if not -> production cost 

modeling) 
 Typically use 1 hour data 
 Energy storage model – arbitrage + regulation 

 
 
 Constraints on: 

 Total capacity 
 Maximum hourly charge/discharge quantity 
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Maximizing Revenue - Market Area 
 Modeling regulation – need to assume fraction that is 

assigned 
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Account for fraction called 



Maximizing Revenue - Market Area 
 Cost function – arbitrage 

 
 
 

 Cost function – arbitrage + regulation 
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Maximizing Revenue – Market Area 
 Studied two regions 

 CAISO [1] (included sensitivity analysis to parameters) 
 ERCOT [2] 

 Plant parameters 
 32MWh 
 8MW 
 Efficiency 80% 
 Regulation call fraction 50% 
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[1]  R. H. Byrne, and C. A. Silva-Monroy, Estimating the Maximum Potential Revenue for Grid Connected 
 Electricity Storage: Arbitrage and Regulation,  SAND2012-3863, Sandia National Laboratories, Albuquerque, 
 NM 87185, 2012. 
[2]  R. H. Byrne, and C. A. Silva-Monroy, “Potential Revenue from Electrical Energy Storage in the Electricity 
 Reliability Council of Texas (ERCOT),” in IEEE Power and Energy Society (PES) General Meeting, 
 Washington, DC, 2014. 
 



Maximizing Revenue – Market Area 
 Results for ERCOT (HB_Houston Node) 

 

35 



Estimating Value – Vertically 
Integrated Utility 
 Production cost modeling used to evaluate different scenarios 
 “Value” of energy storage is the cost savings resulting from 

the operation of the energy storage system 
 PLEXOS© (Energy Exemplar) production cost modeling 

software 
 Sandia is also developing a stochastic unit commitment 

program based on Pyomo (Python optimization software 
developed by Sandia) 
 https://software.sandia.gov/trac/coopr 
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https://software.sandia.gov/trac/coopr


Estimating Value – Vertically Integrated 
Utility 
 Sandia has performed studies for the following 

 Nevada Energy [1] 
 Southern Company [2]  
 Maui Electric Company [3] 

 A study is currently under way for the Hawaiian Electric 
Company 

 Typical cost savings come from being able to turn off 
expensive “must run” units (spinning reserve, regulation) and 
replace with energy storage  
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[1]  J. F. Ellison, D. Bhatnagar, N. Saaman et al., NV Energy Electricity Storage Valuation,  SAND2013-4902, 
 Sandia National Laboratories, Albuquerque, NM 87185, 2013. 
[2] J. Ellison, D. Bhatnagar, C. Black et al., Southern Company Energy Storage Study: A Study for the DOE 
 Energy Storage Systems Program,  SAND2013-2251, Sandia National Laboratories, Albuquerque, NM 
 87185, 2013. 
[3] J. Ellison, D. Bhatnagar, and B. Karlson, Maui Energy Storage Study,  SAND2012-10314, Albuquerque, 
 NM 87185, 2012. 



Control Strategies for Energy Storage 

 Inter-area oscillations are 
present in all large power  

     systems 
 Electro-mechanical oscillations 

 0.2-0.8Hz  
 Can be lightly damped 
 1996 west coast blackout 
     partially attributed to undamped 
     inter-area oscillations 
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Control Strategies for Energy Storage 
 Sandia is collaborating with the Bonneville Power 

Administration (BPA) to develop wide-area damping control 
algorithms (BPA Technology Innovation Program) 
 PDCI modulation 
 Distributed energy storage 

 Straightforward control  
     law  
 

 
 Most effort is focused on 
     the “supervisory control  
     system” 
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Optimal Placement for Damping Control 
 Two-area system model 

 
 

 Solve for damping ratio 
 
 

 Place storage in the area with 
the lower inertia [1] 
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[1] R. H. Byrne, D. J. Trudnowski, J. C. Neely et al., “Optimal Locations for 
 Energy Storage Damping Systems in the Western North American 
 Interconnect,” in IEEE PES General Meeting, Washington, DC, 2014. 



Project Evaluation 
 Member of the data analysis team (DAT) for ARRA energy 

storage demonstration projects 
 Review project reports 
 Site visits 

 Guidelines for testing energy storage systems [1] 
 Performance requirements for different applications 
 Recommend testing strategies 
 Analysis focuses on identifying system components from a control 

systems perspective 

 Synergistic with commissioning activities (Dan Borneo) 
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[1] R. H. Byrne, M. K. Donnelly, V. W. Loose et al., Methodology to Determine the Technical Performance 
 and Value Proposition for Grid-Scale Energy Storage Systems, Sandia National Laboratories, 
 Albuquerque, NM 87185, 2012. 



Standards Development 
 Working with PNNL to develop performance protocols for the 

energy storage industry 
 Micro-grids (completed) 
 Frequency regulation (completed) 
 Peak shaving (completed) 
 PV smoothing (in progress) 

 Working to generate a U.S. standard based on the protocols 
 ANSI 
 NEMA 
 IEC 

 Industry user group is test driving the protocols 
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Related Efforts 

 Small signal stability analysis for high penetrations of 
renewables 

 Coordination with wind/solar groups at Sandia 
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Summary 
 The grid needs energy storage – right now there are several 

barriers 
 Too expensive 
 Electricity markets/utilities do not properly allocate payments/costs for 

services provided 
 Voltage support 
 Inertia 
 Renewable integration 
 Reliability 

 The future …. 
 Higher energy prices – storage starts looking better 
 Lower technology costs – storage starts looking better 
 Efficient market design – helps pay for storage costs 
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