SAND2015-11087C

Sandia

Exceptional service in the national interest @ National
Laboratories

kHz Rate Digital In-line Holography Applied to Quantify
Secondary Droplets from the Aerodynamic Breakup of a

Liquid Column in a Shock-Tube

Daniel R. Guildenbecher, Justin L. Wagner, Joseph D. Olles, Yi Chen, Edward P.
DeMauro, Paul A. Farias, Thomas W. Grasser, Paul E. Sojka

. DEPARTMENT OF

N ERGY ;'l" ‘!&% Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Mt M Socurty Adminisratica Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2015-####



Motivation: Quantify liquid breakup ) i
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Motivation: 3D imaging for a 3D world )

Widely available 2D imaging or
point-wise measurement
techniques are often insufficient
to resolve 3D flow phenomena

= Repetition needed to capture
spatial statistics

X (mm)

| H“i'éjh-speed video of ;_e_tl;anol drop
in an air-stream digital holographic measurement

(Gao, Guildenbecher et al, 2013, Opt. Lett.)

Holography allows for 3D quantification of particle sizes and velocities
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Outline for talk

Introduction to holography for
particle measurements

Challenges and opportunities for
high-speed, 3D measurements

Quantitative investigation of
aerodynamic breakup
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Digital in-line holography (DIH) ) e
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digital holograms of the breakup of an ethanol d.rop
air-stream (Gao, Guildenbecher et al 2013, Opr. Lett.)

reconstrumrdeubllmmtgrﬂnmnhmp@t depth z

Light is numerically back-propagated using the diffraction equation:
—jk

E(x,y,2)== ﬂE(gn,z 0)— —dZdr where: r=1J(& ~x)* + (7 —y) +2°
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Depth-of-focus problem ) e,

Laboratories

The spatial extent of the diffraction
pattern limits the angular aperture,
(3, from which a particle is effectively
reconstructed (Meng et al, 2004, Meas. Sci.

Technol.)
= From the central diffraction lobe
2> Q=24/d

= Using the traditional definition of
depth-of-focus, o, based on
change of intensity within the
particle center 2 0= 44/0?
= Therefore: for in-line holography, o= d?/A
= Example: d =300 um, =532 nm = 6= 170 mm!
= We can improve this to 0= O(600 um) with image processing routines
= E.g. Guildenbecher et al 2013, Appl. Opt.; Gao et al 2013, Opt. Express; Gao et
al 2014, Appl. Opt.

Nevertheless, we are always working to overcome to depth of focus problem
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Aerodynamic drop fragmentation ) i,
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Lenses

. . . Di i -
Experimental configuration: Double- 'spﬁgs'"g? lg
CCD camera

pulsed laser and imaging hardware as Spatia
typically used in PIV —

= A4=532nm, 5 ns pulsewidth

= |Interline transfer CCD Optical configuration (Gao, Guildenbecher et al 2013, Opt. Lett.)
(4008 X 2672, 9 um pixel pitch)

= Temporal separation, At = 62 ps,
determined by laser timing

Drop .
Trajectory i

Note: without a separate reference
wave, coherence length requirements
in DIH are greatly relaxed.

=  Expensive injection seeders are
not always needed

= |f you have a PIV system, you con

probably do this experiment

digital holograms of the breakup of an ethanol drop in an
air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.)
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Aerodynamic drop fragmentation ) i
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Secondary drop sizes/positions extracted 10mis 19
by the hybrid method | - 1 ~0
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DIH at kHz rates



High-speed (kHz) DIH () S
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Increased temporal resolution is possible using high-speed (kHz rate) cameras
. i-1,=-165ms = lelms v

5 mm

Challenges: (1) higher readout noise, fewer pixels, larger pixel pitches
(2) very large data sets (10s of Gb)
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High-speed (kHz) DIH ) e,
Laboratories
.'-. : : : :ri.' : ) 1 0.7 5
ms
> 0.6 o
s . = ™,
£ 05 ., g N
P . B “
04 ‘."q. i ",
Yo, *s
-10
0 10 20 0 10 20
time, ¢ - &y [ms] time, 7 - t [ms]
120 .
ot
| 3’:
118 LW
. v!?@- .
116 1 *t-t" .
o L
114 i "Q’r
‘ w:'r:. N
RCAD
= 1127 ‘s 'of &
g . ‘é’&u
t 110 4 +* : A
108 1 o
106 1 g
104
102 . ’ ’
5 10 15 20

= Frame-to-frame particle matching illustrates the depth-of-focus problem

=  With sufficient temporal resolution, particles trajectories can be fit to

temporal models
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High-speed (kHz) DIH ) i,
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=  Multi-frame trajectory fitting leads to a 36X reduction in z-uncertainty
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Quantification of liquid breakup



Breakup of a water column in a shock-tube ()=

Laboratories
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laminar water jet

5 mm
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Observed breakup morphologies () i
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Breakup morphologies similar to those observed for isolated drops




Well characterized boundary conditions ) e
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40 Pulse-burst PIV

provides detailed
characterization of

35

u (;n;g) empty shock tube at
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55 323 = Wagner et al.
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DIH recorded at 100,000 fps () S

recorded hologram at 7= 1.16 ms

shock-tube

shock propagation
direction

initially laminar water jet

1 mm

6x magnification

camera and lens 1‘ef00used tO G 80 mim

2x magnification camera
and lens

1 mm
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Temporally resolved, 3D particle field ()

Data processing similar to drop impact experiment

recorded hologram at ¢ = 1.29 ms

| mm

45'm/s —»

January 9, 2016 Daniel R. Guildenbecher 18



Multiple downstream fields of view
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Characteristic mean diameters i e,
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initiation deformation fragmentation

= Measured drops with
relative We>11 are We <119¢
expected to be unstable
and will break apart further

= Excluding drops with We>11 We>11}:
eliminates the unusual dip

200 A
g |
=
150 A -
3 —O— DIO
Q
g . !-'"“"""'-'"'"‘i' ”A_____..---- é i ----- -‘-“" 30
'Z 100 - @ Dy,
8 ‘ _____________________ "
g O\(}/O O— —O
50 - -
O 1 I I I I
0 10 20 30 40 50 60
downstream position [mm]
January 9, 2016 Daniel R. Guildenbecher 20




Size-velocitv correlations () i
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35

Hypothesis: at the furthest downstream locations the breakup of the intact
core exposes the drops to the full gas-phase convective velocity causing the
largest drops to breakup further
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Conclusions i e,
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100kHz digital in-line holography (DIH) enables detailed 3D, temporal

characterization of fragment sizes and velocities very near the site of breakup

Next steps:

= |nvestigate other flow conditions

= Leverage higher magnification FOV for improved size dynamic range
=  Attempt to bound potential measurement biases
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What is holography? A i,

boratories

= |E, +E,|?
.’ ® [ | E |2E
o Y\
beam block Y\:ﬁiﬂ&yﬂ \i\\ holographic viewer
plate

[

mirror
Optical method first proposed by Gabor in 1948
1. Coherent light diffracted by particle field forms the object wave, E_
2. Interference with a reference wave, E,, forms the hologram: h = |E_+E,|?

3. Reconstruction with E, forms virtual images at original particle locations
h-E.=(|E,|?+ |E|?)E, + |E |%E, + E2E,S
(. v Y S’ Sl
DC term virtual real
image image
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Analog holography ) e,
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Applications of holography
took off with invention of the
laser in 1960

Challenges:

=  Darkroom needed to
process the hologram

= Limited temporal resolution

= Manual post processing

T Collier et al, 1971, Optical Holography
Thompson et al, 1967, Appl. Opt.
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Digital in-line holography (DIH) ) i
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Holographic plate and wet-chemical processing replaced with digital sensor
= First proposed by Schnars and Juptner in ‘90s

= Advantages: (1) no darkroom, (2) temporal resolution is straight forward,
(3) results can be numerically refocused and post-processed

= Challenge: Resolution of digital sensors (order 100 line pairs/mm) is much
less than resolution of photographic emulsions (order 5,000 line
pairs/mm)

= For suitable off axis angles, 6, the fringe frequency, f, is typically too large to
resolve with digital sensors (f = 2sin(6/2)/A)

= Rather, the in-line configuration (8= 0) is typically utilized

-
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Where is the reference wave? i e
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spatial filter  collimating optics particle field CCD

Hologram is the combination of object and reference waves: h = |E_+E, |2

= Reconstruction with E, gives: h-E —(|E |2+ |E,|2)E.+ |E,|%E, + EE,)
v SN

DC term virtual real
image image

= |n off-axis holography, these terms are spatially separated and we attempt to
reconstruct the original object wave, E,
= Inin-line holography, we actually want to reconstruct the combination of
the reference wave and object wave, E_+E,
= Rearranging: h-E,= |E_|%E, + |E,|%(E+E,) + E’E
N~ S—~—" N
DC term virtual real
image image
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Numerical refocusing ) e
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Light propagation in a non-absorbing, constant index of refraction medium is
described by the diffraction integral equation:

E(x,y,2)=— Hf(f n,2=0)

" E(£1,0) = complex amplitude at hologram plane = h(&,n)-E,”

- jkr

—dédy  where: r =JE=XxP +(n-y) +2°

= FE(x,y,z) = refocused complex amplitude at optical depth z

Drop ,
Trajectory ;

e

digital holograms of the breakup of an ethanol drop
air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.)

reconstruﬂmﬁdaupllmmgrﬂrmom&o@t depth z
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