

Sivasankaran Rajamanickam[†], Ichitaro Yamazaki*, Erik G. Boman[†],
Andrey Prokopenko[†], Michael A. Heroux[†], Jack Dongarra^{*}

[†]Sandia National Laboratories, Albuquerque, New Mexico, USA

^{*}University of Tennessee, Knoxville, USA

SIAM Applied Linear Algebra
October 2015

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

We consider solving the linear system of equations,

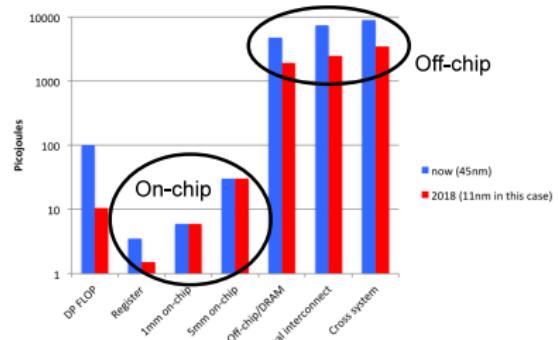
$$Ax = b,$$

where A is large and non-symmetric.

- ▶ Many applications: e.g., scientific/engineering applications when solving PDEs
- ▶ **Communication-avoiding Krylov method:**
 - GMRES for solving large-scale problems
- ▶ **Communication-Avoiding Preconditioners for CA methods**
 - A domain decomposition framework for CA preconditioning
- ▶ Hybrid CPU/GPU cluster implementation

Communication-Avoiding Methods

- ▶ Communication:
 - Moving data between levels of memory
 - Moving data between processors in a network
- ▶ Communication-Avoiding: Reduce Communication (messages, volume)
 - Not Communication hiding
- ▶ Improves Time to solution and Reduces energy consumption
- ▶ More important in future architectures



(Image Courtesy: John Shalf, LBL)

Communication-Avoiding Iterative Methods

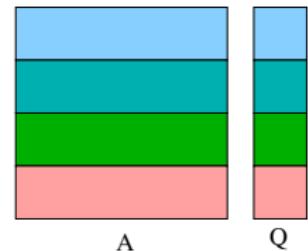
- ▶ Originally proposed 30 years ago for Conjugate Gradient (J. van Rosendale, 1983).
- ▶ Chronopoulos and Gear - “s-step iterative methods” (1989)
- ▶ R. Leland - The effectiveness of these methods (1989)
- ▶ Walker - Implementation of the GMRES method using Householder transformations (1988)
- ▶ E. de Sturler and H. A. van der Vorst - GMRES and CG, basis vectors (2005)
- ▶ M. Hoemmen (2010) - TSQR, “Communication-Avoiding” methods
- ▶ Two main problems:
 - “Good” basis vectors (works for practical ‘s’)
 - Lack of preconditioners (This talk)

Preconditioners for Communication-Avoiding Iterative Methods

- ▶ Preconditioners that are like SpMV or that add no communication
 - Polynomial preconditioning, Sparse approximate inverse
 - CA-ILU(0) (L. Grigori and S. Moufawad, 2013)
 - Deflation based preconditioning (E. Carson 2014)
- ▶ Preconditioners that use low-rank like structures might be an option
 - Need changes to how the matrix is stored and no known evaluation with s-step methods
- ▶ Other related methods
 - s-step GMRES as bottom solver for multigrid (IPDPS 14)
 - Communication hiding pipelined Krylov methods do not have the preconditioning problem (P. Ghysels et al., 2013)
 - Hierarchical Krylov Methods [L. McInnes et al.]

Restarted GMRES with GPUs

```
1 Generate Krylov Basis on GPUs:  $O(m \cdot nnz(A) + m^2 n)$  flops
  for  $j = 1, 2, \dots, m$  do
    Sparse Matrix-Vector Multiply (SpMV (+ Precond)):
       $\mathbf{q}_{j+1} := A\mathbf{q}_j$ 
    Orthonormalization (Orth):
       $\mathbf{q}_{j+1} := \mathbf{q}_{j+1} - Q_{1:j} Q_{1:j}^T \mathbf{q}_{j+1}$ 
  end for
2 Solve Projected Subsystem on CPUs:  $O(m^2)$  flops
  small structured least-square problem
  → restart with “best” initial vector  $\mathbf{q}_1$  in  $Q_{1:m}$ 
```



- ▶ generating basis vectors dominates computational cost.
 - ▶ distribute A and Q in a 1D block row among GPUs.
 - ▶ redundantly solve least-squares by each process.
- ▶ both *SpMV* and *Orth* require “expensive” communication:
 - ▶ point-to-point/neighborhood for *SpMV* (inter-GPU).
 - ▶ global all-reduces in *Orth* (inter-GPU).
 - ▶ data movements through local memory hierarchy (intra-GPU).

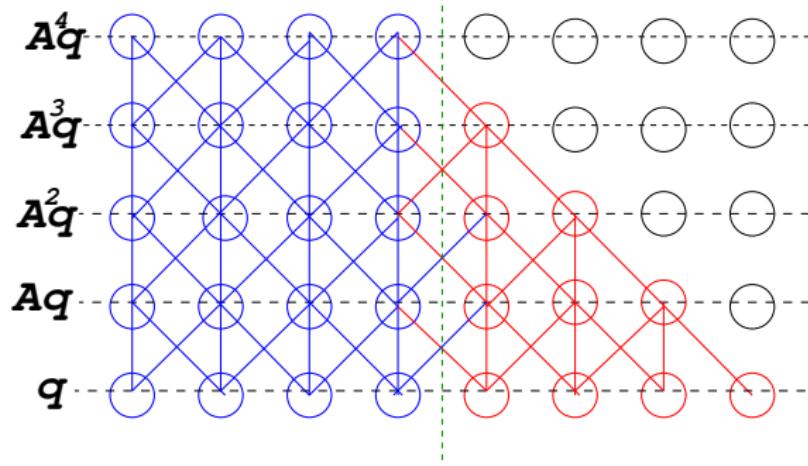
Communication-Avoiding Implementation of s -step GMRES

```
1. Generate Krylov Basis:  
  for  $j = 1, 1 + s, \dots, m$  do  
    Matrix Powers Kernel (MPK):  
       $\mathbf{q}_{k+1} := A\mathbf{q}_k$ , for  $k = j, \dots, j + s - 1$   
    Block Orthogonalization (BOrth):  
      orthogonalize  $Q_{j+1:j+s}$  against  $Q_{1:j}$   
    Tall-skinny QR (TSQR):  
      orthogonalize  $Q_{j+1:j+s}$   
      compute  $H_{j:j+s-1, j+1:j+s}$   
  end for  
2. Solve Projected Subsystem on CPUs:  $\sim O(m^2)$  flops.  
  structured small least-square problem  
  → restart with “best” initial vector  $\mathbf{q}_1$  in  $Q_{1:m}$ .
```

- ▶ replace *SpMV* and *Ortho* with *MPK* and *BOrth+TSQR*.
- ▶ reduce comm by generating s vectors “at once”
(e.g., replace BLAS-2 with BLAS-3).

Matrix Powers Kernel for a tridiagonal matrix

For a given starting vector \mathbf{q} , compute $A\mathbf{q}, A^2\mathbf{q}, \dots, A^s\mathbf{q}$ (e.g., $s = 4$):

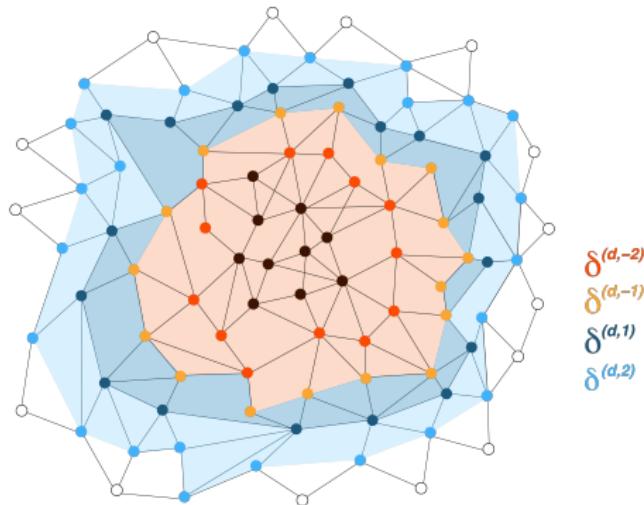


1. communicate required nonlocal elements for s -step between GPUs
2. apply s *SpMVs* with extra computation on shrinking ghost
 - local submatrix is expanded with s -level ghost

→ reduce inter-GPU latency by s (with redundant computation).

Matrix Powers Kernel for a general matrix ($s = 2$):

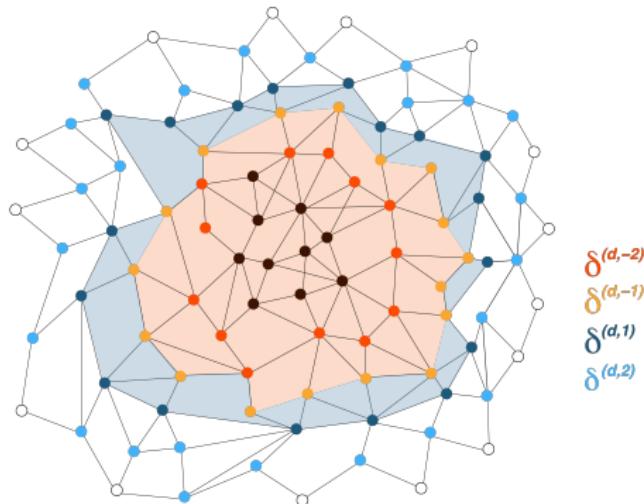
In adjacency graph of A ,



- ▶ at 1st step of *MPK*,
we perform *SpMV* with **local** and 2-level **ghost** elements of \mathbf{q}_1

Matrix Powers Kernel for a general matrix ($s = 2$):

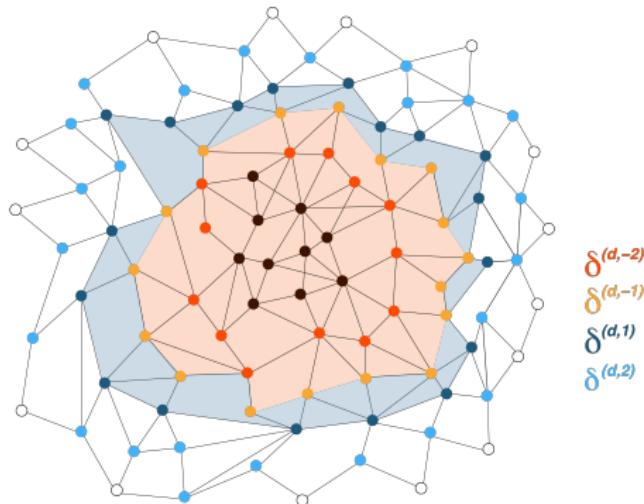
In adjacency graph of A ,



- ▶ at 1st step of *MPK*,
we perform *SpMV* with **local** and 2-level **ghost** elements of \mathbf{q}_1
→ compute **local** and 1-level **ghost** elements of \mathbf{q}_2

Matrix Powers Kernel for a general matrix ($s = 2$):

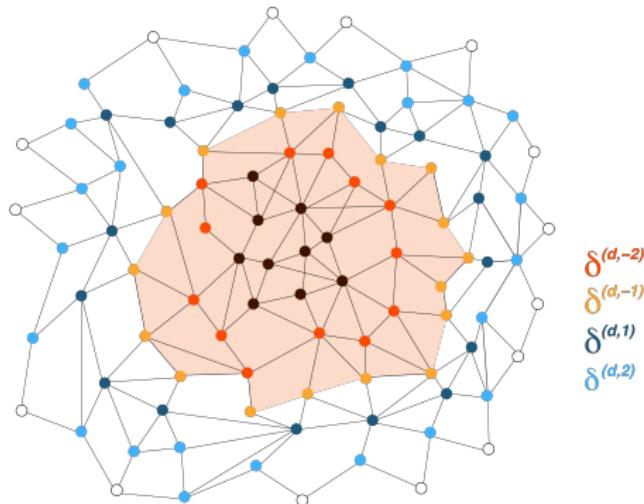
In adjacency graph of A ,



- at 2nd step of *MPK*,
we perform *SpMV* with **local** and 1-level **ghost** elements of \mathbf{q}_2

Matrix Powers Kernel for a general matrix ($s = 2$):

In adjacency graph of A ,



- at 2nd step of *MPK*,
we perform *SpMV* with **local** and 1-level **ghost** elements
→ compute **local** elements of \mathbf{q}_3

Our Matrix Powers Kernel Implementation with multiple GPUs

Initialize *MPK*:

set up communication pattern.
expand **local** submatrix with **ghost** elements, etc.

CA-GMRES with GPUs.

1. Generate Krylov Basis:

for $j = 1, 1 + s, \dots, m$ **do**

MPK:

Inter-GPU Communication: each MPI process

1. CPU \leftarrow GPUs using CUDA

2. CPUs \longleftrightarrow CPUs using MPI

3. CPU \rightarrow GPUs using CUDA

GPU Kernel:

for $k = 1, 2, \dots, s$ **do**

SpMV with **local** and k -level **ghost** elements

end for

BOrth and *TSQR*.

end for

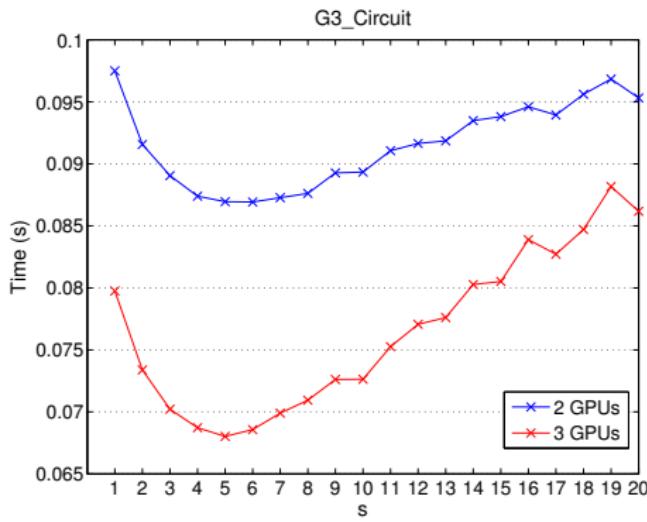
2. Solve projected system.

- ▶ currently optimized only for inter-GPU communication,
and not for intra-GPU communication

Matrix Powers Kernel Performance on a node

Our MPK requires overheads, but reduces inter-GPU latency:

- ▶ additional memory to store “ghost” elements
- ▶ addition computation for $SpMV$ with “ghost” elements
- ▶ potentially, increasing total inter-GPU communication volume.



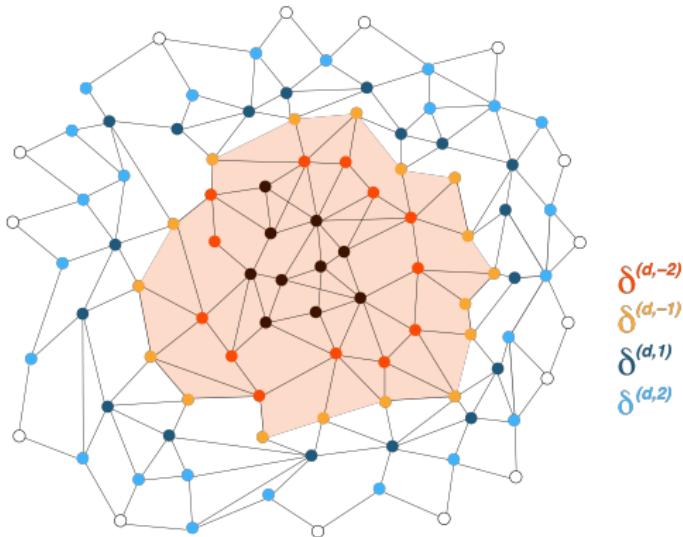
Integrating preconditioner into MPK

Apply $Preco$ followed by $SpMV$ at each step of MPK

```
for  $k = j, j + 1, \dots, j + s - 1$  do
     $Preco$ :  $\mathbf{q}_{k+1} := M^{-1}\mathbf{q}_k$ 
     $SpMV$ :  $\mathbf{q}_{k+1} := A\mathbf{q}_{k+1}$ 
end for
```

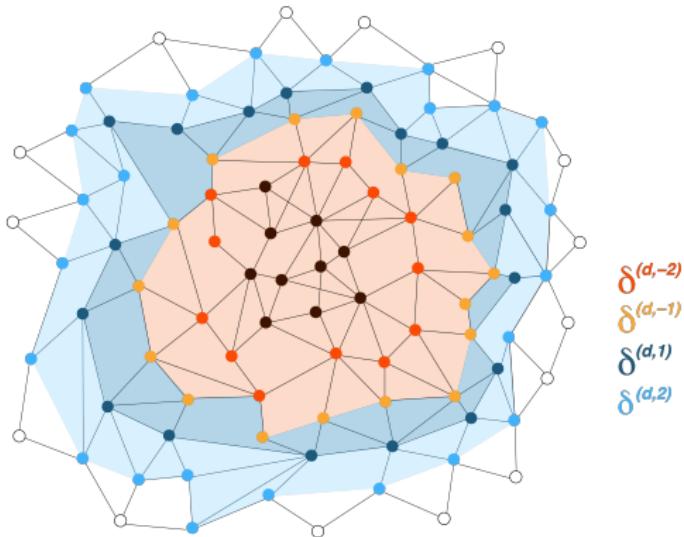
- ▶ focus on right-preconditioning, generating $\kappa(AM^{-1}, \mathbf{q}_1)$
 - can be easily extended to left-preconditioning
- ▶ not increase inter-GPU comm from what is already needed by MPK

Challenge: block Jacobi preconditioner increases communication



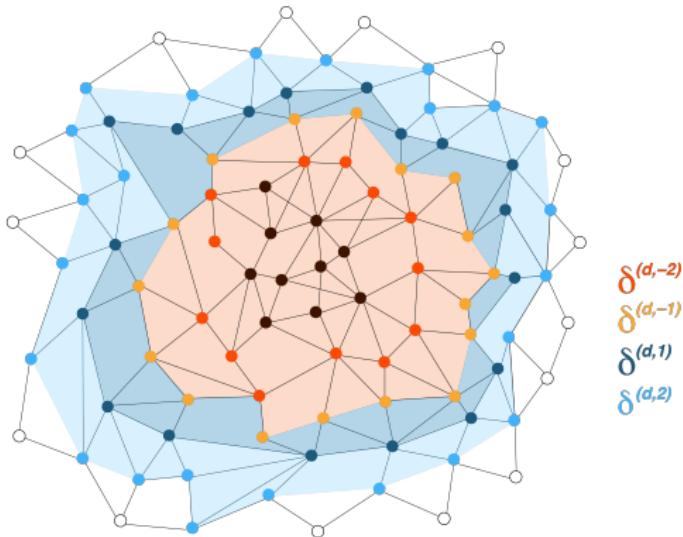
- ▶ each GPU *Precon* local elements of \mathbf{q}_1 , solving its local sub-problem.
- ▶ *SpMV* requires “preconditioned” s -level ghost elements of \mathbf{q}_1
→ additional communication

Challenge: block Jacobi preconditioner increases communication



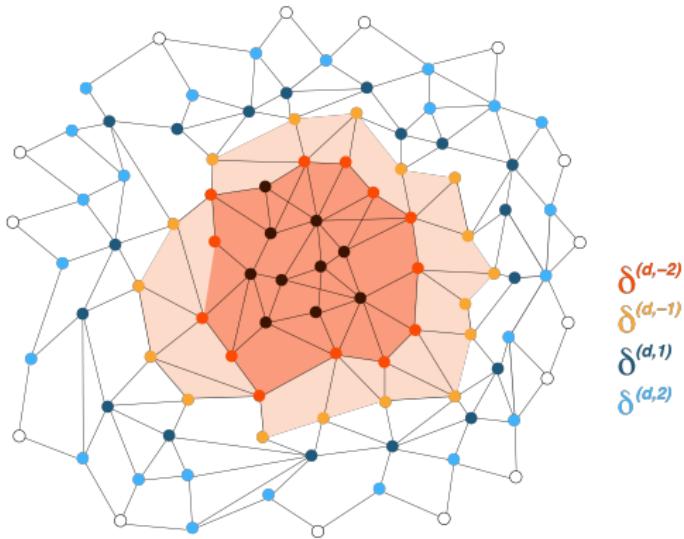
- ▶ each GPU *Precon* local elements of \mathbf{q}_1 , solving its local sub-problem.
- ▶ *SpMV* requires “preconditioned” s -level ghost elements of \mathbf{q}_1
→ additional communication

Challenge: block Jacobi preconditioner increases communication



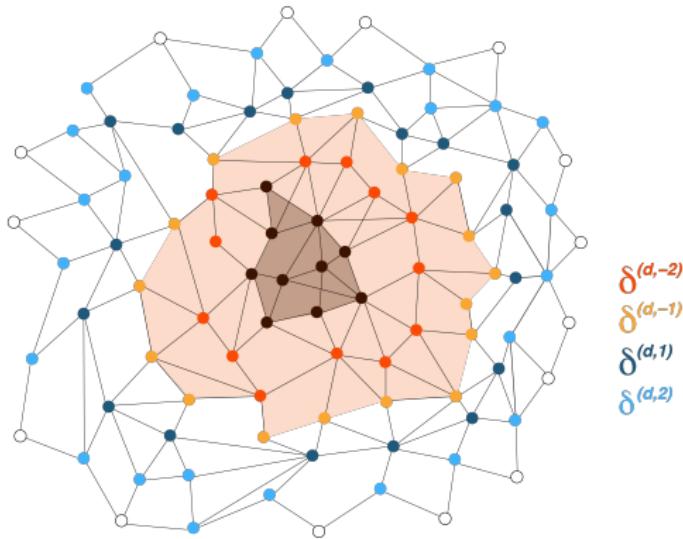
- ▶ Solution 1: consider $2 \times s$ levels of ghost (*Preco* then *SpMV*)
- ▶ Solution 2: consider what we can do without additional comm

Domain Decomposition Preconditioner for CA-Krylov



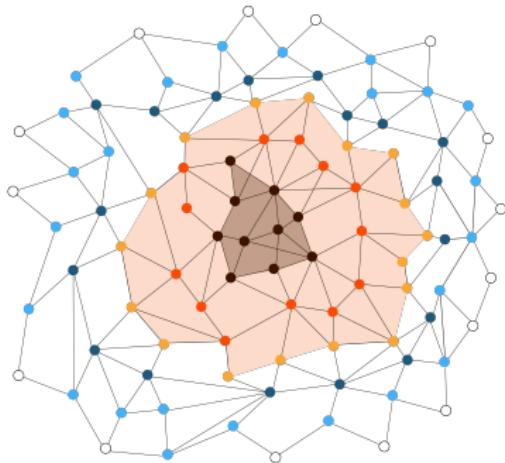
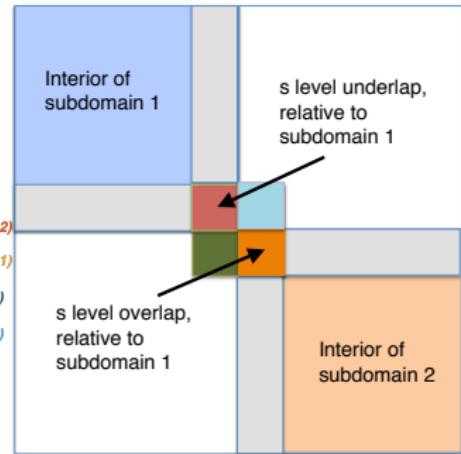
- ▶ for 1st *SpMV*, neighboring GPUs require elements on 1-level **underlap**
 - **local** elements reachable from other subdomains by one edge

Domain Decomposition Preconditioner for CA-Krylov



- ▶ for 2nd *SpMV*, neighboring GPUs require elements on 2-level underlap
 - **local** elements reachable from other subdomains by two edges

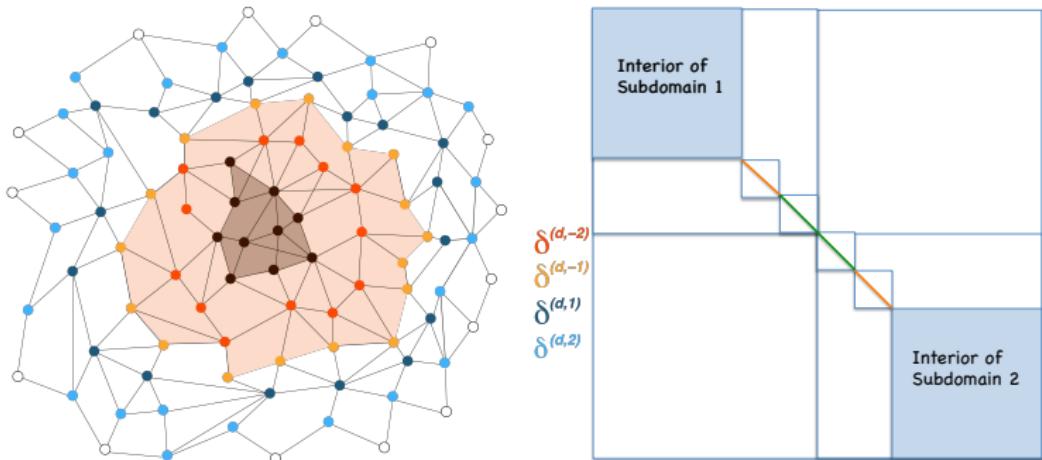
Domain Decomposition Preconditioner for CA-Krylov



In order to “localize” effects of preconditioner,

- ▶ form “interior” by removing s -level “underlap”
- ▶ apply “local” preconditioner on “interior” and “underlap/ghost,” separately
 - ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on “interior”

Domain Decomposition Preconditioner for CA-Krylov

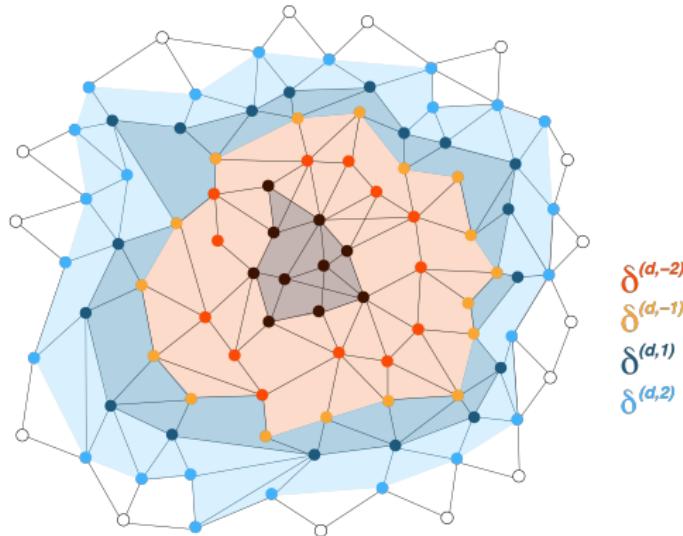


In order to “localize” effects of preconditioner,

- ▶ form “interior” by removing s -level “underlap”
- ▶ apply “local” preconditioner on “interior” and “underlap/ghost,” separately
 - ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on “interior”
 - diagonal Jacobi on “underlap” and “ghost”

Domain Decomposition Preconditioner for CA-Krylov

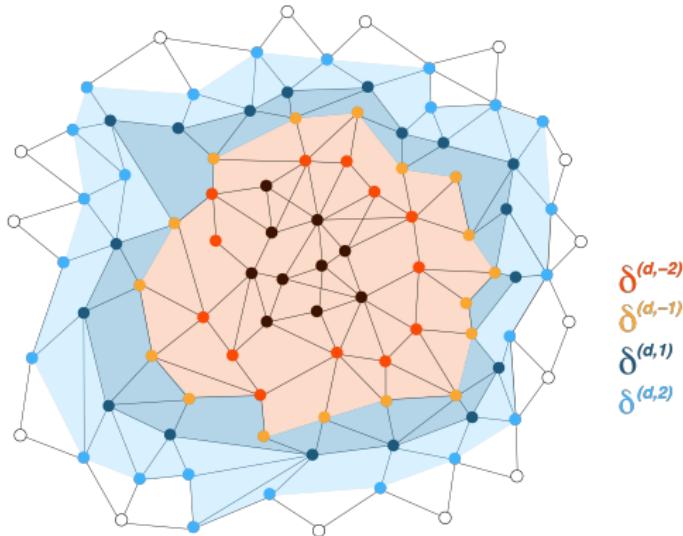
For *Precon* at 1st step of *MPK*,



- ▶ local preconditioning on interior and 2-level underlap/ghost of \mathbf{q}_1
 - ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on interior
 - diagonal Jacobi on underlap and 2-level ghost

Domain Decomposition Preconditioner for CA-Krylov

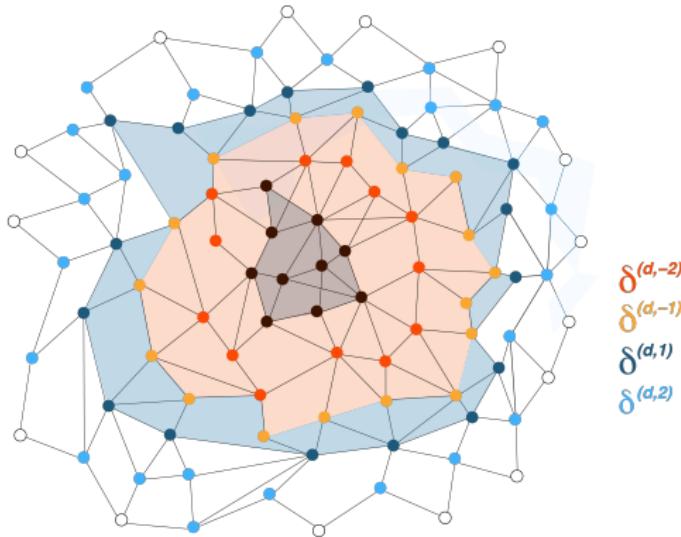
For $SpMV$ at 1st step of MPK ,



- ▶ $SpMV$ with local **subdomain** and 2-level **ghost** of \mathbf{q}_1

Domain Decomposition Preconditioner for CA-Krylov

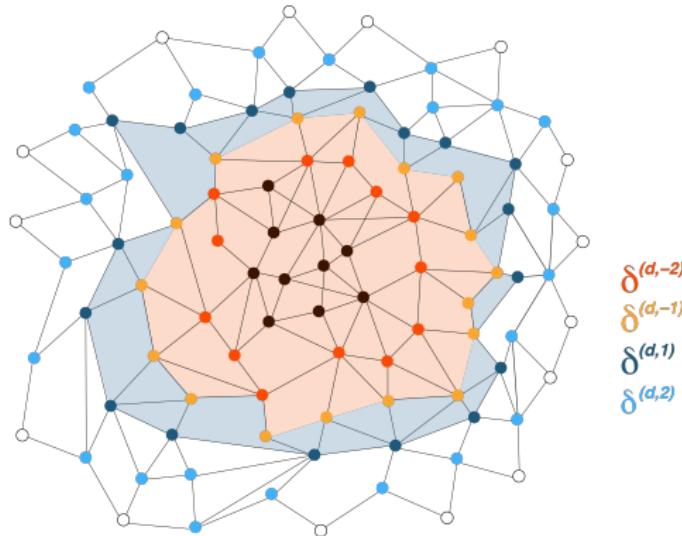
For *Precon* at 2nd step of *MPK*,



- ▶ local preconditioning on interior and 1-level underlap/ghost of \mathbf{q}_2
 - ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on interior
 - diagonal Jacobi on underlap and 1-level ghost

Domain Decomposition Preconditioner for CA-Krylov

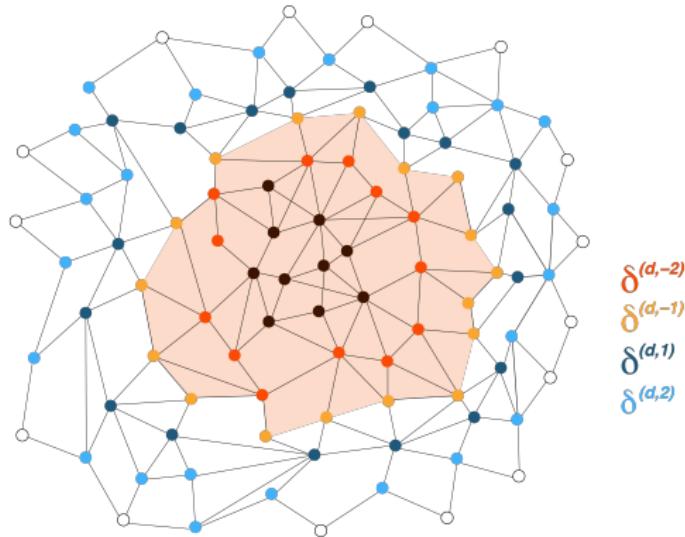
For $SpMV$ at 2nd step of MPK ,



- ▶ $SpMV$ with local **subdomain** and 1-level **ghost** of q_2

Domain Decomposition Preconditioner for CA-Krylov

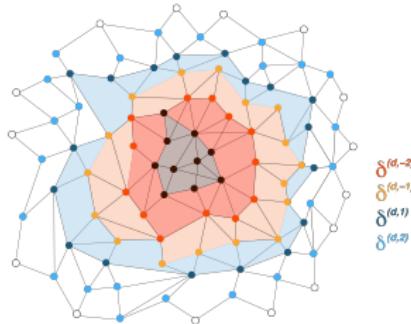
For $SpMV$ at 2nd step of MPK ,



- ▶ apply $SpMV$ with local **subdomain** and 1-level **ghost**
→ compute **local** elements of \mathbf{q}_3

Domain Decomposition Preconditioner for CA-Krylov

Summary:

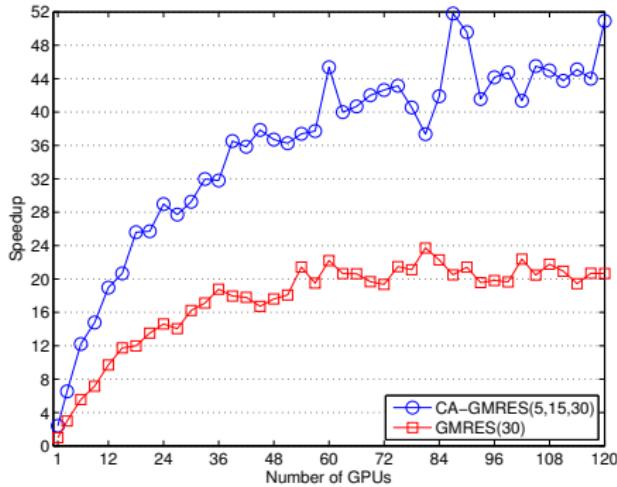


- ▶ no increase in inter-GPU communication
- ▶ any local preconditioner/solver on interior
 - ILU(k or τ), SAI(k), Jacobi, Gauss-Seidel, etc.
- ▶ preconditioner on **underlap/ghost**
 - diagonal Jacobi: interior precond propagates only within **subdomain**
 - extension in current work

Experimental Setup

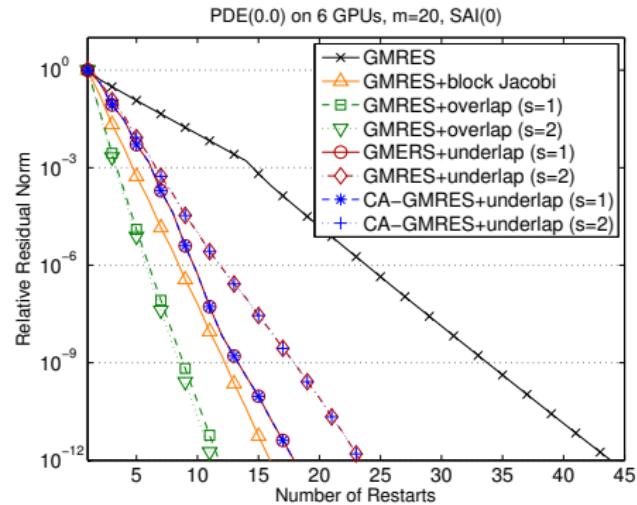
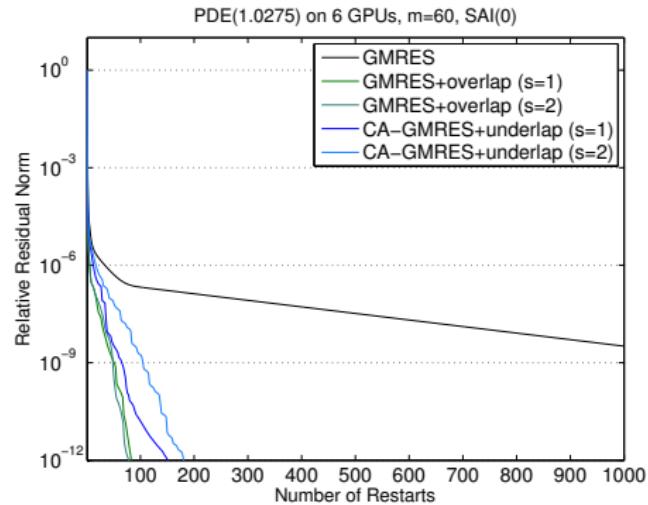
- ▶ graph partitioning (e.g., METIS) for load balance and small communication
- ▶ local matrix reordering (e.g., METIS, RCM) for performance (e.g., nested dissection for triangular solves on GPU)
- ▶ matrix equilibration for numerical stability
- ▶ Newton basis to enhance *MPK* stability
- ▶ *Precon* computed on CPU (e.g., ITSOL, ParaSail), and copied and apply it on GPU (e.g., trsv/spmv of CuSPARSE)
- ▶ Keeneland at Georgia Tech
each node has 2×6 Intel Xeon + 3 NDIVIA M2090.
- ▶ Test matrix: PDE(α): $n \approx 10^6$, symmetric but can be indefinite
 - larger α makes it more ill-conditioned
 - $\alpha > 1$ makes it indefinite

CA-GMRES Performance (speedups vs. GMRES on one GPU)



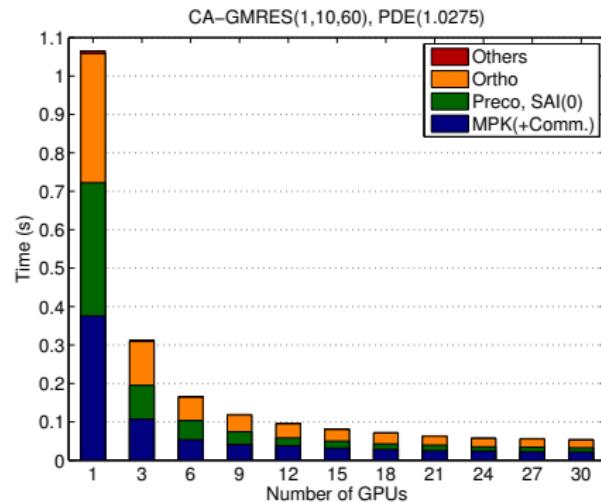
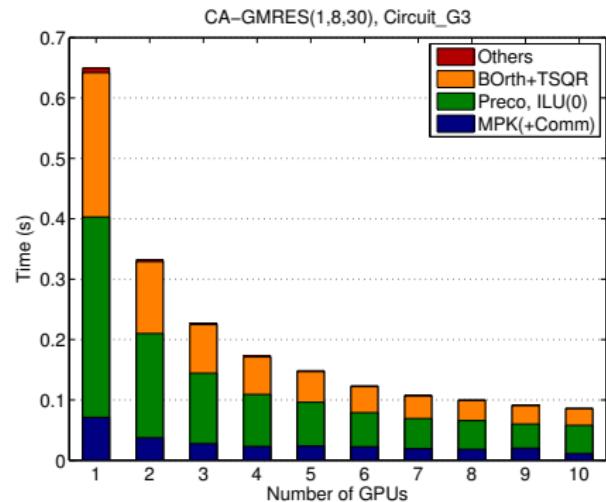
- obtained speedups of up to 2.5
 - more details in IPDPS/SC'14 papers.

Convergence Results



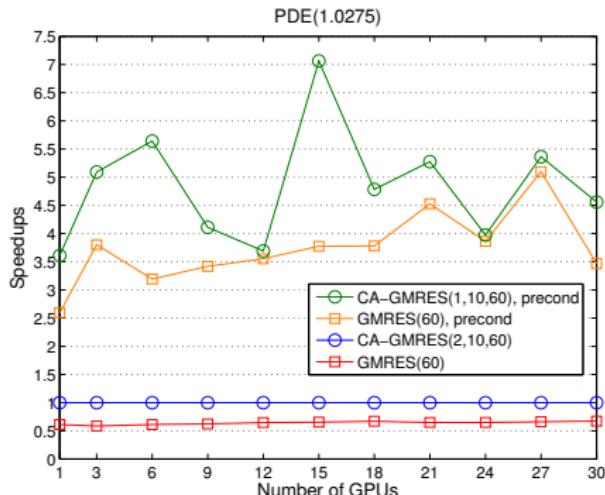
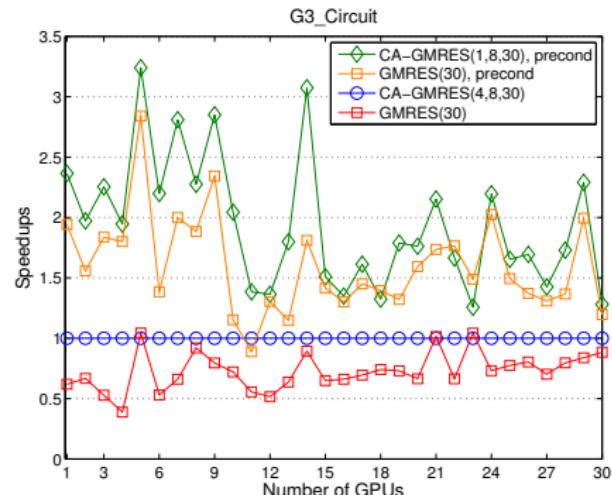
- DD preconditioner improves the convergence
 - faster convergence with a larger overlap
 - slower convergence with a larger underlap

Restart Cycle Time Breakdown



- ▶ SAI(0) is used for PDE(1.0275)
- ▶ ILU(0) is required for Circuit_G3

Time to Solution Speedups vs. CA-GMRES



- ▶ speedups of up to $7.5\times$ over CA-GMRES without preconditioner
- ▶ speedups of up to $1.7\times$ over GMRES with preconditioner
 - ▶ Our *MPK* is not optimized on a GPU
 - ▶ On GPUs, *Ortho* performs great, and *SpMV/Preco* can dominate easily.

Summary

- ▶ proposed domain decomposition preconditioners for CA-Krylov
 - ▶ do not increase inter-process communication
 - ▶ can use any solver on interior problem
- ▶ presented results of a block Jacobi like implementation
 - ▶ diagonal Jacobi on underlap/ghost
 - ▶ potential to improve convergence/performance
 - over precond GMRES or standard CA-GMRES

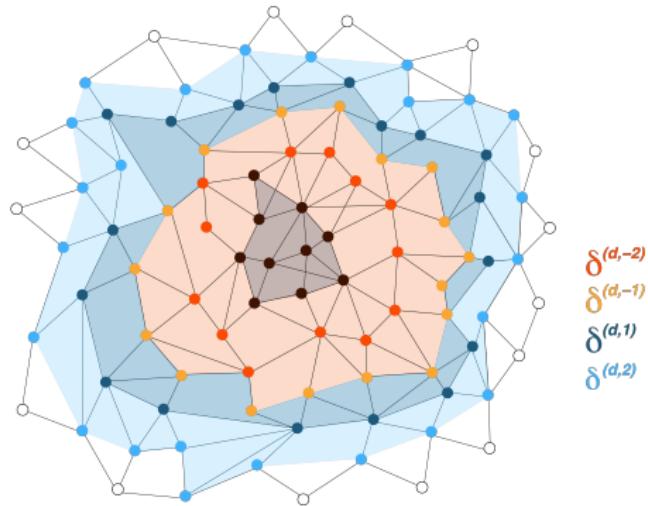
Future work

- ▶ improving performance
 - ▶ utilizing CPU, partitioning, etc.
- ▶ underlap/ghost preconditioning
- ▶ more extensions (e.g., “flexible” preconditioner)

Thank you!!

Domain Decomposition Preconditioner for CA-Krylov

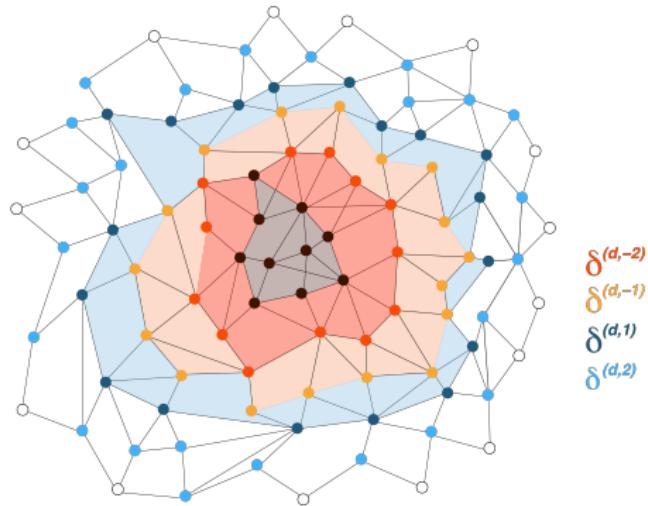
For **SpMV** at 1st step of **MPK**,



- ▶ perform **SpMV** with local subdomain and 2nd-level ghost

Domain Decomposition Preconditioner for CA-Krylov

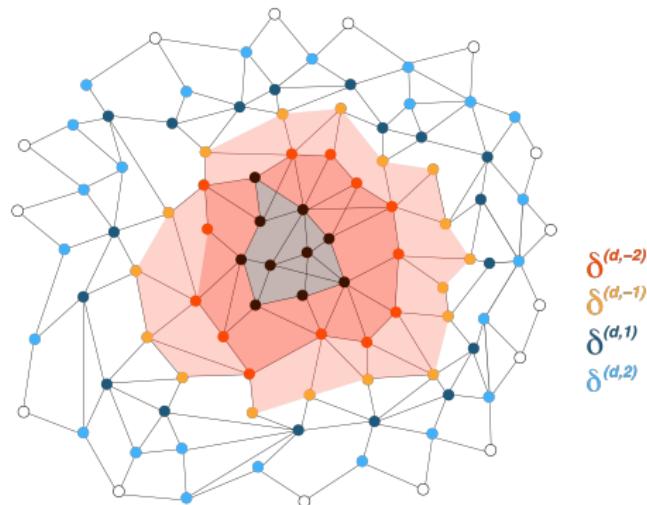
After SpMV at 1st step of MPK,



- ▶ effects of interior precond propagates into 2nd-level underlap

Domain Decomposition Preconditioner for CA-Krylov

After SpMV at 2nd step of MPK,



- ▶ effects of interior precond pro pages into 1st-level ghost

Matrix Powers Kernel Performance on a node

