
Preconditioning Communication-Avoiding Krylov Methods

Sivasankaran Rajamanickam†, Ichitaro Yamazaki∗, Erik G. Boman†,
Andrey Prokopenko†, Michael A. Heroux†, Jack Dongarra∗

†Sandia National Laboratories, Albuquerque, New Mexico, USA
∗University of Tennessee, Knoxville, USA

SIAM Applied Linear Algebra
October 2015

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000.

Domain decomposition based CA preconditioner 1/35

SAND2015-11055C



Outline

We consider solving the linear system of equations,

Ax = b,

where A is large and non-symmetric.

I Many applications: e.g., scientific/engineering applications when solving PDEs

I Communication-avoiding Krylov method:

- GMRES for solving large-scale problems

I Communication-Avoiding Preconditioners for CA methods

- A domain decomposition framework for CA preconditioning

I Hybrid CPU/GPU cluster implementation

Domain decomposition based CA preconditioner 2/35



Communication-Avoiding Methods

I Communication:

- Moving data between levels of memory

- Moving data between processors in a network

I Communication-Avoiding: Reduce Communication (messages, volume)

- Not Communication hiding

I Improves Time to solution and
Reduces energy consumption

I More important in future
architectures

Communication costs a lot of energy!!!!

• Hypothesis: Reducing communication via
communication-avoiding (CA) algorithms can reduce
energy/task

Source: John Shalf, LBLAndrew Gearhart March 1, 2013 3

(Image Courtesy: John Shalf, LBL)

Domain decomposition based CA preconditioner 3/35



Communication-Avoiding Iterative Methods

I Originally proposed 30 years ago for Conjugate Gradient (J. van Rosendale,
1983).

I Chronopoulos and Gear - “s-step iterative methods” (1989)

I R. Leland - The effectiveness of these methods (1989)

I Walker - Implementation of the GMRES method using Householder
transformations (1988)

I E. de Sturler and H. A. van der Vorst - GMRES and CG, basis vectors
(2005)

I M. Hoemmen (2010) - TSQR, “Communication-Avoiding” methods

I Two main problems:

- “Good” basis vectors (works for practical ‘s’)

- Lack of preconditioners (This talk)

Domain decomposition based CA preconditioner 4/35



Preconditioners for Communication-Avoiding Iterative
Methods

I Preconditioners that are like SpMV or that add no communication

- Polynomial preconditioning, Sparse approximate inverse

- CA-ILU(0) (L. Grigori and S. Moufawad, 2013)

- Deflation based preconditioning (E. Carson 2014)

I Preconditioners that use low-rank like structures might be an option

- Need changes to how the matrix is stored and no known evaluation with
s-step methods

I Other related methods

- s-step GMRES as bottom solver for multigrid (IPDPS 14)

- Communication hiding pipelined Krylov methods do not have the
preconditioning problem (P. Ghyssels et al., 2013)

- Heirarchical Krylov Methods [L. McInnes et al.]

Domain decomposition based CA preconditioner 5/35



Restarted GMRES with GPUs

1 Generate Krylov Basis on GPUs: O(m · nnz(A) + m2n) flops

for j = 1, 2, . . . ,m do

Sparse Matrix-Vector Multiply (SpMV (+ Precond)):

qj+1 := Aqj

Orthonormalization (Orth):

qj+1 := qj+1 −Q1:jQ
T
1:jqj+1

end for

2 Solve Projected Subsystem on CPUs: O(m2) flops

small structured least-square problem

→ restart with “best” initial vector q1 in Q1:m A Q

I generating basis vectors dominates computational cost.
I distribute A and Q in a 1D block row among GPUs.
I redundantly solve least-squares by each process.

I both SpMV and Orth require “expensive” communication:
I point-to-point/neighborhood for SpMV (inter-GPU).
I global all-reduces in Orth (inter-GPU).

I data movements through local memory hierarchy (intra-GPU).

Domain decomposition based CA preconditioner 6/35



Communication-Avoiding Implementation of s-step GMRES

1.Generate Krylov Basis:
for j = 1, 1 + s, . . . ,m do

Matrix Powers Kernel (MPK):
qk+1 := Aqk, for k = j, . . . , j + s− 1

Block Orthogonalization (BOrth):
orthogonalize Qj+1:j+s against Q1:j

Tall-skinny QR (TSQR):
orthogonalize Qj+1:j+s

compute Hj:j+s−1,j+1:j+s

end for
2.Solve Projected Subsystem on CPUs: ∼ O(m2) flops.

structured small least-square problem

→ restart with “best” initial vector q1 in Q1:m.

I replace SpMV and Ortho with MPK and BOrth+TSQR.

I reduce comm by generating s vectors “at once”
(e.g., replace BLAS-2 with BLAS-3).

Domain decomposition based CA preconditioner 7/35



Matrix Powers Kernel for a tridiagonal matrix

For a given starting vector q, compute Aq, A2q, . . . , Asq (e.g., s = 4):

Aq

q

Aq

Aq

Aq

2

3

4

1. communicate required nonlocal elements for s-step between GPUs

2. apply s SpMVs with extra computation on shrinking ghost

- local submatrix is expanded with s-level ghost

→ reduce inter-GPU latency by s (with redundant computation).

Domain decomposition based CA preconditioner 8/35



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 1st step of MPK,
we perform SpMV with local and 2-level ghost elements of q1

Domain decomposition based CA preconditioner 9/35



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 1st step of MPK,
we perform SpMV with local and 2-level ghost elements of q1

→ compute local and 1-level ghost elements of q2

Domain decomposition based CA preconditioner 10/35



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 2nd step of MPK,
we perform SpMV with local and 1-level ghost elements of q2

Domain decomposition based CA preconditioner 11/35



Matrix Powers Kernel for a general matrix (s = 2):

In adjacency graph of A,

I at 2nd step of MPK,
we perform SpMV with local and 1-level ghost elements

→ compute local elements of q3

Domain decomposition based CA preconditioner 12/35



Our Matrix Powers Kernel Implementation with multiple GPUs

Initialize MPK:
set up communication pattern.

expand local submatrix with ghost elements, etc.

CA-GMRES with GPUs.
1. Generate Krylov Basis:

for j = 1, 1 + s, . . . ,m do

MPK:
Inter-GPU Communication: each MPI process

1. CPU ← GPUs using CUDA

2. CPUs ←→ CPUs using MPI

3. CPU → GPUs using CUDA

GPU Kernel:
for k = 1, 2, . . . s do

SpMV with local and k-level ghost elements

end for

BOrth and TSQR.
end for

2. Solve projected system.

I currently optimized only for inter-GPU communication,
and not for intra-GPU communication

Domain decomposition based CA preconditioner 13/35



Matrix Powers Kernel Performance on a node

Our MPK requires overheads, but reduces inter-GPU latency:

I additional memory to store “ghost” elements

I addition computation for SpMV with “ghost” elements

I potentially, increasing total inter-GPU communication volume.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

s

T
im

e
 (

s
)

G3_Circuit

 

 

2 GPUs

3 GPUs

Domain decomposition based CA preconditioner 14/35



Integrating preconditioner into MPK

Apply Preco followed by SpMV at each step of MPK

for k = j, j + 1, . . . , j + s− 1 do

Preco: qk+1 := M−1qk

SpMV: qk+1 := Aqk+1

end for

I focus on right-preconditioning, generating κ(AM−1,q1)

- can be easily extended to left-preconditioning

I not increase inter-GPU comm from what is already needed by MPK

Domain decomposition based CA preconditioner 15/35



Challenge: block Jacobi preconditioner increases communication

I each GPU Precon local elements of q1, solving its local sub-problem.

I SpMV requires “preconditioned” s-level ghost elements of q1

→ additional communication

Domain decomposition based CA preconditioner 16/35



Challenge: block Jacobi preconditioner increases communication

I each GPU Precon local elements of q1, solving its local sub-problem.

I SpMV requires “preconditioned” s-level ghost elements of q1

→ additional communication

Domain decomposition based CA preconditioner 17/35



Challenge: block Jacobi preconditioner increases communication

I Solution 1: consider 2× s levels of ghost (Preco then SpMV)

I Solution 2: consider what we can do without additional comm

Domain decomposition based CA preconditioner 18/35



Domain Decomposition Preconditioner for CA-Krylov

I for 1st SpMV, neighboring GPUs require elements on 1-level underlap

- local elements reachable from other subdomains by one edge

Domain decomposition based CA preconditioner 19/35



Domain Decomposition Preconditioner for CA-Krylov

I for 2nd SpMV, neighboring GPUs require elements on 2-level underlap

- local elements reachable from other subdomains by two edges

Domain decomposition based CA preconditioner 20/35



Domain Decomposition Preconditioner for CA-Krylov

Interior of 
subdomain 2

s level underlap, 
relative to 
subdomain 1

s level overlap, 
relative to 
subdomain 1

Interior of 
subdomain 1

In order to “localize” effects of preconditioner,

I form “interior” by removing s-level “underlap”

I apply “local” preconditioner on “interior” and “underlap/ghost,” separately

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on “interior”

Domain decomposition based CA preconditioner 21/35



Domain Decomposition Preconditioner for CA-Krylov

Interior of 


Subdomain 1



Interior of 


Subdomain 2



In order to “localize” effects of preconditioner,

I form “interior” by removing s-level “underlap”

I apply “local” preconditioner on “interior” and “underlap/ghost,” separately

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on “interior”

- diagonal Jacobi on “underlap” and “ghost”

Domain decomposition based CA preconditioner 22/35



Domain Decomposition Preconditioner for CA-Krylov

For Precon at 1st step of MPK,

I local preconditioning on interior and 2-level underlap/ghost of q1

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on interior

- diagonal Jacobi on underlap and 2-level ghost

Domain decomposition based CA preconditioner 23/35



Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 1st step of MPK,

I SpMV with local subdomain and 2-level ghost of q1

Domain decomposition based CA preconditioner 24/35



Domain Decomposition Preconditioner for CA-Krylov

For Precon at 2nd step of MPK,

I local preconditioning on interior and 1-level underlap/ghost of q2

- ILU(k or τ), SAI(k), Jacobi, GaussSeidel, etc. on interior

- diagonal Jacobi on underlap and 1-level ghost

Domain decomposition based CA preconditioner 25/35



Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 2nd step of MPK,

I SpMV with local subdomain and 1-level ghost of q2

Domain decomposition based CA preconditioner 26/35



Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 2nd step of MPK,

I apply SpMV with local subdomain and 1-level ghost

→ compute local elements of q3

Domain decomposition based CA preconditioner 27/35



Domain Decomposition Preconditioner for CA-Krylov

Summary:

I no increase in inter-GPU communication

I any local preconditioner/solver on interior
- ILU(k or τ), SAI(k), Jacobi, Gauss-Seidel, etc.

I preconditioner on underlap/ghost
- diagonal Jacobi: interior precond propagates only within subdomain

- extension in current work

Domain decomposition based CA preconditioner 28/35



Experimental Setup

I graph partitioning (e.g., METIS) for load balance and small communication

I local matrix reordering (e.g., METIS, RCM) for performance
(e.g., nested dissection for triangular solves on GPU)

I matrix equilibration for numerical stability

I Newton basis to enhance MPK stability

I Precon computed on CPU (e.g., ITSOL, ParaSail), and copied and
apply it on GPU (e.g., trsv/spmv of CuSPARSE)

I Keeneland at Georgia Tech
each node has 2× 6 Intel Xeon + 3 NDIVIA M2090.

I Test matrix: PDE(α): n ≈ 106, symmetric but can be indefinite
- larger α makes it more ill-conditioned

- α > 1 makes it indefinite

Domain decomposition based CA preconditioner 29/35



CA-GMRES Performance (speedups vs. GMRES on one GPU)

1 12 24 36 48 60 72 84 96 108 120
0

4

8

12

16

20

24

28

32

36

40

44

48

52

Number of GPUs

S
p

e
e

d
u

p

 

 

CA−GMRES(5,15,30)

GMRES(30)

I obtained speedups of up to 2.5

- more details in IPDPS/SC’14 papers.

Domain decomposition based CA preconditioner 30/35



Convergence Results

5 10 15 20 25 30 35 40 45
10

−12

10
−9

10
−6

10
−3

10
0

Number of Restarts

R
e
la

ti
v
e
 R

e
s
id

u
a
l 
N

o
rm

PDE(0.0) on 6 GPUs, m=20, SAI(0)

 

 

GMRES
GMRES+block Jacobi
GMRES+overlap (s=1)
GMRES+overlap (s=2)
GMERS+underlap (s=1)
GMRES+underlap (s=2)
CA−GMRES+underlap (s=1)
CA−GMRES+underlap (s=2)

100 200 300 400 500 600 700 800 900 1000
10

−12

10
−9

10
−6

10
−3

10
0

Number of Restarts

R
e
la

ti
v
e
 R

e
s
id

u
a
l 
N

o
rm

PDE(1.0275) on 6 GPUs, m=60, SAI(0)

 

 

GMRES
GMRES+overlap (s=1)
GMRES+overlap (s=2)
CA−GMRES+underlap (s=1)
CA−GMRES+underlap (s=2)

I DD preconditioner improves the convergence

- faster convergence with a larger overlap

- slower convergence with a larger underlap

Domain decomposition based CA preconditioner 31/35



Restart Cycle Time Breakdown

1 3 6 9 12 15 18 21 24 27 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of GPUs

T
im

e
 (

s
)

CA−GMRES(1,10,60), PDE(1.0275)

 

 

Others

Ortho

Preco, SAI(0)

MPK(+Comm.)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of GPUs

T
im

e
 (

s
)

CA−GMRES(1,8,30), Circuit_G3

 

 

Others

BOrth+TSQR

Preco, ILU(0)

MPK(+Comm)

I SAI(0) is used for PDE(1.0275)

I ILU(0) is required for Circuit G3

Domain decomposition based CA preconditioner 32/35



Time to Solution Speedups vs. CA-GMRES

1 3 6 9 12 15 18 21 24 27 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
PDE(1.0275)

Number of GPUs

S
p
e
e
d
u
p
s

 

 

CA−GMRES(1,10,60), precond

GMRES(60), precond

CA−GMRES(2,10,60)

GMRES(60)

1 3 6 9 12 15 18 21 24 27 30
0

0.5

1

1.5

2

2.5

3

3.5

Number of GPUs

S
p
e
e
d
u
p
s

G3_Circuit

 

 

CA−GMRES(1,8,30), precond

GMRES(30), precond

CA−GMRES(4,8,30)

GMRES(30)

I speedups of up to 7.5× over CA-GMRES without preconditioner

I speedups of up to 1.7× over GMRES with preconditioner

I Our MPK is not optimized on a GPU
I On GPUs, Ortho performs great, and SpMV/Preco can dominate

easily.

Domain decomposition based CA preconditioner 33/35



Summary

I proposed domain decomposition preconditioners for CA-Krylov

I do not increase inter-process communication
I can use any solver on interior problem

I presented results of a block Jacobi like implementation

I diagonal Jacobi on underlap/ghost
I potential to improve convergence/performance

- over precond GMRES or standard CA-GMRES

Future work

I improving performance

I utilizing CPU, partitioning, etc.

I underlap/ghost preconditioning

I more extensions (e.g., “flexible” preconditioner)

Domain decomposition based CA preconditioner 34/35



Thank you!!

Domain decomposition based CA preconditioner 35/35



Domain Decomposition Preconditioner for CA-Krylov

For SpMV at 1st step of MPK,

I perform SpMV with local subdomain and 2nd-level ghost

Domain decomposition based CA preconditioner 36/35



Domain Decomposition Preconditioner for CA-Krylov

After SpMV at 1st step of MPK,

I effects of interior precond propagates into 2nd-level underlap

Domain decomposition based CA preconditioner 37/35



Domain Decomposition Preconditioner for CA-Krylov

After SpMV at 2nd step of MPK,

I effects of interior precond pro pages into 1st-level ghost

Domain decomposition based CA preconditioner 38/35



Matrix Powers Kernel Performance on a node

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

S
u

rf
a

c
e

/V
o

lu
m

e
 R

a
ti
o

 

 

3 GPUs (natural)

2 GPUs (natural)

3 GPUs (RCM)

2 GPUs (RCM)

3 GPUs (KWY)

2 GPUs (KWY)

Domain decomposition based CA preconditioner 39/35


	Appendix

