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SNM detection/imaging

SNM detection applications
• Low signal rate

– Need large area detectors!

• Low signal to background
– Need background 

discrimination!

SNM imaging applications
• High resolution required

– Fine detector segmentation

• Multiple or extended sources
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Standoff detection

Cargo screening
Arms control treaty verification

Emergency
response

We develop systems for eventual application in a range of scenarios:



Neutron camera approaches
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Pinhole: High Resolution,
Low Throughput

Coded aperture: High 
Resolution, High Throughput



Single-Volume Neutron Scatter Camera
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Avg intrascatter time:
~2 ns @ 1 MeV

Mean free path:
~3 cm @ 1 MeV
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• A scatter camera built from a 
highly voxelated volume can 
recover more than an order of 
magnitude of efficiency if nearby 
interactions can be resolved.

• Resolving multiple interactions of 
a neutron separated by O(cm) and 
O(ns) is difficult!

• Excellent spatial and temporal 
resolution of photodetectors based 
on microchannel plates is the key 
enabling technology.

Voxelated scatter camera

neutron

PD
Organic
scintillator

Single-Volume Neutron Scatter Camera

If successful:
• Spectroscopic capability
• Good per-event angular resolution
• High efficiency
• Compact form factor



Direct reconstruction
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Event reconstruction via likelihood maximization.
• MINUIT: SIMPLEX, MIGRAD
• Deterministic Likelihood Maximization

Int #1

Int #2

(x,y,z,t,) for each int

list of photon arrival
positions and times



Simulations

• GEANT4 simulation of neutron transport, 
scintillation photon generation and transport

• 20 cm x 20 cm x 20 cm detector

• Six faces instrumented with MCP-PMT

• 3 MeV neutrons (reasonable fission energy)

• Count N interactions above 300 keV deposited
– Require N >= 2

– Reconstruction assumes N interactions, but all 
photons are used

• Gaussian pulse shape, 1 ns FWHM
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Where is the gap?

• Misreconstructed events 
tend to be due to photons 
from subsequent 
interactions “polluting” 
the results.

• Higher fraction of 3-
interaction events 
successfully reconstructed 
than 2-interaction events.

• Suggests avenue for 
improvement: allow some 
photons not described by 
interaction likelihood.
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Low-level studies

• Photonis Planacon XP85012 + DRS4 
eval board

• In-house DAQ & analysis code
• LED tuned to <<1.
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Typical single-photon
pulses

Single photo-
electron response

Collimated LED scan



Bead scintillator

• Now look at multiple photons incident 
on multiple channels simultaneously.

• Simulation results indicate difficulty in 
understanding complex event structures.

• Need to understand photon transport, PD 
characteristics, electronics performance 
in as simple a system as possible.

• Use “scintillator bead” technique
– ~5 mm dia. active plastic
– 2” x 2” x 2” inert plastic
– Allows testing of optical

transport and detection
from known interaction
location.
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Experimental results
• 15 anode channels 

instrumented with 
DRS4 readout
– 5.8 cm2

• Preliminary results 
are inconclusive.

• Analysis is ongoing.
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Channel 
used for 
trigger 
signal



Prototype Implementation
• Active material

– Fast organic scintillator
– O(ns) decay time

• Photodetector
– MCP-PMT, e.g. Planacon
– Position resolution 

depends on
anode structure (8x8)

– 35 ps transit time spread
• Equals 8 mm photon 

travel

• Electronic readout
– Switched capacitor array

• e.g. DRS4 (5 GS/s, 950 
MHz, 11.5 enob)

– High bandwidth: take 
advantage of MCP-PMT

– Long reset time
– Scale to many channels
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Photonis

PSI



Prototype plans

• 2” x 2” x 2” quenched plastic.

• 3x – 4x Planacon, 8x8 anode.

• 216 – 288 channels DRS4 
readout.

• + HV distribution, calibrations, 
data concentrator, firmware, 
DAQ software.

• Integration early 2016.

• Test with 14 MeV, 2.5 MeV, 
fission sources.
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Prototype Design
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Data Acquisition Board
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System Design
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OrangeTree

ZestE2-NJ
• Provides full Gigabit-speed

connection to host computer

• From DAQ: Status, Dynode 
Trigger, Data

• To DAQ: Readout Trigger, 
Configuration, Clock

+HV 
Board

Provides biasing



Summary & Conclusions
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• Direct reconstruction technique to localize neutron 
interactions in a bulk scintillator volume.

• Simulation and experiment are converging:
– Added more realism to simulations.
– Applied conclusions from simulation studies to develop 

design of lab prototype.

• Neutron interactions after first two have a 
significant impact on performance.

• Goal is Single-Volume Neutron
Scatter Camera for high-efficiency
double-scatter imaging.
– Prototype under construction.



Additional Slides



Simulation/Reconstruction

• GEANT4 simulation incl
optical photons

• (10 cm)3 detector, PD on 
all six sides

• Fixed event: 3 cm/2 ns 
separation, ~1 MeVee
each recoil

• Stilbene pulse shape 
(0.1 ns rise, 4.5 ns decay)

• Idealized PD 
response/resolution
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First Interaction x, y, z, t

Second Interaction x, y, z, t

 ≈ 3 mm

 ≈ 20 ps

 ≈ 10 ps

Ideal case, NOT predictions of experimental resolutions!



Central event
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Shifted event
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Pixel populations
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Collimated LED scan

• QE quite flat (over 
small region)

• Sharp anode pixel 
boundaries
– 1 mm collimation

• Some PE scatter
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Signal readout/processing

• Not all pixels see well 
separated single photons.

• Reconstruction algorithm 
assumes it is handed a list 
of photon arrival 
positions & times.

• How to analyze signal 
trace?
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Signal readout/processing

• What if the best we can do 
for overlapping photons is 
count them?

• Check in simulation study.

• For twindow = 300 ps, time is 
shifted but reconstruction 
still reasonable.
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Original
Rebinned

t2 – t2
truez2 – z2

true



Active material studies

• Study effect of 
pulse shape on t 
resolution

• Same default event 
as earlier slide

• Pulse width 
important, 
especially rise time

• Quenched plastics?
– Short decay
– But slower rise
– Low light output
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Gaus,
0.5 ns
width

Stilbene,
0.5 ns decay

Stilbene,
4.5 ns decay

 ≈ 14 ps

 ≈ 23 ps

 ≈ 5 ps

t - ttrue


